Answer:
Step-by-step explanation:
Hello!
a)
One of the advantages of assigning the units randomly to the different treatments is to avoid selection bias. An example of selection bias would be selecting the best subjects at the barbell curl to the "encouraged" group and the worst ones to the "not encouraged" group.
Randomization also guarantees independence between the experimental units and treatment groups.
b) (see boxplots in attachment)
Encouraged group:
Box:
Q₁≅ 10
Q₂≅ 30
Q₃= 50
IQD= 50 - 10 = 40
The box seems symmetric, the distance between Q₁-Q₂ and Q₂-Q₃ is the same and the median is exactly in the middle.
Whiskers:
The left whisker is shorter than the right whisker, which is longer.
If you were to look only at the box, the distribution seems symmetrical but adding the whiskers there is a pronounced right asymmetry.
Min value ≅ 5
Max value ≅ 75
Range= 75 - 5 = 70
Not encouraged group:
Box:
Q₁≅ 10
Q₂≅ 20
Q₃= 35
IQD= 35 - 10 = 25
The box shows a little skewness to the right (the 2nd Quartile is closer to the first one than the 3rd) and is overall shorter compared to the first group.
Whiskers:
The left whisker is shorter than the right whisker, so in general, this distribution is also right-skewed.
Min value ≅ 0
Max value ≅ 60
Range= 60 - 0 = 60
Compared with the "encouraged" group, the IQD and the Range are shorter, which means that the "not encouraged" group shows less dispersion.
c) and d)
Daniel claims that people perform better in the barbell curl, on average, when being encouraged.
He divided the 29 subjects into two groups and measured their performance, then the study variables are:
X₁: Performance in the barber curl of a subject that was encouraged by his coach.
X₂: Performance in the barber curl of a subject that did not receive encouragement.
Logically, since Daniel wants to study the performance of both groups on average, you'd think that the parameters of interest will be the population means. But to study the average you need the population to have a normal distribution and looking at those boxplots, none of them is near the normal distribution and the size of both samples isn't big enough for an approximation.
The best option is to conduct a non-parametric analysis, for example, the Mann Whitney U-test and instead of comparing the population means, you'll compare the population medians: θ₁ vs. θ₂ ⇒ In the hypothesis of this test, you'll state that both samples come from the same population and if both have the same median, then each observation of the first sample x₁i will have an equal probability of being smaller or greater than each observation of the second sample x₂i (probability 0.5)
Depending of the statistics course, the hypotheses may change, I'm used at working directly with the medians, if they are equal, it will mean that the top 50% and bottom 50% of each population will be the same, which is the same as saying that P(x₁i > x₂i)= 0.5 vs. P(x₁i > x₂i)≠ 0.5
The conditions for the Mann-Whitney U-test are:
1) All observations on both groups should be independent. Check
2) The variables should be continuous or at least ordinal. Check
3) Both variables have the same distribution under the null hypothesis. Check (Looking at the boxplots, both are right-skewed)
4) Under the alternative hypothesis, the values of one of the populations exceed the other. In this case: H₁: θ₁ > θ₂
e)
H₀: θ₁ ≤ θ₂ vs. H₁: θ₁ > θ₂
Using the p-value approach, the decision rule is always the same:
If p-value ≤ α ⇒ Reject the null hypothesis.
If p-value > α ⇒ Do not reject the null hypothesis.
p-value: 0.107 > α: 0.05 ⇒ The decision is to not reject the null hypothesis.
At a 5% significance level, there is no significant evidence to reject the null hypothesis. Both samples seem to be from the same population. He can conclude that encouraging the subjects doesn't change significantly their performance in the barbell curl.
I hope you have a SUPER day!
Combine like terms to create an equivalent expression: -n + (-4) - (-4n) + 6
Answer:
3n + 2
Step-by-step explanation:
-n + 4n -4 + 6
3n + 2
A sprinkler is designed to rotate 360∘ clockwise, and then 360∘ counterclockwise to water a circular region with a radius of 11 feet. The sprinkler is located in the middle of the circular region. The sprinkler begins malfunctioning and is only able to rotate 225∘ in each direction. Find the area of the sector to the nearest square foot.
The sprinkler can water ____
square feet.
We have been given that a sprinkler is designed to rotate 360∘ clockwise, and then 360∘ counterclockwise to water a circular region with a radius of 11 feet. The sprinkler is located in the middle of the circular region. The sprinkler begins malfunctioning and is only able to rotate 225∘ in each direction.
We are asked to find the area of the sector to nearest square foot.
We will use area of sector formula to solve our given problem.
[tex]\text{Area of sector}=\frac{\theta}{360}\times \pi r^2[/tex], where,
[tex]\theta[/tex] = Central angle of sector,
[tex]r[/tex] = Radius.
For our given problem [tex]\theta = 225^{\circ}[/tex] and [tex]r=11[/tex].
[tex]\text{Area of sector}=\frac{225^{\circ}}{360^{\circ}}\times \pi (11)^2[/tex]
[tex]\text{Area of sector}=0.625\times 121\pi[/tex]
[tex]\text{Area of sector}=237.5829444277281137[/tex]
[tex]\text{Area of sector}\approx 238[/tex]
Therefore, the sprinkler can water approximately 238 square feet.
To find the area of the sector, we need to find the central angle, find the fraction of the circle covered by the sector, and then multiply it by the area of the entire circle with a radius of 11 feet.
Explanation:To find the area of the sector, we need to find the central angle first. Since the sprinkler can only rotate 225∘ in each direction, the total angle covered is 225∘+225∘=450∘.
Next, we need to find the fraction of the circle covered by the sector. We can do this by finding the ratio of the central angle to the total angle of a circle, which is 360∘. This can be calculated as (450/360).
Finally, we multiply the fraction by the area of the entire circle with a radius of 11 feet, which is π(11)^2, to find the area of the sector.
Can anyone find this area of this parallelogram
Answer:
260
Step-by-step explanation:
A = bh
4. Which of the following points on the number line best represents 5/8?
Answer:
B
Step-by-step explanation:
You can see that the dashes on the number line are going up by 1/4 which is equal to 2/8 (when you multiply 1/4 by 2). At point C your already at 6/8 which is a little larger than 5/8 so when you do a little less than 6/8 you get to point B which is the best answer.
What is the value of the expression: 4.6+(-3.2)
Answer:
1.4
Step-by-step explanation:
4.6 + (- 3.2)
A plus sign and a minus sign results in a minus sign
Re-write the expression without the parenthesis
4.6 - 3.2
Subtract
1.4
Hope this helps :)
Answer:
the answer is attached to the picture
Use the spinner to find the theoretical probability of spinning an even number.
25
Step-by-step explanation:
25
How many moles of H2 would be required to produce 9.0 grams of water? 10
2 H2 + O2 + 2 H20
Answer:
8.1 moles
Step-by-step explanation:
Given parameters: Mass of water to be decomposed = 29.2g Unknown: Number of moles of oxygen. Solution: To solve this problem, we first write the balanced reaction equation : 2H₂O → 2H₂ + O₂ Now convert the given mass of the water to number of moles; Number of moles of water = Molar mass of water = 2(1) + 16 = 18g/mol Number of moles of water = = 16.2moles From the balanced reaction equation: 2 moles of water produced 1 mole of oxygen gas; 16.2 mole of water will produce = 8.1moles of oxygen gas
Hope this helps you :3
According to a recent publication, the mean price of new mobile homes is $63 comma 800. Assume a standard deviation of $7900. Let x overbar denote the mean price of a sample of new mobile homes. a. For samples of size 25, find the mean and standard deviation of x overbar. Interpret your results in words. b. Repeat part (a) with nequals50. a. For ▼ the mean and standard deviation of ▼ the prices of the mobile homes all possible sample mean prices are $ nothing and $ nothing, respectively. (Round to the nearest cent as needed.) b. For ▼ samples of 50 mobile homes, the 50 mobile homes sampled, the mean and standard deviation of ▼ the prices of the mobile homes all possible sample mean prices are $ nothing and $ nothing, respectively. (Round to the nearest cent as needed.)
Answer:
a. For n=25, the mean and standard deviation of the prices of the mobile homes all possible sample mean prices are $63,800 and $1,580, respectively.
b. For n=50, the mean and standard deviation of the prices of the mobile homes all possible sample mean prices are $63,800 and $1,117, respectively.
Step-by-step explanation:
In this case, for each sample size, we have a sampling distribution (a distribution for the population of sample means), with the following parameters:
[tex]\mu_s=\mu=63,800\\\\\sigma_s=\sigma/\sqrt{n}=7,900/\sqrt{n}[/tex]
For n=25 we have:
[tex]\mu_s=\mu=63,800\\\\\sigma_s=\sigma/\sqrt{n}=7,900/\sqrt{25}=7,900/5=1,580[/tex]
The spread of the sampling distribution is always smaller than the population spread of the individuals. The spread is smaller as the sample size increase.
This has the implication that is expected to have more precision in the estimation of the population mean when we use bigger samples than smaller ones.
If n=50, we have:
[tex]\mu_s=\mu=63,800\\\\\sigma_s=\sigma/\sqrt{n}=7,900/\sqrt{50}=7,900/7.07=1,117[/tex]
For samples of size 25 and 50, the mean of x bar is $63,800. The standard deviation of x bar is $1580 for a sample size of 25 and $1117 for a sample size of 50.
a. For samples of size 25, the mean of x bar is equal to the population mean, which is $63,800. The standard deviation of x bar is equal to the population standard deviation divided by the square root of the sample size. So, the standard deviation of x bar is $7900/sqrt(25) = $1580.
b. For samples of size 50, the mean of x bar is still $63,800. The standard deviation of x bar is $7900/sqrt(50) = $1117. Note that as the sample size increases, the standard deviation of x bar decreases.
Learn more about Sample Mean and Standard Deviation here:https://brainly.com/question/14747159
#SPJ11
Suppose SAT Writing scores are normally distributed with a mean of 488488 and a standard deviation of 111111. A university plans to award scholarships to students whose scores are in the top 8%8%. What is the minimum score required for the scholarship? Round your answer to the nearest whole number, if necessary.
Answer:
The minimum score required for the scholarship is 644.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 488, \sigma = 111[/tex]
What is the minimum score required for the scholarship?
Top 8%, which means that the minimum score is the 100-8 = 92th percentile, which is X when Z has a pvalue of 0.92. So it is X when Z = 1.405.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.405 = \frac{X - 488}{111}[/tex]
[tex]X - 488 = 1.405*111[/tex]
[tex]X = 644[/tex]
The minimum score required for the scholarship is 644.
A follow-up study will be conducted with a sample of 20 people from the 300 people who responded yes (support) and no (do not support). Two sampling methods have been proposed: a simple random sample and a stratified random sample with the survey response as strata. (b) If the stratified random sample is used, what is the number of people that will be selected from those who responded yes? Support your answer by showing your work.
Using the concept of stratified sampling, it is found that 10 people will be selected from those who responded yes.
In a stratified sample, the population is divided into groups, and the same number of elements of each group is surveyed.
In this problem:
Two groups, one with those who responded yes and other with those who responded no.Sample of 20 people, thus 10 people who responded yes and 10 people who responded no.A similar problem is given at https://brainly.com/question/24188753
To decide how many participants who answered 'yes' to include in a stratified random sample of 20, use the proportion of 'yes' answers out of 300 to calculate the sample from that stratum.
Explanation:In a stratified random sample, the population is divided into groups, or strata, and a sample is taken from each group to ensure that each subgroup of the population is adequately represented. To determine the number of people that will be selected from those who responded yes in a stratified random sample, we need to find the proportion of 'yes' responses among the 300 respondents and then apply that proportion to the sample size of 20.
Assuming we know the exact number of people who responded 'yes', let's call that number 'Y'. The number of 'yes' responses in the stratified sample would then be (Y/300) * 20. Without the actual number of 'yes' responses, we cannot compute the exact number of people that should be selected from the 'yes' group. However, this formula demonstrates how you would calculate it once the value for 'Y' is known.
Learn more about Stratified Random Sampling here:https://brainly.com/question/29852583
#SPJ3
Complete each statement in the steps to solve x2 – 4x + 3 = 0 using the process of completing the square.
Answer:
x= 3,1
Step-by-step explanation:
-b ± √b²-4(ac)/2a
4 ± √(-4)² - 4 · (1·3)/2·1
x = 2 ± 1
x = 3,1
Suppose that the manager of a company has estimated the probability of a super-event sometime during the next five years that will disrupt all suppliers as 0.0023. In addition, the firm currently uses three suppliers for its main component, and the manager estimates the probability of a unique-event that would disrupt one of them sometime during the next five years to be 0.014. What is the approximate probability that all three suppliers will be disrupted at the same time at some point during the next five years?a.0.0012b.0.0140 c.0.0023 d.0.0090
Given Information:
Probability of super event = P(S) = 0.0023
Number of suppliers = n = 3
Probability of unique event = P(U) = 0.014
Required Information:
Probability that all three suppliers will be disrupted = ?
Answer:
P(3) = 0.0023
Step-by-step explanation:
We want to find out the approximate probability that all three suppliers will be disrupted at the same time at some point during the next five years.
The required probability is given by
P(n) = P(S) + (1 - P(S))*P(U)ⁿ
Where P(S) is the probability of super event that will disrupt all suppliers, P(U) is the probability of unique event that would disrupt one of the suppliers and n is the number of suppliers.
P(3) = 0.0023 + (1 - 0.0023)*(0.014)³
P(3) = 0.0023 + (0.9977)*(0.014)³
P(3) = 0.0023
The correct option is C = 0.0023
Therefore, there is 0.23% probability that all three suppliers will be disrupted at the same time at some point during the next five years.
Suppose you are constructing either a mean chart with known variation or a p-chart to monitor some process. The process will only be stopped if a sample taken falls outside your control limits. If the process is in control, management wants only 12.6% of the samples taken to fall outside of your limits. (The company does not like stopping the process "accidentally.") What Z value should you use for your chart?
Answer:
1.53
Step-by-step explanation:
Find the attachment for explanation
The z-value corresponding to the probability of 0.937 using the standard normal distribution table is 1.53 and this can be determined by using the given data.
Given :
Suppose you are constructing either a mean chart with a known variation or a p-chart to monitor some process. The process will only be stopped if a sample taken falls outside your control limits.The process is in control, management wants only 12.6% of the samples taken to fall outside of your limits.Assuming that the distribution is normal so the probability for being within the maximum limit is given by:
[tex]\rm P=1-\dfrac{6.3}{100}[/tex]
P = 0.937
Now, the z-value corresponding to the probability of 0.937 using the standard normal distribution table is 1.53.
Therefore, the correct option is D) 1.53.
For more information, refer to the link given below:
https://brainly.com/question/23044118
Since 1936, the Gallup Organization has been asking Americans: "Are you in favor of the death penalty for a person convicted of murder?" The percentage has fluctuated significantly over the years, ranging from a low of 42% in 1966 to a high of 80% in 1994. Here are the results of the most recent survey; in a sample of 3100 females, 62% said that they were in favor of the death penalty for convicted murders. Construct a 98% confidence interval for the proportion of all American females who support the death penalty for convicted murders.
Plugging in the values and calculating, we find that the 98% confidence interval is approximately (0.5847, 0.6553).
Explanation:To construct a 98% confidence interval for the proportion of all American females who support the death penalty for convicted murders, we can use the formula:
CI = p ± z * √(p * (1-p) / n)
Where:
CI is the confidence intervalp is the sample proportion (0.62)z is the z-score corresponding to the desired confidence level (98% or 0.98)n is the sample size (3100)Using a standard normal distribution table or a calculator, we can find that the z-score for a 98% confidence level is approximately 2.33.
Plugging in the values into the formula:
CI = 0.62 ± 2.33 * √(0.62 * (1-0.62) / 3100)
Calculating the values:
CI = 0.62 ± 2.33 * √(0.62 * 0.38 / 3100)
CI = 0.62 ± 2.33 * √(0.235 / 3100)
CI = 0.62 ± 2.33 * 0.01516
CI = 0.62 ± 0.03535
CI ≈ (0.5847, 0.6553)
Therefore, the 98% confidence interval for the proportion of all American females who support the death penalty for convicted murders is approximately (0.5847, 0.6553).
Learn more about Confidence interval here:https://brainly.com/question/34700241
#SPJ3
In a certain city, there are about one million eligible voters. A simple random sample of size 10,000 was chosen to study the relationship between gender and participation in the last election. The results were: Men Women Voted 2744 3733 Didn't Vote 1599 1924 If we are testing for a relationship between gender and participation in the last election, what is the p-value and decision at the 5% significance level? Select the [p-value, Decision to Reject (RH0) or Failure to Reject (FRH0)]
Answer:
The null hypothesis is rejected.
There is enough evidence to support the claim that the proportion of women that vote is differs from the proportion of men that vote.
P-value=0.0036 (two tailed test).
Step-by-step explanation:
This is a hypothesis test for the difference between proportions.
The claim is that the proportion of women that vote is differs from the proportion of men that vote.
Then, the null and alternative hypothesis are:
[tex]H_0: \pi_1-\pi_2=0\\\\H_a:\pi_1-\pi_2\neq 0[/tex]
Being π1: proportion of men that vote, and π2: proportion of women that vote.
The significance level is 0.05.
The sample 1 (men), of size n1=(2744+1599)=4343 has a proportion of p1=0.6318.
[tex]p_1=X_1/n_1=2744/4343=0.6318[/tex]
The sample 2 (women), of size n2=(3733+1924)=5657 has a proportion of p2=0.6599.
[tex]p_2=X_2/n_2=3733/5657=0.6599[/tex]
The difference between proportions is (p1-p2)=-0.0281.
[tex]p_d=p_1-p_2=0.6318-0.6599=-0.0281[/tex]
The pooled proportion, needed to calculate the standard error, is:
[tex]p=\dfrac{X_1+X_2}{n_1+n_2}=\dfrac{2744+3733}{4343+5657}=\dfrac{6477}{10000}=0.6477[/tex]
The estimated standard error of the difference between means is computed using the formula:
[tex]s_{p1-p2}=\sqrt{\dfrac{p(1-p)}{n_1}+\dfrac{p(1-p)}{n_2}}=\sqrt{\dfrac{0.6477*0.3523}{4343}+\dfrac{0.6477*0.3523}{5657}}\\\\\\s_{p1-p2}=\sqrt{0.00005+0.00004}=\sqrt{0.00009}=0.0096[/tex]
Then, we can calculate the z-statistic as:
[tex]z=\dfrac{p_d-(\pi_1-\pi_2)}{s_{p1-p2}}=\dfrac{-0.0281-0}{0.0096}=\dfrac{-0.0281}{0.0096}=-2.913[/tex]
This test is a two-tailed test, so the P-value for this test is calculated as (using a z-table):
[tex]P-value=2\cdot P(t<-2.913)=0.0036[/tex]
As the P-value (0.0036) is smaller than the significance level (0.05), the effect is significant.
The null hypothesis is rejected.
There is enough evidence to support the claim that the proportion of women that vote is differs from the proportion of men that vote.
Simplify this complex fraction
Answer:
1/4
Step-by-step explanation:
2/4 ÷ 2
Copy dot flip
2/4 * 1/2
We can cancel the 2 in the numerator and denominator
1/4 * 1/1
1/4
Peter measures the angles in a triangle.
He finds that the angles are 95°, 10° and 75º.
a)
Could he be correct?
b)
Explain your answer.
There are two spinners containing only black and purple slices.
Spinner A has 3 black slices and 12 purple slices.
All the slices are the same size.
Spinner B has 2 black slices and 6 purple slices.
All the slices are the same size.
Each spinner is spun.
List theseſevents from least likely to most likely.
Event 1: Spinner B lands on a black slice.
Event 2: Spinner A lands on a black slice.
Event 3: Spinner B lands on a black or purple slice.
Event 4: Spinner A lands on a green slice.
Least likely
Most likely
Event |
Event |
Event |
Event []
Answer:
Event 4, Event 2, Event 1, Event 3 (least to most likely)
Step-by-step explanation:
Let's take a look at each event:
Event 1- Spinner B lands on a black slice.
2 black slices, 8 total slices
2/8=1/4=25% probability
Event 2- Spinner A lands on a black slice.
3 black slices, 15 total slices
3/15=1/5=20%
Event 3- Spinner B lands on a black or purple slice.
8 black or purple slices, 8 total slices
8/8=1=100%
Event 4- Spinner A lands on a green slice.
0 green slices, 15 total slices
0/15=0=0%
So, in order of least to most likely, we have Event 4 (0%), Event 2 (20%), Event 1 (25%), and event 3 (100%).
The probability that it will snow on the last day of January is 85%. If the probability remains the same of the first eight day of February, what is the probability that it will snow AT LEAST five of those days in February?
Answer:
Here, we have:
P(5 days snow in this 8 days) = 8C5 x (0.85)^5 x (1 - 0.85)^3 = 0.084
P(6 days snow in this 8 days) = 8C6 x (0.85)^6 x (1 - 0.85)^2 = 0.238
P(7 days snow in this 8 days) = 8C7 x (0.85)^7 x (1 - 0.85)^1 = 0.385
P(8 days snow in this 8 days) = 8C8 x (0.85)^8 x (1 - 0.85)^0 = 0.272
Add up those above, then the probability that it will snow AT LEAST five of those days in February:
P = 0.084+ 0.238 + 0. 385 + 0.272 = 0.979
Hope this helps!
:)
1. 3 (x + 1)2 - 3
a. What is the "a" value?
b. What is the "h" value?
c. What is the "K" value?
Use the Ratio Test to determine whether the series is convergent or divergent.
Σ[infinity] n = 1 (-1)^n - 1 3^n/2^nn^3
Answer:
The series is absolutely convergent.
Step-by-step explanation:
By ratio test, we find the limit as n approaches infinity of
|[a_(n+1)]/a_n|
a_n = (-1)^(n - 1).(3^n)/(2^n.n^3)
a_(n+1) = (-1)^n.3^(n+1)/(2^(n+1).(n+1)^3)
[a_(n+1)]/a_n = [(-1)^n.3^(n+1)/(2^(n+1).(n+1)^3)] × [(2^n.n^3)/(-1)^(n - 1).(3^n)]
= |-3n³/2(n+1)³|
= 3n³/2(n+1)³
= (3/2)[1/(1 + 1/n)³]
Now, we take the limit of (3/2)[1/(1 + 1/n)³] as n approaches infinity
= (3/2)limit of [1/(1 + 1/n)³] as n approaches infinity
= 3/2 × 1
= 3/2
The series is therefore, absolutely convergent, and the limit is 3/2
Wilbur spends 2/3 of his income, share 1/12, and saves the rest. What part of his income does he save? Give the answer in simplest form.
Answer:
1/4 of his income.
Step-by-step explanation:
If Wilbur spends 2/3 of his income, 1/3 or 4/12 of it is left for other purposes (It is easier if everything has a common denominator of 12). And if he shares 1/12 of that remaining amount, there is 3/12 left. And when we simplify 3/12, we get 1/4.
*Mark me brainliest!*
1. (a) Show that the polynomial x⁴+ 4x³ + 6x² - 8 is divisible by x+2
Answer:
Step-by-step explanation:
if x= -2
and P(x)=x^4+4x^3+6x^2-8
then P(-2)=(-2)^4+4*(-2)^3+6*(-2)^2-8=16-32+24-8=0
so P(x)=(x+2)* Q(x) and P(x) is divisible by x+2
The election of a local construction union involves 2,000 union members. Among them, 500 members are randomly selected and asked whether they planned to vote for the incumbent Union President or the challenger. Of the 500 surveyed, 350 said they would vote for the incumbent. Using the 0.99 confidence coefficient, what are the confidence limits for the proportion that plan to vote for the incumbent
Answer:
The 99% of confidence limits for the proportion that plan to vote for the incumbent.
(0.6473 ,0.7527)
Step-by-step explanation:
Explanation:-
Given data the election of a local construction union involves 2,000 union members. Among them, 500 members are randomly selected.
Given large sample size 'N' = 2000
Given sample size 'n' = 500
Given data Of the 500 surveyed, 350 said they would vote for the incumbent.
The sample Proportion
[tex]p = \frac{x}{n} = \frac{350}{500} =0.7[/tex]
q = 1-p = 1 - 0.7 = 0.3
Confidence intervals:-
The 99% of confidence intervals are determined by
[tex](p-Z_{\alpha } \sqrt{\frac{pq}{n} } , p+Z_{\alpha }\sqrt{\frac{pq}{n} } )[/tex]
The z- score of 0.99 level of significance =2.576
[tex](0.7-2.576\sqrt{\frac{0.7X0.3}{500} } , 0.7+2.576\sqrt{\frac{0.7X0.3}{500} } )[/tex]
on using calculator, we get
(0.7 - 0.0527 ,0.7+0.0527)
(0.6473 ,0.7527)
Conclusion:-
The 99% of confidence limits for the proportion that plan to vote for the incumbent.
(0.6473 ,0.7527)
A subtending arc on a circle with a radius of 4.5 centimeters has an arc length of 8π. The measure of the angle subtended by the arc is ?
Answer: 320°
Step-by-step explanation:
This is a circle geometry.
The arc length of the circle is given to be 8πcm and the radius is 4.5cm.
Now the length of an arc of a circle is
Arc length = πr0°/180° or 2πr0°/360°
To find the angle 0° subtend at the center we equate the arc length with the formula and solve for 0°.Now we go
πr0°/180 = 8π, convert to a simple linear equal and solve for the angle.
πr0° = 8π × 180
0°. = 8π × 180
-----------
π × r
= 8 × 180. 8 × 180
-------- or ---------
9/2. 4.5
= 8 × 180 × 2
------------
9
= 8 × 20 × 2
= 320°
or 8 × 180/4.5
= 1440/4.5
= 320°
Lydia drove 441 miles in 6 hours. On average, how fast did she drive in miles per hour? Express your answer in simplest form.
Answer:
She drove [tex]\frac{147}{2} miles/ hour[/tex]
Step-by-step explanation:
We are given that Lydia drove 441 miles in 6 hours.
We are supposed to find how fast did she drive in miles per hour
Distance covered by Lydia in 6 hours = 441 miles
Distance covered by Lydia in 1 hour =[tex]\frac{441}{6}[/tex]
Distance covered by Lydia in 1 hour =[tex]\frac{147}{2} miles/ hour[/tex]
Hence She drove [tex]\frac{147}{2} miles/ hour[/tex]
Associations In Data:Question 10
The list below show test scores for 3rd period on a
recent test. Finding the mean absolute deviation.
62 63 68 72 79 80 83 93 94 95
Select one:
7.8
101.2
78.9
10.12
Answer:
[tex] \bar X = \frac{62+63+68+72+79+80+83+93+94+95}{10}= 78.9[/tex]
[tex] |62-78.9| = 16.9[/tex]
[tex] |63-78.9| = 15.9[/tex]
[tex] |68-78.9| = 10.9[/tex]
[tex] |72-78.9| = 6.9[/tex]
[tex] |79-78.9| = 0.1[/tex]
[tex] |80-78.9| = 1.1[/tex]
[tex] |83-78.9| = 4.1[/tex]
[tex] |93-78.9| = 14.1[/tex]
[tex] |94-78.9| = 15.1[/tex]
[tex] |95-78.9| = 16.1[/tex]
[tex] MAD = \frac{\sum_{i=1}^n |X_i -\bar X|}{n}[/tex]
And replacing we got:
[tex] MAD =\frac{16.9+15.9+10.9+6.9+0.1+1.1+4.1+14.1+15.1+16.1}{10}= 10.12[/tex]
And the best anwer is
10.12
Step-by-step explanation:
We have the following data given:
62 63 68 72 79 80 83 93 94 95
And we need to begin finding the mean with the following formula:
[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
And replacing we got:
[tex] \bar X = \frac{62+63+68+72+79+80+83+93+94+95}{10}= 78.9[/tex]
Now we can find the mean absolute deviation like this:
[tex] |62-78.9| = 16.9[/tex]
[tex] |63-78.9| = 15.9[/tex]
[tex] |68-78.9| = 10.9[/tex]
[tex] |72-78.9| = 6.9[/tex]
[tex] |79-78.9| = 0.1[/tex]
[tex] |80-78.9| = 1.1[/tex]
[tex] |83-78.9| = 4.1[/tex]
[tex] |93-78.9| = 14.1[/tex]
[tex] |94-78.9| = 15.1[/tex]
[tex] |95-78.9| = 16.1[/tex]
And finally we can find the mean abslute deviation with the following formula:
[tex] MAD = \frac{\sum_{i=1}^n |X_i -\bar X|}{n}[/tex]
And replacing we got:
[tex] MAD =\frac{16.9+15.9+10.9+6.9+0.1+1.1+4.1+14.1+15.1+16.1}{10}= 10.12[/tex]
And the best anwer is
10.12
Chandler has 828 millimeters of fabric.
How many centimeters of fabric does Chandler have?
Use the numbers and symbols on the tiles to enter an equation to show the
828 8.28
182.8
0.828
100 || 1.000
Chandler has
centimeters of fabric.
Answer:
82.8 centimeters
Step-by-step explanation:
Chandler has 828 millimeters of fabric.
1 centimeter =10 millimetersx centimeters = 828 millimetersExpressing as a ratio
[tex]\dfrac{1}{x}= \dfrac{10}{828}\\10x=828\\x=828\div 10\\x=82.8 cm[/tex]
Therefore, Chandler has 82.8 centimeters of fabric.
Answer:
82.8 centimeters of fabric
Step-by-step explanation:
1 centimeters= 10 millimeters;
828mm x 1cm ÷10 mm=82.8cm ;centimeters of fabric
The exercise is performed by conversion factor and a smaller unit is transferred to a larger unit that is centimeters.
A manufacturer of car batteries claims that the batteries will last, on average, 3 years with a variance of 1 year. If 5 of these batteries have lifetimes of 1.9, 2.4, 3.0, 3.5, and 4.2 years, construct a 95% confidence interval for σ2 and decide if the manufacturer’s claim that σ2 = 1 is valid. Assume the population of battery lives to be approximately normally distributed.
Answer:
[tex]\frac{(4)(0.903)^2}{11.143} \leq \sigma^2 \leq \frac{(4)(0.903)^2}{0.484}[/tex]
[tex] 0.293 \leq \sigma^2 \leq 6.736[/tex]
And in order to obtain the confidence interval for the deviation we just take the square root and we got:
[tex] 0.541 \leq \sigma \leq 2.595[/tex]
Since the confidence interval cointains the 1 we don't have enough evidence to reject the hypothesis given by the claim
Step-by-step explanation:
Data provided
1.9, 2.4, 3.0, 3.5, and 4.2
We can calculate the sample mean and deviation from this data with these formulas:
[tex]\bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
[tex] s=\frac{\sum_{i=1}^n (X_i-\bar X)^2}{n-1}[/tex]
And we got:
[tex]\bar X= 3[/tex]
s=0.903 represent the sample standard deviation
n=5 the sample size
Confidence=95% or 0.95
Confidence interval
We need to begin finding the confidence interval for the population variance is given by:
[tex]\frac{(n-1)s^2}{\chi^2_{\alpha/2}} \leq \sigma^2 \leq \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}[/tex]
The degrees of freedom given by:
[tex]df=n-1=5-1=4[/tex]
The Confidence level provided is 0.95 or 95%, the significance is then[tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and the critical values for this case are:
[tex]\chi^2_{\alpha/2}=11.143[/tex]
[tex]\chi^2_{1- \alpha/2}=0.484[/tex]
And the confidence interval would be:
[tex]\frac{(4)(0.903)^2}{11.143} \leq \sigma^2 \leq \frac{(4)(0.903)^2}{0.484}[/tex]
[tex] 0.293 \leq \sigma^2 \leq 6.736[/tex]
And in order to obtain the confidence interval for the deviation we just take the square root and we got:
[tex] 0.541 \leq \sigma \leq 2.595[/tex]
Since the confidence interval cointains the 1 we don't have enough evidence to reject the hypothesis given by the claim
An aquarium at a pet store contains six fish; three yellow goldfish and three black goldfish. On Sunday, a customer came to the store and randomly selected three fish to purchase. Suppose you know the customer purchased a black goldfish. What is the probability that two yellow goldfish and a black goldfish remain in the tank after the customer has left? Please simplify your answer to a decimal value and circle your answer. Ensure you show your work.
Answer:
[tex]P=0.4737[/tex]
Step-by-step explanation:
First, we need to know that nCx give as the number of ways in which we can select x elements from a group of n. It is calculated as:
[tex]nCx=\frac{n!}{x!(n-x)!}[/tex]
Then, to select 3 fish in which at least one a them is a black goldfish we can:
1. Select one black goldfish and 2 yellow goldfish: There are 9 different ways to do this. it is calculated as:
[tex]3C1*3C2 =\frac{3!}{1!(3-1)!}* \frac{3!}{2!(3-2)!}=9[/tex]
Because we select 1 black goldfish from the 3 in aquarium and select 2 yellow goldfish from the 3 in the aquarium.
2. Select 2 black goldfish and 1 yellow goldfish: There are 9 different ways. it is calculated as:
[tex]3C2*3C1 =\frac{3!}{2!(3-2)!}* \frac{3!}{1!(3-1)!}=9[/tex]
3. Select 3 black goldfish and 0 yellow goldfish: There is 1 way. it is calculated as:
[tex]3C3*3C0 =\frac{3!}{3!(3-3)!}* \frac{3!}{0!(3-0)!}=1[/tex]
Now, we identify that just in part 2 (Select 2 black goldfish and 1 yellow goldfish), two yellow goldfish and a black goldfish remain in the tank after the customer has left.
So, the probability that two yellow goldfish and a black goldfish remain in the tank after the customer has left given that the customer purchased a black goldfish is equal to:
[tex]P=\frac{9}{9+9+1} =0.4737[/tex]
Because there are 19 ways in which the customer can select a black fish and from that 19 ways, there are 9 ways in which two yellow goldfish and a black goldfish remain in the tank.