The roads are icy, and you observe a head-on collision on Summit, at the corner with Rhodes: a 1ton car swerves out of his lane and slides through a stop sign at 41 mph straight into a 3 ton SUV traveling at 16mph in the other direction. The car and the SUV crumple from the collision, and stick together.
1. What is the final velocity, in MPH (you don't need to enter MPH in your answer) , of the SUV/car entanglement (the positive direction is the direction the car was initially going)

Answers

Answer 1

Answer:

final velocity  = - 1.75 mph

Explanation:

given data

mass m1 = 1 ton

mass m2 = 3 ton

velocity v = 41 mph

velocity u = 16 mph

to find out

what is final velocity  V

solution

we will apply here Conservation of momentum that is express as

mv + Mu = (m + M) × V    ...........................1

put here value we get

1 × 41 - 3 × 16 = (1 + 3 ) × V

solve it we get

41 - 48 = 4 V

V = [tex]\frac{-7}{4}[/tex]

final velocity  = - 1.75 mph

Answer 2

Final answer:

The final velocity of the SUV/car entanglement is 9.9 m/s.

Explanation:

In order to determine the final velocity of the SUV/car entanglement, we need to first calculate the momentum of each vehicle before the collision.

Momentum is determined by the product of an object's mass and velocity. So, the momentum of the 1 ton car before the collision is 1 ton (or 1000 kg) multiplied by its velocity of 41 mph (which is equivalent to 18.3 m/s). Therefore, the momentum of the car is 1000 kg  imes 18.3 m/s = 18300 kg*m/s.

Similarly, the momentum of the 3 ton SUV before the collision is 3 ton (or 3000 kg) multiplied by its velocity of 16 mph (which is equivalent to 7.1 m/s). Therefore, the momentum of the SUV is 3000 kg  imes 7.1 m/s = 21300 kg*m/s.

Since momentum is conserved in collisions, the total momentum before the collision is equal to the total momentum after the collision. This means that the final velocity of the SUV/car entanglement can be calculated by dividing the total momentum by the total mass. The total momentum is 18300 kg*m/s + 21300 kg*m/s = 39600 kg*m/s. The total mass is 1000 kg + 3000 kg = 4000 kg. So, the final velocity of the SUV/car entanglement is 39600 kg*m/s / 4000 kg = 9.9 m/s.


Related Questions

The inductance in the drawing has a value of L = 9.4 mH. What is the resonant frequency f0 of this circuit?

Answers

Answer:

The resonant frequency of this circuit is 1190.91 Hz.

Explanation:

Given that,

Inductance, [tex]L=9.4\ mH=9.4\times 10^{-3}\ H[/tex]

Resistance, R = 150 ohms

Capacitance, [tex]C=1.9\ \mu F=1.9\times 10^{-6}\ C[/tex]

At resonance, the capacitive reactance is equal to the inductive reactance such that,

[tex]X_C=X_L[/tex]    

[tex]2\pi f_o L=\dfrac{1}{2\pi f_oC}[/tex]

f is the resonant frequency of this circuit  

[tex]f_o=\dfrac{1}{2\pi \sqrt{LC}}[/tex]

[tex]f_o=\dfrac{1}{2\pi \sqrt{9.4\times 10^{-3}\times 1.9\times 10^{-6}}}[/tex]

[tex]f_o=1190.91\ Hz[/tex]

So, the resonant frequency of this circuit is 1190.91 Hz. Hence, this is the required solution.

Car drag racing takes place over a distance of a mile (402 m) from a standing start. If a car (mass 1600 kg) could be propelled forward with a pulling force equal to that of gravity, what would be the change in kinetic energy and the terminal speed of the car (in mph) at the end of the race be? (For comparison, a modern, high-performance sports car may reach a terminal speed of just over 100 mph = 44.7 m/s.)

Answers

Answer:

v = 88.76 m / s ,  K = 6.30 10⁶ J

Explanation:

For this exercise the force that is applied is that necessary for the acceleration of the car to be the acceleration of gravity, they do not indicate that there is friction, we look for the final speed

       v² = v₀² + 2 a x

Since the car starts from rest, the initial speed is zero, vo = 0

       v = √ 2 a x

       v = √ (2 9.8 402)

       v = 88.76 m / s

Let's look for kinetic energy

       K = ½ m v²

       K = ½ 160kg 88.76²

       K = 6.30 10⁶ J

Suppose that you lift four boxes individually, each at a constant velocity. The boxes have weights of 3.0 N, 4.0 N, 6.0 N, and 2.0 N, and you do 12 J of work on each. Match each box to the vertical distance through which it is lifted.

Answers

Answer:

The vertical distance of weight 3.0 N = 4 m, vertical distance of weight 4.0 N = 3 m, vertical distance of weight 6.0 N = 2 m, vertical distance of weight 2.0 N = 6 m

Explanation:

Worked : work can be defined as the product of force and distance.

The S.I unit of work is Joules (J).

Mathematically it can be represented as,

W = F×d.................. Equation 1

d = W/F.............................. Equation 2

where W = work, F = force, d = distance.

Given: W = 12 J

(i) for the 3.0 N weight,

using equation 2

d = 12/3

d= 4 m.

(ii) for the 4.0 N weight,

d = 12/4

d = 3 m.

(iii) for the 6.0 N weight,

d = 12/6

d = 2 m.

(iv) for the 2.0 N weight,

d = 12/2

d = 6 m

Therefore vertical distance of weight 3.0 N = 4 m, vertical distance of weight 4.0 N = 3 m, vertical distance of weight 6.0 N = 2 m, vertical distance of weight 2.0 N = 6 m

Which of the following statements correctly describes the law of conservation of energy? Group of answer choicesa. Mass cannot be created but it can be destroyed under extreme pressures.b. Mass cannot be conserved during a chemical reaction; a little bit of mass is always lost.c. The mass of a closed system cannot change over time; mass cannot be created nor destroyed.d. When added to a system, energy can destroy mass.

Answers

To solve this problem we will also apply the concept related to the conservation of the mass, which announces that: "In an isolated system, during any ordinary chemical reaction, the total mass in the system remains constant, that is, the mass consumed by the reagents is equal to the mass of the products obtained. "

If the mass is in a closed system, it cannot change. This assessment should not be confused with the transformation of the matter within it, for which it is possible that over time the matter will change from one form to another. For example during a chemical reaction, there is a rupture of links to reorganize into another, but said mass in the closed system is maintained.

The correct answer is:

C. "The mass of a closed system cannot change over time; mass cannot be created or destroyed."

The following statements correctly describe the law of conservation of energy - c. The mass of a closed system cannot change over time; mass cannot be created nor destroyed

The law of conservation of mass states that the mass is an isolated system that can not be created nor destroyed.

conserved means saved, so according to the law of conservation of mass refers to the "saving" of mass.

Thus, The following statements correctly describe the law of conservation of energy - c. The mass of a closed system cannot change over time; mass cannot be created nor destroyed

Learn more:

https://brainly.com/question/13416057

To understand the formula representing a traveling electromagnetic wave.Light, radiant heat (infrared radiation), X rays, and radio waves are all examples of traveling electromagnetic waves. Electromagnetic waves comprise combinations of electric and magnetic fields that are mutually compatible in the sense that the changes in one generate the other.The simplest form of a traveling electromagnetic wave is a plane wave. For a wave traveling in the x direction whose electric field is in the y direction, the electric and magnetic fields are given byE? =E0sin(kx??t)j^,B? =B0sin(kx??t)k^.This wave is linearly polarized in the y direction.1.a. In these formulas, it is useful to understand which variables are parameters that specify the nature of the wave. The variables E0 and B0are the __________ of the electric and magnetic fields.Choose the best answer to fill in the blank.1. maxima2. amplitudes3. wavelengths4. velocitiesb. The variable ? is called the __________ of the wave.Choose the best answer to fill in the blank.1. velocity2. angular frequency3. wavelengthc. The variable k is called the __________ of the wave.1. wavenumber
2. wavelength
3. velocity
4. frequency

Answers

Answer:

1) Eo and Bo. They are maximum amplitudes. Answer 1 and 2

2) .w is angular frequency. Answer 2

3) k  is wave number. Answer 1

Explanation:

The electromagnetic wave is given by

         [tex]E_{y}[/tex] = E₀ sin (kx –wt)

This is the equation of a traveling wave on the x axis with the elective field oscillating on the y axis

The terms represent E₀ the maximum amplitude of the electric field,

The wave vector

        k = 2π /λ

Angular velocity

       w = 2π f

To answer the questions let's use the previous definitions

1) Eo and Bo. They are maximum amplitudes. Answer 1 and 2

2) .w is angular frequency. Answer 2

3) k is wave number. Answer 1

The Earth’s radius is 6378.1 kilometers. If you were standing at the equator, you are essentially undergoing uniform circular motion with the radius of your circular motion being equal to the radius of the Earth. You are an evil mad scientist and have come up with the simultaneously awesome and terrifying plan to increase the speed of the Earth’s rotation until people at the Earth’s equator experience a centripetal (radial) acceleration with a magnitude equal to g, (9.81 m/s2 ), effectively making them experience weightlessness. If you succeed in your dastardly plan, what would be the new period of the Earth’s rotation?

a. 2.7 minutes b. 84 minutes c. 48 minutes d. 76 minutes

Answers

Answer:

b. 84 minutes

Explanation:

[tex]a_c=g[/tex] = Centripetal acceleration = 9.81 m/s²

r = Radius of Earth = 6378.1 km

v = Velocity

Centripetal acceleration is given by

[tex]a_c=\dfrac{v^2}{r}\\\Rightarrow v=\sqrt{a_cr}\\\Rightarrow v=\sqrt{9.81\times 6378100}\\\Rightarrow v=7910.06706\ m/s[/tex]

Time period is given by

[tex]T=\dfrac{2\pi r}{v60}\\\Rightarrow T=\dfrac{2\pi 6378.1\times 10^3}{7910.06706\times 60}\\\Rightarrow T=84.43835\ minutes[/tex]

The time period of Earth’s rotation would be 84.43835 minutes

The new period of the Earth’s rotation is mathematically given as

T=84.43835 min

What would be the new period of the Earth’s rotation?

Question Parameter(s):

The Earth’s radius is 6378.1 kilometers.

g= (9.81 m/s2 ),

Generally, the equation for the   is mathematically given as
[tex]a_c=\dfrac{v^2}{r}[/tex]

Therefore

[tex]v=\sqrt{a_cr}\\\\v=\sqrt{9.81*6378100}[/tex]

v=7910.06706 m/s

In conclusion

[tex]T=\dfrac{2\pi r}{v60}[/tex]

Hence

[tex]T=\dfrac{2\pi 6378.1*10^3}{7910.06706*60}[/tex]

T=84.43835 min

Read more about Time

https://brainly.com/question/4931057

I am standing next to the edge of a cliff. I throw a ball upwards and notice that 4 seconds later it is traveling downwards at 10 m/s. Where is the ball located at this time? (Pick the answer closest to the true value.)A. 120 meters above me B. 30 meters below meC. 30 meters above meD. 120 meters below meE. At the same height that it started

Answers

Answer:

Explanation:

Given

Velocity after t=4 sec is v=10 m/s downward

assuming u is the initial upward velocity

[tex]v=u+at[/tex]

[tex]-10=u-gt[/tex]

[tex]u=9.8\times 4-10=29.2 m/s[/tex]

[tex]v^2-u^2=2 as[/tex]

[tex](-10)^2-(29.2)^2=2\times (-9.8)\cdot s[/tex]

[tex]s=\frac{29.2^2-10^2}{2\times 9.8}[/tex]

[tex]s=38.4 m[/tex]

i.e. 38.4 m above the initial thrown Position  

Recall that force is a change in momentum over a change in time, the force due to radiation pressure reflected off of a solar sail can be calculated as 2 times the radiative momentum striking the sail per second. What is the approximate magnitude of the pressure on the sail in the vicinity of Earth’s Orbit?

Answers

Answer:

magnitude of the pressure on the sail in the vicinity of Earth’s Orbit= [tex]\frac{2I}{c}[/tex]

Explanation:

The momentum of a photon is:

p = E/c

E = the photon energy

c = the speed of light.

take the time derivative (gives the force)

F = dp/dt = (dE/dt)/c

F = 2(dE/dt)/c (is doubled for complete reflection of the light)

Intensity has the units of energy per unit time per unit area

=  I

then,

Force/unit area = 2I/c

magnitude of the pressure on the sail in the vicinity of Earth’s Orbit= [tex]\frac{2I}{c}[/tex]

A navy seal of mass 80 kg parachuted into an enemy harbor. At one point while he was falling, the resistive force of air exerted on him was 520 N. What can you determine about the motion?

Answers

Answer:

The motion of the parachute = 3.3 m/s²

Explanation:

Weight of the parachute - Resistive force of air = ma

W - Fₐ  = ma.................... Equation 1

making a the subject of formula in equation 1

a = (W- Fₐ)/m.................. Equation 2

Where W = weight of the parachute, Fₐ = resistive force of air, m = mass of the parachute, a = acceleration of the parachute

Constant: g = 9.8 m/s²

Given: Fₐ = 520 N, m = 80 kg

W = mg = 80 × 9.8 = 784 N,

Substituting these values into equation 2

a = (784-520)/80

a = 264/80

a = 3.3 m/s²

Therefore the motion of the parachute = 3.3 m/s²

A rock of mass m is thrown straight up into the air with initial speed |v0 | and initial position y = 0 and it rises up to a maximum height of y = h. A second rock with mass 2m (twice the mass of the original) is thrown straight up with an initial speed of 2|v0 |. What maximum height does the second rock reach?

Answers

Answer:

Explanation:

Case 1:

mass = m

initial velocity = vo

final velocity = 0

height = y

Use third equation of motion

v² = u² - 2as

0 = vo² - 2 g y

y = vo² / 2g       ... (1)

Case 2:

mass = 2m

initial velocity = 2vo

final velocity = 0

height = y '

Use third equation of motion

v² = u² - 2as

0 = 4vo² - 2 g y'

y ' = 4vo² / 2g

y' = 4 y

Thus, the second rock reaches the 4 times the distance traveled by the first rock.

The maximum height the second rock reach is :

-4 times the distance traveled by the first rock.

"Mass"

Case 1:

mass = m

initial velocity = vo

final velocity = 0

height = y

using Third equation of motion

v² = u² - 2as

0 = vo² - 2 g y

y = vo² / 2g       ... (1)

Case 2:

mass = 2m

initial velocity = 2vo

final velocity = 0

height = y '

Use third equation of motion

v² = u² - 2as

0 = 4vo² - 2 g y'

y ' = 4vo² / 2g

y' = 4 y

Therefore, the second rock reaches the 4 times the distance traveled by the first rock.

Learn more about "Mass":

https://brainly.com/question/15959704?referrer=searchResults

A 30 gram bullet is shot upward at a wooden block. The bullet is launched at the speed vi. It travels up 0.40 m to strike the wooden block. The wooden block is 20 cm wide and 10 cm high and its thickness gives it a mass of 500 g. The center of mass of the wooden block with the bullet in it travels up a distance of 0.60 m before reaching its maximum height. a. What is the launch speed of the bullet? b. How much mechanical energy does the bullet and the block system have before all of the processes? Use the surface the block rests on as the reference for where gravitational potential energy is zero. c. How much mechanical energy does the bullet and the block system have after all of the processes? d. How much mechanical energy was lost from beginning to end?

Answers

Answer:

Explanation:

Mass of bullet m = .03 kg

Mass of wooden block M = 0.5 kg

Since the center of mass of the wooden block with the bullet in it travels up a distance of 0.60 m before reaching its maximum height

Velocity of wooden block + bullet just after impact = √2gH

=√(2 x 9.8 x 0.6)

= 3.43 m / s

Let the launch velocity of bullet be v₁

If v₂ be the velocity with which bullet hits the block

Applying law of conservation of momentum

.03 x v₂ = .530 x 3.43

v₂ = 60.6 m /s

if v₁ be initial velocity

v₂² = v₁² - 2 gh

v₁² = v₂² + 2 gh

= 60.6 ² + 2 x 9.8 x 0.4

v₁ = 60.65 m /s this is launch speed.

b )

Initial kinetic energy of bullet

= 1/2 m v²

= .5 x .03 x 3680

= 55 J

Potential energy of bullet + block = 0

Total energy = 5 J

c)

Kinetic energy of bullet block system

1/2 m v²

= .5 x .53 x  3.43

= 3.11 J

d )

Loss of energy in the impact =  Total mechanical energy  lost from beginning to end?

3.11 J  - 5

= 1.89 J

Calculate the rotational inertia of a meter stick, with mass 0.71 kg, about an axis perpendicular to the stick and located at the 18 cm mark. (Treat the stick as a thin rod.)

Answers

To solve this problem we will use the parallel axis theorem for which the inertia of a point of an object can be found through the mathematical relation:

[tex]I = I_{cm} +mx^2[/tex]

Where

[tex]I_{cm}[/tex] = Inertia at center of mass

m = mass

x = Displacement of axis.

Our mass is given as 0.71kg,

m = 0.71kg

Para a Stick with length (L) the Moment of Inertia of the stick about and axis passing through the center and perpendicular to stick is

[tex]I_{cm} = \frac{1}{12} mL^2[/tex]

[tex]I_{cm} = \frac{1}{12} (0.71)(1)^2[/tex]

[tex]I_{cm} = 0.05916Kg\cdot m^2[/tex]

The distance between center of mass to the specific location is  

[tex]x = 50cm - 18cm[/tex]

[tex]x = 38cm = 0.38m[/tex]

So, from parallel axis theorem ,

[tex]I = I_{cm} + mx^2[/tex]

[tex]I =0.05916Kg\cdot m^2+ (0.71kg)(0.38m)^2[/tex]

[tex]I = 0.161684Kg\cdot m^2[/tex]

Therefore the rotational inertia is [tex]0.161684Kg\cdot m^2[/tex]

Did you think about this over Christmas? I did (-: Before Christmas a 65kg student consumes 2500 Cal each day and stays at the same weight. For three days in a row while visiting her parents she eats 3500 Cal and, wanting to keep from gaining weight decides to "work off" the excess by jumping up and down at the Christmas tree. With each jump she accelerates to a speed of 3.2 m/s before leaving the ground. a) How high will she jump each jump? b) How many jumps must she do to keep her weight? Assume that the efficiency of the body in using energy is 25%. c) Do you suggest that is a reasonable way for the student not to gain weight over Christmas? d) Possible enhancement: What other way/ways would you suggest for the student to keep her weight?

Answers

Answer:

a)  Em = 332.8 J , b) # jump = 13, c)   It is reasonable since there are not too many jumps , d) lower the calories consumed

Explanation:

a) Let's use energy conservation

Initial. On the floor

             Em₀ = K = ½ m v²

Final. The highest point

             Emf = U = m g h

Energy is conserved

             Em₀ = Emf

             ½ m v² = m g h

             h = ½ v² / g

            h = ½ 3.2² /9.8

            h = 0.52 m

b) When he was at home he maintained his weight with 2500 cal / day. In his parents' house he consumes 3500 cal / day, the excess of calories is

            Q = 3500 -2500 = 1000cal / day

Let's reduce this value to the SI system

             Q = 1000 cal (4,184 J / 1 cal) = 4186 J / day

Now the energy in each jump is

               Em = K = ½ m v²

               Em = ½ 65 3.2²

               Em = 332.8 J

They indicate that the body can only use 25% of this energy

              Em effec = 0.25 332.8 J

              Em effec = 83.2 J

This is the energy that burns the body

Let's use a Proportion Rule (rule of three), if a jump spends 83.2J how much jump it needs to spend 1046 J

              # jump = 1046 J (1 jump / 83.2 J)

              # jump = 12.6 jumps / day

              # jump = 13  

c) It is reasonable since there are not too many jumps

d) That some days consume more vegetables to lower the calories consumed

Why is it impossible for an astronaut inside an orbiting space station to go from one end to the other by walking normally?A. In an orbiting station, the gravitational force is too large and the astronaut can't take his feet off the floor.B. It is impossible to walk inside an orbiting space station because its rotation is too fast.C. In an orbiting station, after one foot pushes off there isn't a friction force to move forward. The astronaut "jumps" on the same place.D. In an orbiting station, after one foot pushes off there isn't a force to bring the astronaut back to the "floor" for the next step.

Answers

Final answer:

An astronaut cannot walk normally in a space station because there's no frictional force to move forward in the near-weightless environment. To move, astronauts use handholds and walls, pushing against them to create a reaction force.

Explanation:

It is impossible for an astronaut inside an orbiting space station to go from one end to the other by walking normally because C. In an orbiting station, after one foot pushes off there isn't a friction force to move forward. The astronaut would indeed "jump" in place due to the lack of friction between their feet and the floor of the space station, which is a result of the near-weightlessness they experience. In space, normal walking is ineffective because walking relies on gravity to pull the body back down to the floor after each step, which isn't present in the same way on a space station in orbit.

In order to move in such an environment, an astronaut must push against a solid object, creating a reaction force in the opposite direction according to Newton's third law of motion. This principle allows the astronaut to propel and steer themselves around the space station using handholds and walls. The environment inside the ISS is similar to that inside a freely falling box where gravity still exists, but occupants do not feel its effects because they are in free fall around Earth, which creates the sensation of weightlessness.

Final answer:

Astronauts cannot walk normally in an orbiting space station due to the lack of gravity and friction. They are in a state of free fall, creating a sensation of weightlessness. Movement can be achieved by utilizing the conservation of momentum and Newton's third law of motion. Therefore option C is the correct answer.

Explanation:

The reason it is impossible for an astronaut inside an orbiting space station to walk from one end to the other by walking normally is C. In an orbiting station, after one foot pushes off there isn't a friction force to move forward. The astronaut cannot walk from one end to the other by walking normally because, in the microgravity environment of an orbiting spacecraft, traditional walking, which relies on the force of gravity and friction between the feet and the ground, does not work. Instead, astronauts move about by pushing off surfaces or floating through the air.

In orbit, the International Space Station (ISS) and everything inside it, including the astronauts, are in a state of free fall. They are falling around Earth at the same rate as the space station, creating a sensation of weightlessness. This is akin to the sensation of temporary weightlessness one experiences at the topmost point of a roller coaster ride or when an elevator suddenly descends.

Achieving locomotion for an astronaut stranded in the center of the station without contact with any solid surface would necessitate a method that does not rely on gravity or friction. The astronaut would have to utilize the principle of conservation of momentum. For instance, by throwing an object in one direction, the astronaut would move in the opposite direction, as described by Newton's third law of motion: for every action, there is an equal and opposite reaction.

A circular coil of radius r = 5 cm and resistance R = 0.2 is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e-0.2t T. What is the magnitude of the current induced in the coil at the time t = 2 s? A circular coil of radius r = 5 cm and resistance R = 0.2 is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e-0.2t T. What is the magnitude of the current induced in the coil at the time t = 2 s? 1.3 mA 7.5 mA 2.6 mA 4.2 mA 9.2 mA

Answers

Answer:

the question is incomplete, the complete question is

"A circular coil of radius r = 5 cm and resistance R = 0.2 ? is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e^-t T. What is the magnitude of the current induced in the coil at the time t = 2 s?"

2.6mA

Explanation:

we need to determine the emf induced in the coil and y applying ohm's law we determine the current induced.

using the formula be low,

[tex]E=-\frac{d}{dt}(BACOS\alpha )\\[/tex]

where B is the magnitude of the field and A is the area of the circular coil.

First, let determine the area using [tex]\pi r^{2} \\[/tex] where r is the radius of 5cm or 0.05m

[tex]A=\pi *(0.05)^{2}\\ A=0.00785m^{2}\\[/tex]

since we no that the angle is at [tex]0^{0}[/tex]

we determine the magnitude of the magnetic filed

[tex]B=0.5e^{-t} \\t=2s[/tex]

[tex]E=-(0.5e^{-2} * 0.00785)[/tex]

[tex] E=-0.000532v\\[/tex]

the Magnitude of the voltage is 0.000532V

Next we determine the current using ohm's law

[tex]V=IR\\R=0.2\\I=\frac{0.000532}{0.2} \\I=0.0026A[/tex]

[tex]I=2.6mA[/tex]

Final answer:

The magnitude of the induced current in the coil at t = 2s in the given scenario is 2.4 mA. This is calculated using Faraday's law of electromagnetic induction and Ohm's law.

Explanation:

To find the magnitude of the current induced in the coil, we need to consider Faraday's law of electromagnetic induction. This law states that the induced electromotive force (emf) in any closed circuit is equal to the rate of change of the magnetic flux through the circuit.

In this situation, we have: B = 0.5 e-0.2t T, and the time derivative of the magnetic field is dB/dt = -0.1 e-0.2t T/s. The area A of the coil is πr²= π(0.05)² m². The induced emf (ε) equals -A dB/dt. Thus, we have ε = -π(0.05)² × -0.1 e-0.2t = 0.0007875 e-0.2t V.

Now, according to Ohm's law, I = ε/R, where R is the resistance of the coil. Substituting the given values, we have I = 0.0007875 e-0.2t / 0.2 = 0.0039375 e-0.2t A. At t=2s, we can substitute into the equation to get I = 0.0039375 e-0.4 = 0.0024 A or 2.4 mA. Therefore, the magnitude of the induced current at t = 2s is 2.4 mA.

Learn more about Electromagnetic Induction here:

https://brainly.com/question/32444953

#SPJ3

A 1 m long wire of diameter 1mm is submerged in an oil bath of temperature 25-degC. The wire has an electrical resistance per unit length of 0.01 Ω/m. If a current of 100 A flows through the wire and the convection coefficient is 500W/m2K, what is the steady state temperature of the wire? From the time the current is applied, how long does it take for the wire to reach a temperature within 1-degC of the steady state value? The density of the wire is 8,000kg/m3, its heat capacity is 500 J/kgK and its thermal condu

Answers

To determine the steady state temperature of the wire, one can use the power dissipation formula and the convection heat transfer equation. The time for the wire to reach within 1-degree Celsius of steady state involves transient heat transfer calculations using the given material properties.

The student has asked about the steady state temperature of a 1-meter-long wire with a 1mm diameter submerged in an oil bath at 25 degrees Celsius when a current of 100A flows through it. We also need to calculate how long it takes for the wire to reach within 1-degree Celsius of the steady state temperature. To find the steady state temperature, we use the formula P = I2R, where P is the power, I is the current, and R is the resistance. Given that R = 0.01
Ω/m and I = 100A, we find P = (100A)2 x 0.01
Ω/m = 100W/m. Then, using the convection heat transfer equation Q = hA(Ts - T
bath), where Q is the heat transfer rate, h is the convection coefficient, A is the surface area, Ts is the wire surface temperature, and Tbath is the oil bath temperature, we equate Q to P since the wire is in steady state, and solve for Ts. The time to reach within 1-degree Celsius of steady state temperature requires calculating the transient heat transfer, which involves solving the heat transfer equation with the given material properties such as density, heat capacity, and thermal conductivity.

The steady-state temperature of the wire is approximately [tex]\(343.471 {°C}\)[/tex], and it takes approximately [tex]\(1.539[/tex],  for the wire to reach within 1°C of the steady-state value.

Steady-State Temperature Calculation:

  - Calculate the radius [tex](\(r\))[/tex] of the wire:

   [tex]\[ r = \frac{d}{2} = \frac{0.001 \, \text{m}}{2} = 0.0005 \, \text{m} \][/tex]

  - Calculate the surface area [tex](\(A\))[/tex] of the wire:

   [tex]\[ A = 2\pi r l = 2\pi \times 0.0005 \times 1 = 0.00314 \, \text{m}^2 \][/tex]

  - Calculate the heat transfer rate [tex](\(q\))[/tex]:

   [tex]\[ q = I^2 R = (100)^2 \times 0.01 = 1000 \, \text{W} \][/tex]

  - Calculate the steady-state temperature [tex](\(T_{\text{wire}}\))[/tex]:

    [tex]\[ T_{\text{wire}} = \frac{q}{hA} + T_{\text{fluid}} \][/tex]

    [tex]\[ T_{\text{wire}} \approx \frac{1000}{500 \times 0.00314} + 298.15 \][/tex]

    [tex]\[ T_{\text{wire}} \approx 343.471 \, \text{°C} \][/tex]

Time to Reach Within 1°C of Steady-State:

  - Calculate the volume [tex](\(V\))[/tex] of the wire:

    [tex]\[ V = \pi r^2 l = \pi \times (0.0005)^2 \times 1 = 7.854 \times 10^{-7} \, \text{m}^3 \][/tex]

  - Calculate the thermal time constant [tex](\(\tau\))[/tex]:

    [tex]\[ \tau = \frac{\rho V c}{hA} \][/tex]

   [tex]\[ \tau \approx \frac{8000 \times 7.854 \times 10^{-7} \times 500}{500 \times 0.00314} \][/tex]

    [tex]\[ \tau \approx 0.7854 \, \text{s} \][/tex]

  - Calculate the time [tex](\(t\))[/tex] it takes for the wire to reach within 1°C of the steady-state value:

    [tex]\[ t = \tau \ln\left(\frac{T_{\text{steady}} - T_{\text{initial}}}{T_{\text{steady}} - T_{\text{fluid}}}\right) \][/tex]

    [tex]\[ t \approx 0.7854 \times \ln\left(\frac{343.471 - 25}{343.471 - 298.15}\right) \][/tex]

   [tex]\[ t \approx 0.7854 \times \ln\left(\frac{318.471}{45.321}\right) \][/tex]

   [tex]\[ t \approx 0.7854 \times \ln(7.032) \][/tex]

   [tex]\[ t \approx 1.539 \, \text{s} \][/tex]

If a nucleus decays by gamma decay to a daughter nucleus, which of the following statements about this decay are correct? (There may be more than one correct choice.)

a)The daughter nucleus has fewer protons than the original nucleus.

b)The daughter nucleus has the same number of nucleons as the original nucleus.

c)The daughter nucleus has more protons than the original nucleus.

d)The daughter nucleus has fewer neutrons than the original nucleus. The daughter nucleus has more neutrons than the original nucleus

Answers

Answer: Option (b) is the correct answer.

Explanation:

A gamma particle is basically a photon of electromagnetic radiation with a short wavelength.

Symbol of a gamma particle is [tex]^{0}_{0}\gamma[/tex]. Hence, charge on a gamma particle is also 0.

For example, [tex]^{234}_{91}Pa \rightarrow ^{234}_{91}Pa + ^{0}_{0}\gamma + Energy[/tex]

So, when a nucleus decays by gamma decay to a daughter nucleus then there will occur no change in the number of protons and neutrons of the parent atom but there will be loss of energy as a nuclear reaction has occurred.

Thus, we can conclude that the statement daughter nucleus has the same number of nucleons as the original nucleus., is correct about if  a nucleus decays by gamma decay to a daughter nucleus.

Answer: Option (b) is the correct answer.

Explanation:

A gamma particle is basically a photon of electromagnetic radiation with a short wavelength.

8–4. The tank of the air compressor is subjected to an internal pressure of 90 psi. If the internal diameter of the tank is 22 in., and the wall thickness is 0.25 in., determine the stress components acting at point A. Draw a volume element of the material at this point, and show the results on the element.

Answers

Answer:

The stress S = 1935 [Psi]

Explanation:

This kind of problem belongs to the mechanical of materials field in the branch of the mechanical engineering.

The initial data:

P = internal pressure [Psi] = 90 [Psi]

Di= internal diameter [in] = 22 [in]

t = wall thickness [in] = 0.25 [in]

S = stress = [Psi]

Therefore

ri = internal radius = (Di)/2 - t = (22/2) - 0.25 = 10.75 [in]

And using the expression to find the stress:

[tex]S=\frac{P*D_{i} }{2*t} \\replacing:\\S=\frac{90*10.75 }{2*0.25} \\S=1935[Psi][/tex]

In the attached image we can see the stress σ1 & σ2 = S acting over the point A.

A forward-biased silicon diode is connected to a 12.0-V battery through a resistor. If the current is 12 mA and the diode potential difference is 0.70 V, what is the resistance?

Answers

To solve this problem we will use the concepts related to Ohm's law for which voltage, intensity and resistance are related.

Mathematically this relationship is given as

[tex]V = IR \rightarrow R= \frac{V}{I}[/tex]

Where,

V= Voltage

I = Current

R = Resistance

The value of the given voltage is 12V, while the current is 12mA, therefore the resistance would be

[tex]R = \frac{12}{12*10^{-3}}[/tex]

[tex]R = 1000 \Omega[/tex]

Therefore the resistance is [tex]1000\Omega[/tex]

The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 598 nm, propagating in a vacuum in the z-direction is described by B =(B1sin(kz−ωt))(i^+j^) where B1 = 8.7 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively. What is k, the wavenumber of this wave?

Answers

Answer:

For this given plane monochromatic electromagnetic wave with wavelength λ=598 nm, the wavenumber is [tex]k=0,0105\ x\ 10^{-9}\ m^{-1}[/tex] .

Explanation:

For a plane electromagnetic wave we have that the electrical and magnetic field are:

[tex]E(r,t)=E_{0}\ cos ( wt-kr)\\\ B(r,t)=B_{0}\ cos(wt-kr)[/tex]

In this case we have the data for the magnetic field. We are told that the magnetic field in a plane electromagnetic wave with wavelength λ=598 nm, propagating in a vacuum in the z direction ([tex]\hat k[/tex]) is described by

         [tex]B=8.7\ x\ 10^{-6}\ T sin(kz-wt) (\hat i+\hat j)[/tex]

([tex]\hat i,\hat j, \hat k[/tex] are the unit vectors in the x,y,z directions respectively)

The wavenumber k is a measure of the spatial frequency of the wave, is defined as the number of radians per unit distance:

          [tex]k=\frac{2\pi}{\lambda}[/tex]

where λ is the wavelength

So we get that

[tex]k=\frac{2\pi}{\lambda} \rightarrow k=\frac{2\pi}{598 nm}  \rightarrow k=0,0105\ x\ 10^{9}\ m^{-1}[/tex]

The wavenumber is

            [tex]k=0,0105\ x\ 10^{9}\ m^{-1}[/tex] .

A continuous and aligned fiber-reinforced composite having a cross-sectional area of 1130 mm2 is subjected to an external tensile load. If the stresses sustained by the fiber and matrix phases are 156 MPa and 2.75 MPa, respectively, the force sustained by the fiber phase is 74,000 N and the total longitudinal strain is 1.25 x 10-3, what is the value of the modulus of elasticity of the composite material in the longitudinal direction?

Answers

Answer:

Ec=53.7×10⁹N/m² =53.7Gpa

Explanation:

To calculate the modulus of elasticity in the longitudinal direction.  This is possible realizing Ec=σ/ε where σ=(Fm+Ff)/Ac

[tex]Ec=Sigma/E\\Ec=\frac{(Fm+Ff)/E}{Ac}\\ Ec=\frac{1802+74,000}{(1.25*10^{-3})(1130)(1/1000)^{2}  }\\ Ec=53.7*10^{9}N/m^{2}\\or\\Ec=53.7GPa[/tex]

Final answer:

The modulus of elasticity of the composite material in the longitudinal direction is 124,800 MPa.

Explanation:

To find the modulus of elasticity of the composite material in the longitudinal direction, we can use the formula:

E = (stress sustained by the fiber phase)/(longitudinal strain)

Given that the stress sustained by the fiber phase is 156 MPa and the total longitudinal strain is 1.25 x 10^-3, we can plug in these values to calculate the modulus of elasticity:

E = 156 MPa / (1.25 x 10^-3) = 124,800 MPa

Therefore, the modulus of elasticity of the composite material in the longitudinal direction is 124,800 MPa.

The headlights of a car are 1.6 m apart and produce light of wavelength 575 nm in vacuum. The pupil of the eye of the observer has a diameter of 4.0 mm and a refractive index of 1.4. What is the maximum distance from the observer that the two headlights can be distinguished?

Answers

To solve this problem it is necessary to apply the concepts related to angular resolution, for which it is necessary that the angle is

[tex]\theta = 1.22\frac{\lambda}{nd}[/tex]

Where

d = Diameter of the eye

n = Index of refraction

D = Distance between head lights

[tex]\lambda[/tex]= Wavelength

Replacing with our values we have that

[tex]\theta = 1.22 \frac{(1.22)(575*10{-9})}{1.4(4*10^{-3})}[/tex]

[tex]\theta = 1.252*10^{-4}rad[/tex]

Using the proportion of the arc length we have to

[tex]L = \frac{D}{\theta}[/tex]

Where L is the maximum distance, therefore

[tex]L = \frac{1.6}{1.252*10^{-4}}[/tex]

[tex]L = 12.77km[/tex]

Therefore the maximum distance from the observer that the two headlights can be distinguished is 12.77km

Twist-on connectors without the spring-steel coils (plastic threads only) are suitable for making branch-circuit connections.

A. TrueB. False

Answers

Answer:

if it is a plastic connector it wont work but if there is metal or steel it will work

Explanation:

Scientists are working on a new technique to kill cancer cells by zapping them with ultrahigh-energy (in the range of 1012 W) pulses of electromagnetic waves that last for an extremely short time (a few nanoseconds). These short pulses scramble the interior of a cell without causing it to explode, as long pulses would do. We can model a typical such cell as a disk 4.6 μm in diameter, with the pulse lasting for 3.4 ns with an average power of 2.46×1012 W . We shall assume that the energy is spread uniformly over the faces of 100 cells for each pulse.

Part A

How much energy is given to the cell during the pulse?

Express your answer to two significant figures.

Answers

Final answer:

The energy given to each cell during the pulse can be calculated by multiplying the power of the pulse by its duration, and then dividing by the number of cells.

Explanation:

The energy supplied to the cell during the pulse is determined by the power multiplied by the duration of the pulse. In this scenario, the power is 2.46×1012 W and the duration is 3.4 ns (which is 3.4x10-9 s when converted to seconds for mathematical calculations).

We use the formula:
E = P * t
Where,
E is the Energy
P is the Power
t is the time (duration of the pulse)

Substituting the given values into the formula:
E = 2.46x1012 W * 3.4x10-9 s

This gives the total energy supplied. We know the energy is spread uniformly over the faces of 100 cells, so each cell will get 1/100 of the total energy. Using these calculations, we can determine the amount of energy given to each cell during the pulse.

Learn more about Energy Calculation here:

https://brainly.com/question/31994371

#SPJ12

Suppose you are standing a few feet away from a bonfire on a cold fall evening. Your face begins to feel hot. What is the mechanism that transfers heat from the fire to your face? (Hint: Is the air between you and the fire hotter or cooler than your face?)

•A. convection
•B. radiation
•C. conduction
•D. none of the above

Answers

B. Radiation. It is not touching so it cannot be conduction

A 100 g aluminum calorimeter contains 250 g of water. The two substances are in thermal equilibrium at 10°C. Two metallic blocks are placed in the water. One is a 50 g piece of copper at 75°C. The other sample has a mass of 66 g and is originally at a temperature of 100°C. The entire system stabilizes at a final temperature of 20°C. Determine the specific heat of the unknown second sample. (Pick the answer closest to the true value.)A. 1950 joules Co/kgB. 975 joules Co/kgC. 3950 joules Co/kgD. 250 joules Co/kgE. 8500 joules Co/kg

Answers

Answer:

A. 1,950 J/kgºC

Explanation:

Assuming that all materials involved, finally arrive to a final state of thermal equilibrium, and neglecting any heat exchange through the walls of the calorimeter, the heat gained by the system "water+calorimeter" must be equal to the one lost by the copper and the unknown metal.

The equation that states how much heat is needed to change the temperature of a body in contact with another one, is as follows:

Q = c * m* Δt

where m is the mass of the body, Δt is the change in temperature due to the external heat, and c is a proportionality constant, different for each material, called specific heat.

In our case, we can write the following equality:

(cAl * mal * Δtal) + (cH₂₀*mw* Δtw) = (ccu*mcu*Δtcu) + (cₓ*mₓ*Δtₓ)

Replacing by the givens , and taking ccu = 0.385 J/gºC and cAl = 0.9 J/gºC, we have:

Qg= 0.9 J/gºC*100g*10ºC + 4.186 J/gºC*250g*10ºC  = 11,365 J(1)

Ql = 0.385 J/gºC*50g*55ºC + cₓ*66g*80ºC = 1,058.75 J + cx*66g*80ºC (2)

Based on all the previous assumptions, we have:

Qg = Ql

So, we can solve for cx, as follows:

cx = (11,365 J - 1,058.75 J) / 66g*80ºC = 1.95 J/gºC (3)

Expressing (3) in J/kgºC:

1.95 J/gºC * (1,000g/1 kg) = 1,950 J/kgºC

Final answer:

The specific heat of the unknown metal can be determined from the equilibrium of heat transfer in the system. The heat lost by the hot substances is equal to the heat gained by the cooler substances. Solving for the specific heat of the unknown substance involves calculating the heat gained and lost and equating their values.

Explanation:

The specific heat of a substance is a measure of the amount of heat energy required to raise the temperature of a certain mass of the substance by a certain amount. In this case, we're solving for the specific heat (c) of an unknown substance. As the system is in thermal equilibrium, the heat lost by hot substances (copper and unknown metal) is equal to the heat gained by the cooler substances (water and the calorimeter).

The specific heat (c) of the unknown substance can therefore be determined by setting the heat gained (Q_gained = m*c*ΔT) by the cooler substances equal to the heat lost (Q_lost = m*c*ΔT) by the hot substances and solving for the specific heat (c) of the unknown substance. Given that ΔT is the change in temperature, m is the mass, and c is the specific heat, and using the specific heat values for water, aluminum, and copper.

Learn more about Specific Heat here:

https://brainly.com/question/28852989

#SPJ3

A cylinder with a movable piston contains 2.00 g of helium, He, at room temperature. More helium was added to the cylinder and the volume was adjusted so that the gas pressure remained the same. How many grams of helium were added to the cylinder if the volume was changed from 2.00 L to 4.10 L ? (The temperature was held constant.)

Answers

Answer:

0.358g

Explanation:

Density of Helium = 0.179g/L

ρ=m/v

m=ρv

when the volume was 2L

m1= 0.179*2

m1=0.358g

when the volume increased to 4L

m2= 0.179*4

m2=0.716g

gram of helium added = 0.716g-0.358g

=0.358g

A proton initially traveling at 50,000 m/s is shot through a small hole in the negative plate of a parallal-plate capacitor. The electric field strength inside the capacitor is 1,500 V/m. How far does the proton travel above the negative plate before temporarily coming to rest and reversing course? Assume the proton reverses course before striking the positive plate.

Answers

Answer:

x = 8.699 10⁻³ m

Explanation:

The proton feels an electric charge that is the opposite direction of speed, let's look for acceleration using Newton's second law

      F = m a

        F = q E

      a = q E / m

     

      a = 1.6 10⁻¹⁹ 1500 / 1.67 10⁻²⁷

      a = 1,437 10¹¹ m / s²

Now we can use kinematic relationships

      v² = v₀² - 2 a x

When at rest the speed is zero (v = 0)

      x = v₀² / 2 a

Let's calculate

     x = 50,000² / (2 1,437 10¹¹)

     x = 8.699 10⁻³ m

A projectile of mass m is fired straight upward from the surface of an airless planet of radius R and mass M with an initial speed equal to the escape speed vesc (meaning the projectile will just barely escape the planet's gravity -- it will asymptotically approach infinite distance and zero speed.) What is the correct expression for the projectile's kinetic energy when it is a distance 9R from the planet's center (8R from the surface). Ignore the gravity of the Sun and other astronomical bodies. KE (at r = 9R) is:a. GMm/9Rb. GMm/8Rc. 1/2mvesc^2d. -GMm/8Re. None of these

Answers

Answer:

K = G Mm / 9R

Explanation:

Expression for escape velocity V_e = [tex]\sqrt{\frac{2GM}{R} }[/tex]

Kinetic energy at the surface = 1/2 m V_e ²

= 1/2 x m x 2GM/R

GMm/R

Potential energy at the surface

= - GMm/R

Total energy = 0

At height 9R ( 8R from the surface )

potential energy

= - G Mm / 9R

Kinetic energy = K

Total energy will be zero according to law of conservation of mechanical energy

so

K  - G Mm / 9R = 0

K = G Mm / 9R

A block of mass m = 0.775 kg is fastened to an unstrained horizontal spring whose spring constant is k = 83.6 N/m. The block is given a displacement of +0.113 m, where the + sign indicates that the displacement is along the +x axis, and then released from rest. What is the force (magnitude) that the spring exerts on the block just before the block is released?

Answers

Answer:

F= 9.45 N

Explanation:

If the mass is fastened to an unstrained horizontal spring, this means that at this position, the spring doesn't exert any force, because it keeps his equilibrium length.

If then the block is given a displacement of +0.113m, this means that the spring has been stretched in the same length.

According to Hooke's Law, the spring exerts a restoring force (trying to return to his equilibrium state) that opposes to the displacement, and which is proportional (in magnitude) to it, being the proportionality constant, a quantity called spring constant, which depends on the type of spring.

We can write the Hooke's Law as follows:

F = - k * Δx

Just before the block is released, we can get the value of F as follows:

⇒ F = 83.6 N/m* 0.113 m = 9.45 N (in magnitude)

Other Questions
HD Corp. and LD Corp. have identical assets, sales, interest rates paid on their debt, tax rates, and EBIT. However, HD uses more debt than LD. Which of the following statements is CORRECT? Without more information, we cannot tell if HD or LD would have a higher or lower net income. HD would have the lower equity multiplier for use in the Du Pont equation. HD would have to pay more in income taxes. HD would have the lower net income as shown on the income statement. HD would have the higher net income as shown on the income statement. Sixty- five percent of men consider themselves knowledgeable football fans. If 10 men are randomly selected, find the probability that exactly six of them will consider themselves knowledgeable fans. a) 0.65 b) 0.069 c) 0.600 d) 0.238 According to Inc, 79% of job seekers used social media in their job search in 2018. Many believe this number is inflated by the proportion of 22- to 30-year-old job seekers who use social media in their job search. Suppose a survey of 22- to 30-year-old job seekers showed that 314 of the 370 respondents use social media in their job search. In addition, 281 of the 370 respondents indicated they have electronically submitted a resume to an employer. (a) Conduct a hypothesis test to determine if the results of the survey justify concluding the proportion of 22- to 30-year-old job seekers who use social media in their job search exceeds the proportion of the population that use social media in their job search. Use = 0.05. State the null and alternative hypothesis. (Enter != for as needed.) In order to limit partisan ___________ in the redistricting process, some states have taken the responsibility for drawing electoral maps away from _________ and given it to an independent There are many many stars in the universe in which of the following do all stars appear to be quite similar A. chemical composition B. temperature C. distance from our solar system D. size I can not figure this question out! Plz help!! A drill team is raising money by holding a car wash. The team earns $6.00 for each car washed. The team's expenses include $50.00 for advertising plus $0.50 in materials for each car washed. Let f(x) represent the team's total earnings for washing x cars and g(x) represents the team's total expenses for washing x cars. Describe how you can use f(x) and g(x) to obtain a function p(x) that gives the team's profit for washing x cars. Then write a rule for p(x). In a school of 450 people 110 are in the choir 240 are in a band and 60 are in bothWhat is the probability a store sells packages of comic books with a poster. 1 poster + 6 comics = $12.75Or1 poster + 13 comics = $19.75a. write a linear function in the form y=mx+b that represents the cost, y, of a package containing any number of comic books.b. Construct Arguments. Suppose another store sells a similar package, modeled by a linear function with initial value $7.99 which store has the better deal? Explain. Mi nombre es Pedro y ______ amigo de Hassan. Hassan y yo _____ en la boda de Pablo.- es; esta - estamos; somos- son; estn- soy; estamos Show calculations for each of the ratio table What does Gatsby offer Nick in return for Nicks cooperation in inviting Daisy to his house? York Casting Services started the year with total assets of $110,000 and total liabilities of $50,000. The revenues and the expenses for the year amounted to $140,000 and $50,000, respectively. During the year, the company did not issue any common stock, but it distributed dividends of $70,000. Calculate the amount of increase or decrease in stockholders' equity for the year. tasks made using any recorder can be edited in the task editor ture or false Ammonium hydrogen sulfide decomposes according to the following reaction, for which Kp = 0.11 at 250C: NH4HS(s) H2S(g) + NH3(g) If 46.5 g of NH4HS(s) is placed in a sealed 5.0L container, what is the partial pressure of NH3(g) at equilibrium? PNH3 = atm When one store stays open late to gain an advantage, its competitors begin to stay open late, too. At this point the first store is no better off than it was before, but now every store has additional expenses. This illustration is an example of what Frank and Cook call a:______A) Struggle for parity.B) Virtual conflict.C) Positional arms race.D) Market economy.E) Capitalistic marathon. what is the solution to -7/8 m - 13/8 The viewing screen in a double-slit experiment with monochromatic light. Fringe C is the central maximum. The fringe separation is ?y.Part A What will happen to the fringe spacing if the wavelength of the light is decreased? a. y will decrease b. y will increase c. y will not changePart B What will happen to the fringe spacing if the spacing between the slits is decreased? a. y will decrease b. y will increase c. y will not change Part C What will happen to the fringe spacing if the distance to the screen is decreased? a. y will decrease b. y will increase c. y will not changePart D Suppose the wavelength of the light is 460 nm . How much farther is it from the dot on the screen in the center of fringe E to the left slit than it is from the dot to the right slit? The most effective means of increasing productivity and overcoming economic crisis in the Late Middle Ages came from Select one: a. guild supervision and standards. b. higher wages. c. technological advances. d. the Hanseatic League and similar trade associations. e. the decline in guilds. On the planet Zorb, the acceleration due to gravity is 10 meters per second squared. If you were to launch a projectile at an angle of 30 degrees with an initial velocity of 10 meters per second, in seconds, how long would it take for the projectile to fall to the ground? A rocket burns fuel at a rate of 264 kg/s andexhausts the gas at a relative speed of 8 km/s.Find the thrust of the rocket.Answer in units of MN. Steam Workshop Downloader