The Collision Theory explains how chemical reactions occur and why different reactions have different reaction rates. The idea behind the theory basically states thet atoms must collide in order for a chemical reaction to take place. If this theory is true, what would happen in a chemical reaction if you were to increase the concentration of HCl in the reaction:__________

Answers

Answer 1

Answer:

The rate of reaction will increase

Explanation:

According to the collision theory, the rate of reaction increases with increase in the number of colliding reactant particles. The more number of particles present, the more effective collisions that occur between reactants and the greater the rate of reaction.


Related Questions

if all of the carbon atoms are linked by single covalent bonds and there are no branches, the compounds are called_____________.

Answers

Answer: If all of the carbon atoms are linked by single covalent bonds and there are no branches, the compounds are called homologous series.

Explanation:

A series of carbon atoms which include different number of carbon atoms but have same functional group are known as homologous series.

Generally, these type of series have a chemical formula as [tex]C_{n}H_{2n+2}[/tex].

No branches are present in this type of series.

For example, [tex]CH_{4}[/tex], [tex]C_{2}H_{6}[/tex], [tex]C_{3}H_{8}[/tex] etc are all homologous series.

Thus, we can conclude that if all of the carbon atoms are linked by single covalent bonds and there are no branches, the compounds are called homologous series.

Problem 2: 1. Represent a molecule of 1-butene [1] 2. 1-Butene reacts with a molecule of bromine,Br2. (reaction 1) a. Is bromine polar or apolar? Explain [1] b. Write the equation for the reaction. Identify nucleophile and electrophile in the reaction. Show the mechanism of the reaction stepwise using curved arrows. Specify the type of reaction. [4] c. Why does the reaction take place with bromine? [2] d. What is the name of the main product? [1]

Answers

Answer:

See explanation below

Explanation:

The drawing of the molecule and mechanism, you can see it in the attached pictures.

Now, answering the theorical questions:

The 1-butene is like this:

CH2 = CH - CH2 - CH3

If this molecule reacts with bromine (Br2) the reaction and product formed is:

CH2 = CH - CH2 - CH3 + Br2 -----------> Br-CH2 - CH(Br) - CH2 - CH3

The product formed is called 1,2 - dibromo - butane, and the reaction with halides like bromine is called halogenation. In this case, alkenes halogenation, so, we become a alkene like the 1-butene with a halide like bromine to form an alkane with halides. This reaction is taking place in conditions of Sn1, although this is an addition (Two steps, see picture below for mechanism).

The bromine, has a high electronegativity (2.9) this is even bigger than the iodine (2.7), so, when the bromine acts as a nucleophile in a SN2 or SN1 reaction (like this one),  bromine atom becomes slightly more negative, and iodine atom becomes slightly more positive, so strictly speaking, the molecule is slightly polar. When the difference of the electronegativities is below of 0.4, we can say that the molecule is non-polar.

Because of the explanation above, the reaction is taking place with bromine, because it has a higher electronegativity, even more than the chlorine, so the molecule is more polar and can have a better reaction with the 1-butene than the chlorine. Has a better nucleophyle attack and also, is a great leaving group.

The picture below will show the mechanism:

capable of bonding to surfaces with the application of light pressure is a chemical or physical reaction?

Answers

Answer:

Capable of bonding to surfaces with the application of light pressure is a chemical reaction.

Explanation:

Here, bonding occurs . Bonding results in destruction of old bond and formation of new bonds.Hence new substance with completely different properties is formed. These changes occur only in a chemical reaction .

In physical processes no new substance is formed (no bonding).So,no change in properties of a substance . ]

This process (capability of bonding to surfaces with the application of light pressure) results in chemical reaction.

This type of substances are called Pressure-sensitive Adhesives.(PSA)

If you have 20.0 g of CO2, how many atoms of Oxygen (O) are present in the sample?

Answers

There are 1.25 moles of oxygen atoms in 20 g of O2, calculated by converting the mass to moles using the molar mass.

To determine the number of moles of oxygen atoms in 20 g of [tex]\(O_2\)[/tex], we first need to find the molar mass of [tex]\(O_2\)[/tex]. Oxygen [tex](\(O\))[/tex] has an atomic mass of approximately 16 g/mol. Since [tex]\(O_2\)[/tex] molecules contain two oxygen atoms, the molar mass of [tex]\(O_2\) is \(2 \times 16 \, \text{g/mol} = 32 \, \text{g/mol}\).[/tex]

Next, we use the formula:

[tex]\[ \text{Number of moles} = \frac{\text{Mass}}{\text{Molar mass}} \][/tex]

Substituting the given mass of [tex]\(20 \, \text{g}\)[/tex] and the molar mass of [tex]\(O_2\) (\(32 \, \text{g/mol}\)):[/tex]

[tex]\[ \text{Number of moles} = \frac{20 \, \text{g}}{32 \, \text{g/mol}} \][/tex]

[tex]\[ \text{Number of moles} = 0.625 \, \text{mol} \][/tex]

Since each molecule of [tex]\(O_2\)[/tex] contains 2 oxygen atoms, the number of moles of oxygen atoms is twice the number of moles of [tex]\(O_2\)[/tex]:

[tex]\[ \text{Number of moles of oxygen atoms} = 2 \times 0.625 \, \text{mol} = 1.25 \, \text{mol} \][/tex]

Therefore, there are [tex]\(1.25 \, \text{mol}\)[/tex] of oxygen atoms in [tex]\(20 \, \text{g}\)[/tex] of [tex]\(O_2\)[/tex].

The question probable maybe:

How many moles of oxygen atoms are there in 20 g of O2?

An element is in Group 15. The last electron added to an atom of this element will be in a(n) __ sublevel
a. p
b. d
c. f
d. s​

Answers

Answer:

a

Explanation:

Group 15 form trihydrides with the non metal atoms like phosphine, ammonia

Why did J.J. Thomson reason that electrons must be a part of the atoms of all element

Answers

Answer:

Same particles (electrons) were emitted even after changing the cathode material.

Explanation:

In his famous experiment, Thompson tested the properties of atomic particles. He used a cathode ray tube to apply voltage on the cathode. This generated beam of electrons, also called cathode rays. He bombarded the rays on phosphorus on the other end of the tube, to observe the pathway it took.  

When he noticed the deflection of cathode rays when it passes through the electric and magnetic field, he repeated the experiment by changing the cathode material. To his surprise, rays emitted from all the materials exhibited the same behavior.

He concluded that these rays comprising of electrons, are a fundamental part of atoms of every element.  

At constant temperature, the behavior of a sample of a real gas more closely approximates that of an ideal gas as its volume is increased because the:_________
(A) Collisions with the walls of the container become less frequent
(B) Average molecular speed decreases
(C) Molecules have expanded
(D) Average distance between molecules becomes greater
(E) Average molecular kinetic energy decreases

Answers

Answer: D

Explanation:

The molecular theory of gases states that there are no intermolecular forces between gases. Gas molecules are separated from each other such that individual molecules are far apart from each other. When volume is increased, gas molecules spread out from each other and the distance between them increases thus approximating the situation in ideal gases.

Final answer:

The behavior of a sample of a real gas more closely approximates that of an ideal gas as its volume is increased because the average distance between molecules becomes greater.

Explanation:

The behavior of a sample of a real gas more closely approximates that of an ideal gas as its volume is increased at constant temperature because the average distance between molecules becomes greater. In an ideal gas, the molecules are assumed to have zero volume, while in real gases, the molecules have small but measurable volumes. As the volume of the gas increases, the intermolecular distances become larger, reducing the frequency of molecule-wall collisions. This behavior is described by Avogadro's law, which states that increasing the number of gas molecules requires a proportional increase in the container volume to yield a constant number of collisions per unit wall area per unit time.

Analyze feasibility of given reactions based on electrode potentials at standard conditions and nonstandard conditions.

Answers

Answer and Explanation:

In order to predict the feasibility of redox processes, standard electrode potentials are majorly employed. Generally, if the electrode potential for the reaction is positive, it is considered to be feasible. However, some conditions affect this statement

The value of E° talks about the feasibility of the reaction under standard conditions only and says nothing about the reaction rate.

A positive value of E° means, the equilibrium constant K is greater than 1; while a negative value of E° means, that it is less than 1.

The attachment below shows the simple analysis of the feasibility of two different reactions A and B, at standard and non standard conditions respectively.

NOTE: Standard conditions for Redox reaction: 298.15K(Temperature), 1 atm(Pressure), 1.0M(Concentration) for both anode and cathode.

Non standard conditions for Redox reaction: Any of the 3 conditions above are changed, especially the concentration.

1. emitted from a cathode ray tube electrons 2. discovered the neutron nucleus 3. discovered the electron Dalton 4. postulated the quantum atom J. J. Thomson 5. discovered the proton Bohr 6. father of atomic theory Rutherford 7. location of most of the mass of the atom Chadwick

Answers

Answer:

1. Dalton..........Father of Atomic theory

2. Bohr..........Postulated the quantum atom

3. nucleus..........location of the most of the mass of the atom

4. Chadwick..........discovered the neutron

5. Rutherford..........discovered the proton

6. electrons..........emitted from a cathode-ray tube

7. J.J. Thomson..........discovered the electron

Explanation:

The question is incomplete.Here is the cmplete question.

Match these items.

1. Dalton...... emitted from a cathode-ray tube

2. Bohr.......... discovered the neutron

3. nucleus.......... discovered the electron

4. Chadwick........ postulated the quantum atom

5. Rutherford........... discovered the proton

6. electrons ............father of atomic theory

7. J. J. Thomson.............location of most of the mass of the atom

1) Dalton is the father of atomic theory

He proposed that matter comprises of indivisible particles called atoms. Atoms are the building block of a matter. All atoms of an element are identical. Atoms of different elements differ from each other in terms of size and mass.

2. Bohr postulated the quantum atom

He proposed that electrons revolve around the nucleus in orbits. Each orbit is labelled by an integer 'n’. This integer is the quantum number. Electrons can move between shells by emitting or absorbing energy.

3. Nucleus is the location of most of the mass of the atom

The entire mass (almost 99%) of atom is concentrated in the nucleus containing protons and neutrons. Electrons orbiting around have negligible mass compared the protons and neutrons.  

4. Chadwick discovered the neutron.

In an experiment, Chadwick bombarded beryllium atoms with alpha rays. He noticed that beryllium emitted neutral rays as a result. Unlike gamma rays, the rays did not create photo electric effect when they hit charged electroscope. He concluded that they are neutrons instead.  

5. Rutherford discovered the proton  

In his famous gold foil experiment, he bombarded positively charged alpha rays to gold foil as saw a large proportion of them being deflected. He concluded that the atoms must have positively charged particles that caused the deflection.

6. Electrons are emitted from a cathode-ray tube  

When electricity is passed through the cathode in the tube, electrons in the outermost orbit gain enough energy to break out from it

7. J. J. Thomson discovered the elections.  

In the cathode-ray tube, Thompson observed that the rays emitted from the cathode are deflected towards to the positively charged plate. He concluded that cathode rays composed of negatively charged particles, i.e. electrons.  

Answer:

Correct matches below.

Explanation:

Dalton - Father of Atomic Theory

Chadwick - Discovered the neutron

J.J Thomson - Discovered the electron

Bohr - Postulated the quantum atom

Rutherford - Discovered the proton

Nucleus - Location of most of the mass in the atom

Electrons - Emitted from a cathode-ray tube

Calcium has a cubic closest packed structure as a solid. Assuming that calcium has an atomic radius of 197 pm, calculate the density of solid calcium.

Answers

Answer:

[tex]\rho=1.54\ g/cm^3[/tex]

Explanation:

The expression for density is:

[tex]\rho=\frac {Z\times M}{N_a\times {{(Edge\ length)}^3}}[/tex]

[tex]N_a=6.023\times 10^{23}\ {mol}^{-1}[/tex]

M is molar mass of Calcium = 40.078 g/mol

For cubic closest packed structure , Z= 4

[tex]\rho[/tex] is the density

Radius = 197 pm = [tex]1.97\times 10^{-8}\ cm[/tex]

Also, for fcc, [tex]Edge\ length=2\sqrt{2}\times radius=2\sqrt{2}\times 1.97\times 10^{-8}\ cm=5.572\times 10^{-8}\ cm[/tex]

Thus,  

[tex]\rho=\frac{4\times \:40.078}{6.023\times \:10^{23}\times \left(5.572\times 10^{-8}\right)^3}\ g/cm^3[/tex]

[tex]\rho=\frac{160.312}{10^{23}\times \:6.023\left(10^{-8}\times \:5.572\right)^3}\ g/cm^3[/tex]

[tex]\rho=\frac{160.312}{10^{23}\times \:1.04195E-21}\ g/cm^3[/tex]

[tex]\rho=\frac{160.312}{104.19483}\ g/cm^3[/tex]

[tex]\rho=1.54\ g/cm^3[/tex]

Final answer:

The density of solid calcium can be calculated by determining the density of its unit cell using the face-centered cubic (FCC) structure. The mass and volume of the unit cell can be calculated using the atomic radius and atomic mass of calcium. Dividing the mass by the volume gives the density of solid calcium.

Explanation:

The density of solid calcium can be calculated by determining the density of its unit cell, which is a face-centered cubic (FCC) structure. In an FCC structure, each unit cell contains 4 atoms. The mass of 4 calcium atoms can be calculated using the atomic mass of calcium, and the volume of the unit cell can be calculated using the atomic radius of calcium. Dividing the mass by the volume gives the density of solid calcium.

The atomic radius of calcium is given as 197 pm, which can be converted to cm by multiplying by 10^-10. The volume of the unit cell can be calculated using the formula V = (edge length)^3. The edge length can be calculated using the diagonal of the face, which is 4 times the atomic radius. The mass of 4 calcium atoms can be calculated using the atomic mass of calcium, which is 40.08 g/mol. Dividing the mass by the volume gives the density of solid calcium.

Density of solid calcium = mass of 4 Ca atoms / volume of unit cell

Keywords: density, solid calcium, unit cell, face-centered cubic (FCC) structure, atomic radius, atomic mass

Learn more about Calculating the density of solid calcium here:

https://brainly.com/question/14325658

#SPJ11

Some insects can glide across the surface of water due to water's: hydrogen bonds. viscosity. capillarity. polarity. surface tension

Answers

Answer: surface tension

Explanation: the tiny weight of insect is not strong enough to break the surface tension of water. So when insects stands or move on water, their feets creates something like dimples on the surface of water which then spring back to propel the insect forward thereby preventing them from sinking.

According to the equation above, how many moles of potassium chlorate, KClO3, must be decomposed to generate 1.0 L of O2 gas at standard temperature and pressure?

Answers

Answer:

Moles of potassium chlorate = 0.02976 moles

Explanation:

At standard pressure and temperature,

22.4 L of a gas consists of 1 mole

Thus, given, volume of [tex]O_2[/tex] = 1.0 L

So,

1 L of a gas consists of [tex]\frac{1}{22.4}[/tex] mole

Moles of oxygen gas = 0.04464 moles

The reaction is shown below as:-

[tex]2KClO_3\rightarrow 2KCl+3O_2[/tex]

3 moles of oxygen gas are produced when 2 moles of potassium chlorate undergoes reaction.

So,

1 mole of oxygen gas are produced when [tex]\frac{2}{3}[/tex] moles of potassium chlorate undergoes reaction.

Thus,

0.04464 mole of oxygen gas are produced when [tex]\frac{2}{3}\times 0.04464[/tex] moles of potassium chlorate undergoes reaction.

Moles of potassium chlorate = 0.02976 moles

From the decomposition reaction 2KClO₃(s) → 2KCl(s) + 3O₂(g), the number of moles of KClO₃ to be decomposed to generate 1.0 L of O₂ gas at standard temperature and pressure (STP) is 0.030.

The balanced chemical reaction for the decomposition of potassium chlorate (KClO₃) is the following:

2KClO₃(s) → 2KCl(s) + 3O₂(g)   (1)

We can find the number of moles of O₂ gas with the Ideal gas equation:

[tex] PV = nRT [/tex]

Where:

P: is the pressure = 1.0 atm (at STP conditions)

V: is the volume = 1.0 L

R: is the gas constant = 0.082 L*atm/(K*mol)

T: is the temperature = 273 K (at STP conditions)

n: is the number of moles =?

The number of moles of O₂ gas is:

[tex] n_{O_{2}} = \frac{PV}{RT} = \frac{1.0 atm*1.0 L}{0.082 L*atm/(K*mol)*273 K} = 0.045 \:moles [/tex]

From reaction (1), we have that 2 moles of KClO₃ produce 3 moles of O₂, so the number of moles of KClO₃ resulting from the decomposition is:

[tex] n_{KClO_{3}} = \frac{2\:moles\:KClO_{3}}{3\:moles\:O_{2}}*0.045\:moles\:O_{2} = 0.030 \:moles [/tex]

Therefore, the number of KClO₃ moles to be decomposed is 0.030.

Find more here:

https://brainly.com/question/4147359?referrer=searchResults

I hope it helps you!                  

. If 84 grams of sodium chloride reacts with an excess amount of magnesium oxide, how many grams of sodium oxide will be produced? Question 2 options: 23.2 g Na20 45g MgCl2 107g MgO 44.5g Na20

Answers

Answer:

44.5 g of Na₂O

Explanation:

The reaction is this one:

2NaCl + MgO  →  Na₂O  +  MgCl₂

Moles of NaCl = Mass / Molar mass

84 g / 58.45 g/m = 1.43 moles

Ratio is 2:1, so if we produce 1 mol of Na₂O, from 2 moles of NaCl; If we have 1.43 moles, we 'll produce the half of moles

1.43 / 2 = 0.72 moles

Molar mass Na₂O = 62 g/m

Mol . molar mass =  0.72 m . 62 g/m = 44.5 g

Answer:

There will be 44.5 grams of sodium oxide (Na2O) produced

Explanation:

Step 1: Data given

Mass of Sodium chloride (NaCl) = 84.00 grams

Magnesium oxide = in excess

Molar mass of NaCl = 58.44 g/mol

Molar mass of sod)ium oxide (Na2O = 61.98 g/mol

Step 2: The balanced equation

2NaCl + MgO → Na2O + MgCl2

Step 3: Calculate moles of NaCl

Moles NaCl = Mass / Molar mass

Moles NaCl = 84.00 grams / 58.44 g/mol

Moles NaCl = 1.437 moles

Step 4: Calculate moles of Na2O

The limiting reactant is NaCl.

For 2 moles NaCl consumed, we need 1 mol MgO to produce 1 mol Na2O and 1 mol of MgCl2

For 1.437 moles of NaCl we'll have 1.437/2 = 0.7185 moles of Na2O

Step 5: Calculate mass of Na2O

Mass Na2O = Moles Na2O * Molar mass Na2O

Mass Na2O = 0.7185 moles * 61.98 g/mol

Mass Na2O = 44.53 grams of Na2O

There will be 44.5 grams of sodium oxide (Na2O) produced

Describe light with respect to its speed and its dual nature as both a wave and a particle.

Answers

Answer:

Scientists have been debating over light being a wave or particle since its recognition.

Sir Issac Newton discovered that light had frequency and other properties. Newton described light to be a particle because it created shadows which were sharp and very clear.

Francesco Maria Grimaldi, claimed that light was a wave. This was because this scientist observed the diffraction of light and hence, claimed light to be a type of wave.

The speed of light is 299 792 458 m / s. Nothing can travel faster than light.

If an equal quantity of heat is transferred to 10.0 g samples of liquid water (C = 4.184 J/g°C), concrete (C = 0.88 J/g°C), asphalt (C = 0.920 J/g°C), glass (C = 0.84 J/g°C), and iron (C = 0.448 J/g°C), rank the final temperatures of the samples from least to greatest.

Answers

Answer:

The ranking is given as; Water > Asphalt > Concrete > glass > Iron

Explanation:

The trick in solving this question is to assume a constant heat value; in this case i'll be choosing 100 J. Use this value to solve for the temperature difference. from that we can be able to rank the samples in order of their temperatures.

The formular to be used here is the;

H = MCΔT

Where;

H = Heat

M = Mass

C = Heat Capacity

ΔT = Temperature difference

ΔT = H/MC

In water;

ΔT = 100 / (10 * 4.184) = 2.39K

In Concrete;

ΔT = 100 / (10 * 0.88) = 11.36K

In asphalt;

ΔT = 100 / (10 * 0.920) = 10.87K

In glass;

ΔT = 100 / (10 * 0.84) = 11.9K

In iron;

ΔT = 100 / (10 * 0.448) = 22.3K

The samples with least temperature difference would have final temperatures and vice versa.

Our ranking is the given as; Water > Asphalt > Concrete > glass > Iron

The ranking from the least final temperature to the greatest is liquid water, asphalt, concrete, glass, iron.

The question involves understanding the concept of specific heat capacity in relation to the final temperature of different materials after the same quantity of heat is transferred. The specific heat capacity (C) is a property that defines how much heat energy is required to raise the temperature of a unit mass of a substance by one degree Celsius. The materials listed are liquid water, concrete, asphalt, glass, and iron, with specific heat capacities of 4.184 J/g°C, 0.88 J/g°C, 0.920 J/g°C, 0.84 J/g°C, and 0.448 J/g°C, respectively.

Given the relationship that the amount of heat (Q) added or removed is directly proportional to the mass (m), specific heat capacity (C), and change in temperature (ΔT), we have Q = mCΔT. With an equal amount of heat transferred and the same mass for each sample, substances with a higher specific heat capacity will experience a smaller change in temperature. Thus, to rank the final temperatures from least to greatest after the equal heat transfer, we should look at the specific heat capacities in reverse order, as a lower specific heat capacity means more temperature change for the same amount of heat.

Iron (C = 0.448 J/g°C), Glass (C = 0.84 J/g°C), Concrete (C = 0.88 J/g°C), Asphalt (C = 0.920 J/g°C), Liquid Water (C = 4.184 J/g°C)

Therefore, the final temperatures of the samples, from least to greatest, will be as follows: iron will have the highest final temperature, followed by glass, concrete, asphalt, and liquid water will have the lowest final temperature.

Organic Chemistry, 7e by L. G. Wade, Jr. Reactions of Alkenes Christine Hermann Radford University Radford VA Copyright © 2010 Pearson Education

Answers

Answer: Christine Herman & L.G Wade Jr., "2010". Organic Chemistry: Reaction of Alkane, 7e, Pearson Education, Radford University, Radford, VA.

Explanation:

This is an edited book. The Harvard reference style was used in the following order:

Authors name

Year of publication

Title

Edition

Publisher

Place of publication.

Note that the title of book should be italicized with capitalization of first word.

Given the chemical formula, KNO3, what is the percent nitrogen in the compound?
A) 13.86%
B) 14.01%
C) 38.36%
D) 47.48%

please help

Answers

Answer:

The answer to your question is letter A

Explanation:

Process

1.- Calculate the molar mass of KNO₃

KNO₃    molecular mass = 39.1 + 14.01 + (3 x 16)

                                        = 39.1 + 14.01 + 48

                                        = 101.11 g

2.- Use a rule of three to find the percent of nitrogen

                            101.11 g of KNO₃  ---------------   100%

                             14.01 g of N        ---------------     x

                             x = (14.01 x 100) / 101.11

                             x = 13.86%

Calculate the standard entropy of vaporization of ethanol at its boiling point

Answers

The question is incomplete, here is a complete question.

Calculate the standard entropy of vaporization of ethanol at its boiling point 352 K. The standard molar enthalpy of vaporization of ethanol at its boiling point is 40.5 kJ/mol.

Answer : The standard entropy of vaporization of ethanol is, 115 J/mol.K

Explanation :

Formula used :

[tex]\Delta S=\frac{\Delta H_{vap}}{T_b}[/tex]

where,

[tex]\Delta S[/tex] = change in entropy

[tex]\Delta H_{vap}[/tex] = change in enthalpy of vaporization = 40.5 kJ/mol

[tex]T_b[/tex] = boiling point temperature = 352 K

Now put all the given values in the above formula, we get:

[tex]\Delta S=\frac{\Delta H_{vap}}{T_b}[/tex]

[tex]\Delta S=\frac{40.5kJ/mol}{352K}[/tex]

[tex]\Delta S=\frac{40.5\times 10^3J/mol}{352K}[/tex]

[tex]\Delta S=115J/mol.K[/tex]

Therefore, the standard entropy of vaporization of ethanol is, 115 J/mol.K

Draw the product of the following reaction between a ketone and an alcohol.

Answers

Answer:

The product of the reaction between a ketone and an alcohol is initially a hemiketal which yields a ketal on further reaction with another alcohol molecule.

The structure is found in the attachment.

Explanation:

This reaction is a nucleophilic addition to the carbonyl group. In organic chemistry, a nucleophilic addition reaction is an addition reaction where a chemical compound with an electron-deficient or electrophilic double or triple bond, a pi (π) bond, reacts with electron-rich reactant, termed a nucleophile, with the elimination of the double bond and creation of two new single, or sigma (σ), bonds.

In the reaction between a ketone and an alcohol, the carbonyl group of the ketone serves as the electrophile while the hydroxyl group of the alcohol is the nucleophile. The first product is known as a hemiketal because a single alcohol group has been aded to the carbonyl group of the ketone. Further nucleophilic additon of an alcohol group initiated by the presence of an acid e.g hydrochloric acid, results in the formation of a ketal which has two alcohol group added to the original ketone.

Final answer:

The reaction between a ketone and an alcohol can produce a hemiketal or ketal, depending on the reaction conditions and the excess of alcohol. A hemiketal is formed when the alcohol reacts with the ketone to form a new carbon-oxygen bond, while a ketal is formed when a second molecule of alcohol reacts to convert the hemiketal into a stable compound.

Explanation:

In the reaction between a ketone and an alcohol, the product formed is called a hemiketal or ketal, depending on the reaction conditions and the presence of excess alcohol. A hemiketal is formed when the alcohol reacts with the ketone to form a new carbon-oxygen bond, while a ketal is formed when a second molecule of alcohol reacts to convert the hemiketal into a stable compound.

For example, if we take the ketone acetone (CH3C=O) and react it with ethanol (CH3CH2OH), we can form a hemiketal:

CH3C(OC2H5)(OH)

If we add excess ethanol, the hemiketal can react with a second molecule of ethanol to form a ketal:

CH3C(OC2H5)2

The reaction can also occur between other ketones and alcohols, resulting in the formation of different hemiketals or ketals.

Use the problem below to answer the question: 34 grams of carbon reacted with an unlimited amount of H2O. The reaction is: C + H2O → CO + H2 The atomic mass of C is 12.01 g/mole. The atomic mass of H2 is 2.016 g/mole. Finish the problem by choosing the correct format for dimensional analysis.

Answers

Final answer:

In this problem, 1 mole of CO₂ is produced for every mole of carbon atoms and 1 mole of H₂O is produced for every 2 moles of hydrogen atoms. By using these ratios, the masses of carbon and hydrogen in the original sample can be calculated from the masses of CO₂ and H₂O, and their molar masses.

Explanation:

Upon combustion, 1 mol of CO₂ is produced for each mole of carbon atoms in the original sample. Similarly, 1 mol of H₂O is produced for every 2 mol of hydrogen atoms present in the sample. The masses of carbon and hydrogen in the original sample can be calculated from these ratios, the masses of CO₂ and H₂O, and their molar masses. Because the units of molar mass are grams per mole, we must first convert the masses from milligrams to grams:

If 5.0 grams of sucrose, C12H22O11, are dissolved in 10.0 grams of water, what will be the boiling point of the resulting solution?

Answers

Answer : The boiling point of the resulting solution is, [tex]100.6^oC[/tex]

Explanation :

Formula used for Elevation in boiling point :

[tex]\Delta T_b=i\times k_b\times m[/tex]

or,

[tex]T_b-T^o_b=i\times k_b\times \frac{w_2\times 1000}{M_2\times w_1}[/tex]

where,

[tex]T_b[/tex] = boiling point of solution = ?

[tex]T^o_b[/tex] = boiling point of water = [tex]100^oC[/tex]

[tex]k_b[/tex] = boiling point constant  = [tex]0.52^oC/m[/tex]

m = molality

i = Van't Hoff factor = 1 (for non-electrolyte)

[tex]w_2[/tex] = mass of solute (sucrose) = 5.0 g

[tex]w_1[/tex] = mass of solvent (water) = 10.0 g

[tex]M_2[/tex] = molar mass of solute (sucrose) = 342.3 g/mol

Now put all the given values in the above formula, we get:

[tex](T_b-100)^oC=1\times (0.52^oC/m)\times \frac{(5.0g)\times 1000}{342.3\times (10.0g)}[/tex]

[tex]T_b=100.6^oC[/tex]

Therefore, the boiling point of the resulting solution is, [tex]100.6^oC[/tex]

Element Z has 2 natural isotopes. One isotope has a mass of 15.0amu and has a relative abundance of 30%. The other isotope has a mass of 16.0amu and has a relative abundance of 70%. Estimate the average atomic mass for this element to one decimal place.

Answers

Answer:

The answer to your question is 15.7 amu

Explanation:

                          Abundance               Mass

Isotope 1                30%                         15

Isotope 2               70%                          16

Average atomic mass = (Abundance isotope 1 x abundance) +

                                       (Abundance isotope 2 x abundance)

Substitution

Average atomic mass =  (0.30 x 15) + (0.70 x 16)

Simplify

Average atomic mass = 4.5 + 11.2

Result

Average atomic mass = 15.7 amu

A 4.00 g sample of a metal (specific heat = 0.600 J g-1°C-1 is heated to 75 degrees Celcius and then dropped into 165 g of water in a calorimeter. What is the final temperature of the water if the initial temperature is 28 degrees Celcius? The specific heat capacity of water is 4.184 J/g.°C.

Answers

Answer:

28.16 °C

Explanation:

Considering that:-

Heat gain by water = Heat lost by metal

Thus,  

[tex]m_{water}\times C_{water}\times (T_f-T_i)=-m_{metal}\times C_{metal}\times (T_f-T_i)[/tex]

Where, negative sign signifies heat loss

Or,  

[tex]m_{water}\times C_{water}\times (T_f-T_i)=m_{metal}\times C_{metal}\times (T_i-T_f)[/tex]

For water:

Mass = 165 g

Initial temperature = 28 °C

Specific heat of water = 4.184 J/g°C

For metal:

Mass = 4.00 g

Initial temperature = 75 °C

Specific heat of water = 0.600 J/g°C

So,  

[tex]165\times 4.184\times (T_f-28)=4.00\times 0.600\times (75-T_f)[/tex]

[tex]690360\left(T_f-28\right)=2400\left(75-T_f\right)[/tex]

[tex]692760T_f=19510080[/tex]

[tex]T_f = 28.16\ ^0C[/tex]

Hence, the final temperature is 28.16 °C

Chromium may help lower the risk of __________ by increasing the effectiveness of _____.

Answers

Answer:

type 2 diabetes

insulin

Explanation:

type 2 diabetes is a chronic condition that affects the way the body processes blood sugar. A patient with type 2 diabetes in the body either doesn't produce enough insulin, or it resists insulin.

As Chromium levels can be below normal in people with type 2  diabetes. Research studies shows that taking drugs that contains chromium such as chromium picolinate can help increase the effectiveness of insulin levels and help insulin work in people with type 2 diabetes.

At a certain temperature, 4.0 mol NH3 is introduced into a 2.0 L container, and the NH3 partially dissociates by the reaction. 2 NH3(g) N2(g) 3 H2(g) At equilibrium, 2.0 mol NH3 remains. What is the value of K for this reaction?

Answers

Answer:

K = 3.37

Explanation:

2 NH₃(g) → N₂(g)  + 3H₂(g)

Initially we have 4 mol of ammonia, and in equilibrium we have 2 moles, so we have to think, that 2 moles have been reacted (4-2).

              2 NH₃(g)    →    N₂(g)  + 3H₂(g)

Initally       4moles             -            -

React        2moles           2m   +   3m

Eq             2 moles          2m        3m

We had produced 2 moles of nitrogen and 3 mol of H₂ (ratio is 2:3)

The expression for K is:  ( [H₂]³ . [N₂] ) / [NH₃]²

We have to divide the concentration /2L, cause we need MOLARITY to calculate K (mol/L)

K = ( (2m/2L) . (3m/2L)³ ) / (2m/2L)²

K = 27/8 / 1 → 3.37

Answer:

The value of K for this reaction is 1.69

Explanation:

Step 1: Data given

Moles of NH3 = 4.0 moles

Volume of the container = 2.0 L

At the equilibrium 2.0 moles NH3 remains

Step 2: The balanced equation

2 NH3(g) → N2(g) + 3H2(g)

Step 3: Initial number of moles

NH3: 4.0 moles

N2: 0 moles

H2: 0 moles

Step 4: Number of moles at the equilibrium

NH3: 2.0 moles

This means there reacts 2.0 moles of NH3

For 2 moles of NH3 we have 1 mol of N2 and 3 moles of H2

There will be produced 1 mol of N2 and 3 moles of H2

Step 5: Calculate molarity

Molarity = moles / volume

Molarity of NH3 = 2.0 moles / 2.0 L = 1 M

Molarity of N2 = 1.0 mol / 2.0 L = 0.5 M

Molarity of H2 = 3.0 mol / 2.0 L = 1.5 M

Kc = ([H2]³[N2]) / [NH3]²

Kc = (1.5³ * 0.5) / (1²)

Kc = 1.69

The value of K for this reaction is 1.69

Consider atoms of the following elements. Assume that the atoms are in the ground state.
(A) S(B) Ca(C) Ga(D) Sb(E) Br2. The atom that contains only one electron in the highest occupied energy sublevel

Answers

Answer:

C

Explanation:

Gallium is in group thirteen with outermost electron configuration ns2 np1. The highest occupied sub-level is np1 having only one electron which is the situation required in the question.

Answer:

C.  Ga

Explanation:

Why can the positive ions be considered to be fixed during the electrons’ oscillations?

Answers

Final answer:

Positive ions, which form the nucleus, are considered fixed during the electrons’ oscillations due to their significantly larger mass, which makes them relatively stationary compared to the lightweight and mobile electrons. In atomic models, this assumption simplifies the study of electronic behavior.

Explanation:

Positive ions can be considered to be fixed during the electrons’ oscillations because of their relatively large mass compared to electrons. In the context of atomic physics and the Bohr model, positive ions are essentially the nucleus of an atom, which is comprised of protons and neutrons. These particles are much heavier than the electrons and thus remain relatively stationary when the electrons oscillate or move in their orbits.

Within the atom, cations, which are positive ions, are created when elements lose one or more electrons. For example, group 1 elements in the periodic table lose one electron easily due to their electronic configuration, leading to a positive charge. The difference in mass means that while the electrons, which are lightweight and mobile, can oscillate or change their energy states quickly, the heavier protons in the nucleus (the cations) do not move significantly during these processes. Consequently, in many atomic models and explanations of electronic behavior, the positive ions are often treated as if they are fixed in place.

An 8.89 g sample of an aqueous solution of nitric acid contains an unknown amount of the acid. If 27.1 mL of 0.581 M potassium hydroxide is required to neutralize the nitric acid, what is the percent by mass of nitric acid in the mixture?

Answers

Answer:

The percent by mass of nitric acid in the mixture is 11.1 %

Explanation:

Step 1: Data given

Mass of HNO3 = 8.89 grams

Volume of KOH = 27.1 mL = 0. 0271 L

Molarity of KOH = 0.581 M

Step 2: The balanced equation

HNO 3  +  KOH  →  KNO 3  +  H 2 O

Step 3: Calculate the moles of KOH

Moles of KOH = molarity KOH * volume

Moles KOH = 0.581 M * 0.0271 L

Moles KOH = 0.0157 moles

Step 4: Calculate moles of HNO3

For 1 mol of KOH we need 1 mol of HNO3

For 0.0157 moles of KOH we need 0.0157 moles of HNO3

Step 5: Calculate mass of HNO3

Mass KOH = moles KOH * molar mass KOH

Mass KOH = 0.0157 moles * 63.01 g/mol

Mass KOH = 0.989 grams

Step 6: Calculate mass % HNO3 in sample

mass % = (0.989 grams / 8.89 grams)*100%

mass % = 11.1 %

The percent by mass of nitric acid in the mixture is 11.1 %

In order to get lots of helium into tanks to fill kiddy balloons, they put force or pressure onto it. If i have 595 liters of helium at 1.00 atmosphere of pressure (that’s normal air pressure, or the pressure of the air), then what volume would it have if i applied 55.0 atmospheres of force or pressure to it?

Answers

Answer:

1.90 L

Explanation:

Using Boyle's law  

[tex]{P_1}\times {V_1}={P_2}\times {V_2}[/tex]

Given ,  

V₁ = 595 L  

V₂ = ?

P₁ = 1.00 atm

P₂ = 55.0 atm

Using above equation as:

[tex]{P_1}\times {V_1}={P_2}\times {V_2}[/tex]

[tex]{1.00}\times {595}={55.0}\times {V_2}[/tex]

[tex]{V_2}=\frac{{1.00}\times {595}}{55.0}\ L[/tex]

[tex]{V_2}=1.90\ L[/tex]

The volume would be 1.90 L.

A 360mg sample of aspirin, C9H8O4, (molar mass 180g), is dissolved in enough water to produce 200mL of solution. What is the molarity of aspirin in a 50mL sample of this solution?

Answers

Final answer:

The molarity of the 360mg aspirin sample dissolved in 200mL solution is found to be 0.01 M. As molarity is a measure of concentration, it remains the same in a 50mL sample of the solution. Therefore, the molarity of the aspirin in the 50mL solution is also 0.01 M.

Explanation:

To calculate the molarity of the aspirin in a 50mL sample, first the molarity of the original 200mL solution is calculated. The molarity (M) is defined as moles of solute (in this case aspirin) per liters of solution. The moles of aspirin in the 360mg sample can be calculated by dividing by the molar mass of aspirin, which is 180g/mol. Thus, there are 0.002 mol (360mg * 1g/1000mg * 1 mol/180g) of aspirin in the 200mL solution. Converting mL to L (200mL * 1L/1000mL), the molarity of the 200mL solution is 0.002 mol / 0.2 L = 0.01 M.

Since molarity is a concentration, it remains the same regardless of the volume of the solution: thus, the molarity of the 50mL sample of the solution is also 0.01 M. So, the molarity of aspirin in a 50mL sample of the solution is 0.01 M.

Learn more about Molarity here:

https://brainly.com/question/8732513

#SPJ12

Other Questions
What is displayed on the console when running the following program? 1. Welcome to Java, then an error message. 2. Welcome to Java followed by The finally clause is executed in the next line, then an error message. The program displays three lines: a. Welcome to Java, b. Welcome to HTML, c. The finally clause is executed, then an error message. d. None of these. PLEASE HELP Which system of inequalities is represented by the graph? A. y less than or equal to-2x+4 and y greater than or equal to x-6B. y less than or equal to2x+4 and y greater than or equal to -x -6C. y less than or equal to 2x-4 and y greater than or equal to -x-6D. y less than or equal to 2x+4 and y greater than or equal to -x+6 The common stock of Manchester & Moore is expected to earn 13 percent in a recession, 6 percent in a normal economy, and lose 4 percent in a booming economy. The probability of a boom is 5 percent while the probability of a recession is 45 percent. What is the expected rate of return on this stock? When is it acceptable under NASAA rules for an IAR to exercise discretionary authority over the account of an investor? A) Only when the IAR gives written notification to the investor with the confirmation of the trade.B) If the IAR receives authority via telephone and this is followed by written authority within 10 days, the IAR may exercise discretion over the account.C) Only when the IAR is increasing or decreasing an existing position that is held by the investor.D) If the IAR has suggested allowing discretionary authority, then the IAR may use discretionary authority. is the bonds that cause gaseous Cl2 to become liquid when cooled intramolecular or intermolecular Fill in the missing words or phrases.1. Por qu t muy antiptico ayer? (ser)2. Mis compaeros de cuarto a clase. (ir)3. Yo estudiante de medicina, pero decid estudiar arquitectura. (ser)4. Luca a Cuzco para visitar a su mam. (ir)5. La seora Prez no muy simptica con nosotros ayer. (ser)6. Mnica y yo al museo y a un caf. (ir)7. El doctor Rojas nunca mi profesor. (ser)8. Eduardo y Julio muy extravagantes... qu fiesta estupenda! (ser)9. Cmo los programas? (ser)10. Cuando contest su pregunta... uy, muy estpido! (ser) Jenny goes to the shop.She buys three cups for 1.24 eachthree saucers for 95p each a teapot for 6.18Jenny has 20 to spend. She also wants to buy some plates, which are 1.57 eachWhat is the greatest number of plates Jenny can buy? 40. Volcanoes are examples of igneous activity _____________. a. underground b. above ground In a responsibility accounting system: Select one: a. Managers are responsible for their departments' controllable costs. b. Each accounting report contains all items allocated to a responsibility center. c. Organized and clear lines of authority and responsibility are only incidental. d. All managers at a given level have equal authority and responsibility. e. Outputs of the departments are not part of the evaluation process. A pedigree is not helpful to a counselor in predicting the probability of a recessive gene being present and the chances for an offspring to receive the gene and express the trait.A. trueB. false What is the conjugate acid of each of the following? What is the conjugate base of each?(a) OH (b) H2O (c) HCO3 (d) NH3 (e) HSO4 (f) H2O2 (g) HS(h) H5N2+ Arrange in the correct sequence these components of the mammalian immune system as it first responds to a pathogen.I) Pathogen is destroyed.II) Lymphocytes secrete antibodies.III) Antigens from a pathogen bind to antigen receptors on lymphocytes.IV) Lymphocytes specific to antigens from a pathogen become numerous. V) Only memory cells remain.a. I III II IV Vb. II I IV III Vc. IV II III I Vd. III IV II I V Which of the following is not part of the materials activity in the flow of manufacturing activities?a. Beginning raw materials b. Beginning work in process c. Raw materials purchases d. Raw materials available for use e. Ending raw materials Use the example of a student to illustrate the characteristics of a conscientious person In paragraph five, the word navigable meansA)ships, boats, and other water vessels.B)deep and wide enough for ships to pass through.C)easy to read and understand the directions given.D)a type of river found only in England and Europe. The oxygen that is released as o2 during photosynthesis came from _____________ molecules. Why did Jefferson address the Declaration of Independence to the "opinions of mankind"? a. He wanted to reach a worldwide audience. b. He was unsure of including women. c. He was actually reiterating that his opinion was the most significant. d. He borrowed the phrase from Parliament. e. He wanted to emphasize free speech. Select the correct answer. These are the cost and revenue functions for a product line of cat food sold in 7-pound bags at a single pet store:R(x) = 700x 11.3x2C(x) = 8,068 34.25xBased on these functions, what is the maximum profit that can be made?A. $1,737.82B. $3,859.50 C. $8,068.00 D. $10,840.71 For each of the following statements, draw a diagram that illustrates the likely effect on the market for eggs. Indicate in each case the impact on equilibrium price and equilibrium quantity a. The surgeon general warns that high-cholesterol foods cause heart attacks. b. The price of bacon, a complementary product, decreases. c. The price of chicken feed increases. d. Caesar salads become trendy at dinner parties. (The dressing is made with raw eggs.) e. A technological innovation reduces egg breakage during packing. Which of the following statements about flexibility and flexibility training is FALSE?a. Stretching programs can reduce flexibility loss associated with aging.b. Flexibility is highest in the teenage years.c. Stretch before your other exercise in order to see the greatest improvement in flexibility.d. Aging results in rigidity, shortening of tendons, and, thus, reduced flexibility. Steam Workshop Downloader