What is the formula mass of beryllium chloride , becl2?
An atom of calcium loses two electrons. What is the charge on an ion of calcium?
Question 6 options:
A.0
B.–2
C.+2
D.+3
Hydrogen peroxide (H202) is a compound made from two elements: hydrogen and oxygen. Water(H20) is also a compound made from hydrogen and oxygen. What makes these two compounds different ? Explain
one is air and the other is a liquid
PLEASE HELP !!!
A) state the number of atoms of each element present.
B) Give the total number of atoms present in each compound.
When an electric current passes through liquid water, hydrogen gas passes accumulates at one electrode and oxygen accumulates at the other. Which of the following is true? A) A physical change has occurred, with energy is being absorbed. B) A chemical change has occurred, with energy being given off. C) A physical change has occurred, with energy being given off. D) A chemical change has occurred, with energy being absorbed.
Answer: Option (D) is the correct answer.
Explanation:
A chemical change is defined as the change which occurs due to change in chemical composition of a substance. A chemical change always leads to the formation of a new compound or substance.
For example, when an electric current passes through liquid water, hydrogen gas passes accumulates at one electrode and oxygen accumulates at the other.
Since, atoms of water are separating out. As a result, chemical properties will change. This means that a chemical change has occurred.
Also, bonds of water, ([tex]H_{2}O[/tex]) are breaking down. Hence, energy will be absorbed to break the bonds.
Whereas energy is always released upon formation of bonds.
Thus, we can conclude that the statement a chemical change has occurred, with energy being absorbed, is true.
What is the smallest particle that has all the properties of a specific element?
which light packs the highest energy per photon
1. A typical football game has 60 minutes on the time clock. How many milliseconds are in a football game?
A gold atom is a sphere with a diameter of 272 pm and a mass of 3.27 x 10-13 ng. Calculate the density of one gold atom (in g/cm3). Note the Vsphere = 4/3 π r3.
The density of one gold atom is approximately 19.34 g/cm³, calculated by dividing its mass by its volume.
To calculate the density of one gold atom, Need to find its volume and then divide its mass by that volume.
Step 1: Calculate the volume of the gold atom.
The volume of a sphere can be calculated using the formula:
[tex]V_{sphere} = (4/3)\pi r^3[/tex]
Given that the diameter (d) of the gold atom is 272 pm (picometers), you can find the radius (r) by dividing the diameter by 2:
r = 272 pm / 2 = 136 pm = 1.36 x [tex]10^{-8} cm[/tex] (since 1 pm = [tex]10^{-10[/tex] cm)
Now, plug this radius into the formula for the volume of the sphere:
[tex]V_{sphere[/tex] = (4/3)π(1.36 x [tex]10^{-8[/tex] cm)^3 ≈ 1.69 x [tex]10^{-23[/tex] cm^3
Step 2: Calculate the density of one gold atom.
Now that you have the volume of one gold atom, you can calculate its density using the given mass of 3.27 x [tex]10^{-13[/tex] ng (nanograms). First, convert the mass to grams:
1 ng = [tex]10^{-9[/tex] g, so 3.27 x [tex]10^{-13[/tex] ng = 3.27 x [tex]10^{-22[/tex] g
Now, use the formula for density, which is density (ρ) = mass (m) / volume (V):
ρ = (3.27 x [tex]10^{-22[/tex] g) / (1.69 x [tex]10^{-23[/tex] cm^3) ≈ 19.34 g/[tex]cm^3[/tex]
So, the density of one gold atom is approximately 19.34 g/[tex]cm^3[/tex].
If 28 ml of 5.8 m h2so4 was spilled, what is the minimum mass of nahco3 that must be added to the spill to neutralize the acid?
First we have to refer
to the reaction between the acid and the base:
H2SO4 + 2 NaHCO3 ---> 2 H2O + 2 CO2 + Na2SO4
From this balanced equation we can see that for every 1 mol
of acid (H2SO4), we need 2 mol of base (NaHCO3) to neutralize it. Given 28 ml
of 5.8 M acid, we need to find out how many mols of acid that is:
28mL * (1L/1000mL) * 5.8 mol/L = 0.1624 mol H2SO4
Since we need 2 mol of base per mol of acid, we need:
2*0.1624 mol = 0.3248 mol NaHCO3
MolarMass of NaHCO3 is 84.01 g/mol
0.3248 mol*(84.01g/mol) = 27.29 g NaHCO3
Answer: The mass of sodium hydrogen carbonate that must be added is 27.28 g
Explanation:
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}[/tex]
Molarity of sulfuric acid solution = 5.8 M
Volume of solution = 28 mL
Putting values in above equation, we get:
[tex]5.8M=\frac{\text{Moles of sulfuric acid}\times 1000}{28mL}\\\\\text{Moles of sulfuric acid}=0.1624mol[/tex]
The chemical equation for the reaction of sulfuric acid and sodium hydrogen carbonate follows:
[tex]H_2SO_4(aq.)+2NaHCO_3(aq.)\rightarrow Na_2SO_4(aq.)+2CO_2(g)+H_2O(l)[/tex]
By Stoichiometry of the reaction:
1 mole of sulfuric acid reacts with 2 moles of sodium hydrogen carbonate.
So, 0.1624 moles of sulfuric acid will react with = [tex]\frac{2}{1}\times 0.1624=0.3248mol[/tex] of sodium hydrogen carbonate
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Molar mass of sodium hydrogen carbonate = 84 g/mol
Moles of sodium hydrogen carbonate = 0.3248 moles
Putting values in above equation, we get:
[tex]0.3248mol=\frac{\text{Mass of sodium hydrogen carbonate}}{84g/mol}\\\\\text{Mass of sodium hydrogen carbonate}=(0.3248mol\times 84g/mol)=27.28g[/tex]
Hence, the mass of sodium hydrogen carbonate that must be added is 27.28 g
dicing potatoes is a physical change. true or false?
Final answer:
Dicing potatoes is a physical change since it alters their shape and size but not their chemical identity. This kind of physical change, while being irreversible, does not transform the potatoes into a new substance.
Explanation:
Dicing potatoes is indeed a physical change. This is because when you dice potatoes, you are only changing their shape and size, not their chemical structure or identity. Physical changes can be reversible or irreversible, but they do not alter the fundamental identify of a substance.
Some examples of reversible physical changes include melting, where ice changes to liquid water and can be refrozen, and dissolving, such as when salt is dissolved in water and can be recovered by evaporating the water. Conversely, irreversible physical changes do not easily revert to the original form, such as cutting hair—once it is cut, it cannot grow back instantly.
In the case of dicing potatoes, the physical change is irreversible as you cannot restore the potatoes to their original, uncut state. However, the potatoes remain chemically identical before and after dicing.
A 74.28-g sample of ba(oh)2 is dissolved in enough water to make 2.450 liters of solution. how many ml of this solution must be diluted with water in order to make 1.000 l of 0.100 m ba(oh)2?
First let us calculate the initial molarity of the 2.45 L of solution. Molar mass = 171.34 g/mol
moles Ba(OH)2 = 74.28 g * (1 mole / 171.34 g) = 0.4335 moles
Molarity (M1) = 0.4335 moles / 2.45 L = 0.177 M
Now using the formula M1V1 = M2V2, we can calculate how much to dilute (V1):
0.177 * V1 = 0.1 * 1
V1 = 0.56 L
Therefore 0.56 L of the initial solution must be diluted to 1 L to make 0.1 M
Which would have the highest concentration of h+ ions acetic acid or sodium hydroxide?
Chemistry Help Please? 20 points?
Since each element produces a characteristic spectrum, what can you conclude about the location of the electron?
The characteristic spectrum an element produces indicates the location of its electron as each unique spectral line indicates the electron's movement between specific energy levels or shells in the atom.
Explanation:The location of an electron can be determined based on the spectrum that an element produces. When an electron absorbs energy, it moves to a higher energy level or shell, also known as an excited state. When it falls back to its original energy state, it emits energy in the form of electromagnetic radiation, producing a unique spectral line. This spectral line or pattern is characteristic of the element, and it can hint at an electron's location in a specific energy level or shell around the nucleus.
Learn more about Electron locations here:https://brainly.com/question/13179344
#SPJ2
To which third period element do these ionization values belong?
IE1 = 578 kJ/mol
IE2 = 1820 kJ/mol
IE3 = 2750 kJ/mol
IE4 = 11600 kJ/mol
If the following set of successive ionization energies are your ionization values this would likely belong to Aluminum. Since there is a huge point between the third and fourth ionization energies, which designates that the atom reached noble gas configuration after the third electron was removed. The element which has 3 valence electrons in the third period is aluminum.
Which solute produces the highest boiling point in a 0.15 m aqueous solution?
Final answer:
The solute that increases the boiling point the most in a 0.15 m aqueous solution is one that dissociates into the most particles, like NaCl, because it has a larger effect on boiling point elevation than a non-dissociating substance like glucose.
Explanation:
The solute that produces the highest boiling point in a 0.15 m aqueous solution is determined by the number of particles it provides in the solution upon dissolving. According to the colligative property known as boiling point elevation, the more particles a solute generates, the higher the increase in the boiling point. Salts such as NaCl dissociate into ions, thereby increasing the boiling point of the solution more than non-dissociating molecules like glucose. Therefore, a solute like NaCl, which dissociates into two separate ions Na+ and Cl- would generate a higher elevation than glucose at the same molality because the ionization of NaCl results in twice the number of particles in the solution.
Using the formula ΔT = Kb × m (where ΔT is the increase in boiling point, Kb is the molal boiling-point elevation constant, and m is the molality), we can calculate the boiling point elevation. With a given Kb for water of 0.51°C/m, a 0.15 m solution of NaCl would lead to a higher boiling point than a 0.15 m solution of a non-electrolyte like glucose. This is because each mole of NaCl provides 2 moles of particles, doubling the ΔT value compared to glucose which does not dissociate.
A wooden object has a mass of 10.782 g and occupies a volume of 13.72 ml. what is the density of the object determined to an appropriate number of significant figures?
Answer:
7.859 × 10^-1 g/mL
Explanation:
D=mass/volume
10.782g/13,72ml= 0.78586 g/ml
7.859 x 10^-1 g/ml
2. __________ introduces drugs into muscle or directly into the bloodstream.
Answer:
Intravenous injection.
Explanation:
Injections are the needle used for the transfer of chemicals or drugs from outside environment directly in to the body of an individual. Different body regions are used to inject different drugs depending on their function and mode of action.
Intravenous injections are the needles used to inject the drug directly into the blood stream in the veins and in the muscles. This intravenous injection prevents the over dosage of drugs and proves quite effective in its function.
Thus, the answer is intravenous injection.
Which best describes what is represented by images 1 and 2?
Image 1 shows a polymer, and Image 2 shows a monomer.
Image 1 shows a monomer, and Image 2 shows a polymer.
Image 1 shows a macromolecule, and Image 2 shows a synthetic polymer.
Image 1 shows a synthetic polymer, and Image 2 shows a macromolecule.
Answer: The correct answer is image 1 shows a monomer, and Image 2 shows a polymer.
Explanation:
A monomer is defined as the molecule that react with the same molecule to form a large molecule known as polymer. These are the repeating units in a polymer.
A polymer is a large molecule which are formed when a large number of same type of molecules react together.
A macro-molecule is defined as a very large molecule such as proteins which are formed by the polymerization of monomers. They are known as natural polymers.
A synthetic polymer are defined as the polymers which are made by humans. They are known as artificial polymers.
In the images given, Image 1 represents a monomer known as ethylene and Image 2 is a polymer known as polyethylene.
Hence, the correct answer is image 1 shows a monomer, and Image 2 shows a polymer,
Answer:the answer is B
Explanation: did the test
When scientists make measurements in the laboratory, they use the system?
metric is the answer
Is household ammonia a heterogeneous mixture?
A student has a sample of a mineral that is too big to fit in a graduated cylinder. The density of the sample is known. How can the student determine the volume of the sample?
The formula for density is given as:
density = mass / volume
So given the density and the mass, we can get the volume. The mass can simply be measured using a weighing scale therefore the student can now determine the volume by rearranging the formula:
volume = mass / density
Which tools would be necessary to determine whether or not a large regular block will float, without using water?
Answer:
Explanation:
To determine if the bock will float you need:
A scale to calcualte the weight of the blockA ruler or metric tape to measure the block and calculate its volumeThe block has 3 dimmentions: lenght, wide and height, its volume is:
[tex]V=wide*lenght*height[/tex]
Once calculated it and measured the weight, you calculate the density:
[tex]\rho=\frac{m}{V}[/tex]
If the density of the block is smaller than the density of water (arroung 1000 kg/m3) the block will float.
How many significant figures does 6559.060 have
An isotope contains 16 protons 18 electrons and 16 neutrons. what is the identity of the isotope
Answer:
Sulfur ₁₆S³²
Explanation:
The sulfur have sixteen protons sixteen neutrons and sixteen electrons. The sum of neutrons and protons is equal to atomic mass. So the given element have sixteen protons and sixteen electron, the atomic mass would be 32 and the element with atomic mass 32 is sulfur.
The number of electrons are equal to the number of protons. In the given element two electrons are more than number of protons. It means element gain two extra electron from another element and it is present in ionic form.
It is present in given form:
S²⁻
Electronic configuration:
S₁₆ = [Ne] 3s² 3p⁴
To complete the octet sulfur gain two electrons from other element and get stable.
Answer:
[tex]^{32}_{16}S^{2-}[/tex]
Explanation:
Atomic number : It is defined as the number of electrons or number of protons present in a neutral atom.
However, when we talk about the atomic number of the ion, it is not equal to the number of electrons as electron can be gained or loosed.
This is why, more appropriately, the number of the protons which are present in the nucleus of the atom is called the atomic number.
Thus, number of protons = atomic number = 16
The element must be sulfur.
Since, number of protons is not equal to the number of electrons, thus the isotope will not be neutral.
There are 2 more electrons than the number of protons and thus, the isotope will be having a charge of -2.
Mass number is the number of the entities present in the nucleus which is the equal to the sum of the number of protons and electrons.
Mass number = Number of protons + Number of neutrons = 16 + 16 = 32 neutrons
The identity is:- [tex]^{32}_{16}S^{2-}[/tex]
What are the advantages of using structural composite lumber rather than solid lumber?
An atom has six electrons in its valence shell. how many single covalent bonds would you expect it to form in most circumstances?
If isotopes are chemically alike but physically different propose which subatomic particles are
All isotopes of the same element have the same number of protons. Number of neutrons in different atoms of the same element is free to vary. Since, different elements react differently, different elements have different numbers of protons. Atoms with the same number of protons and vary neutrons behave chemically similar. The number of electrons in a neutral atom depends on the number of protons. All chemical reactions involve transfer or sharing of electrons it stands to reason, neutrons are NOT responsible for chemical reactivity. It's arguable whether protons or electrons dictate chemical reactivity certainly the SUBATOMIC nuclear particle that dictates reactivity is the PROTON.
The density of gold is 19.3 g/cm3. What is the mass of 15cm3 of gold?
Final answer:
The mass of 15 cm³ of gold, with a density of 19.3 g/cm³, is 289.5 g when calculated using the formula m = d × V.
Explanation:
The density of gold is 19.3 g/cm³.
To find the mass of 15 cm³ of gold, you can use the formula for density, which is mass divided by volume (d = m/V).
Since we know both the density and the volume, we can rearrange the formula to solve for mass (m = d × V).
In this case, the mass (m) would be 19.3 g/cm³ times 15 cm³, which equals 289.5 g.
Will give BRAINLIEST!
Which is more active (a) iron or copper, (b) iron or silver, (c) silver or copper? Arrange the three metals in order of decreasing activity.