No, it is not the same because in option 1, the interest is calculated based on two different principal amounts and then added together. The principal amounts will be different every year because of the varying interest rates. Since one of the interest rates in option 1 is 7%, the principal will grow at a faster rate because the interest rate is applied to a greater and greater principal amount over time. In option 2, the interest is being calculated only on one principal
Answer:
Step-by-step explanation:
No, they are not always the same - the only time that they will be the same is after the first year:
$4000*1.05 + $4000*1.07 = $8480 = $8000*1.06
From there on, they will diverge. For example after the second year:
$4000*1.05^2 + $4000*1.07^2 = $8989.6
$8000*1.06^2 = $8988.8
After the third year:
$4000*1.05^3 + $4000*1.07^3 = $9530.672
$8000*1.06^3 = $9528.128
After the nth year:
The first option gives $4000*(1.05^n + 1.07^n)
The second option gives $8000*(1.06^n)
= $4000*(2)*(1.06^n)
= $4000*(1.06^n + 1.06^n)
Because 1.07^n - 1.06^n > 1.06^n - 1.05^n for n>1, the first option will be a better investment.
NEED HELP !!!!! WILL GIVE BRAINLIEST AND 99 PTS!!!!order from least to greatest. 0.81, 4/5, 90%
In order from least to greatest, it goes 4/5, 0.81, 90%
Answer:
4/5, 0.81, 90% is the answer from least to greatest.
Hope this helps :)
can i have some help please uwu?
use the iterative rule to find the 8th term in the sequence
an= 25-3n
a8=___
thankyou! ~bangtanboys7
hope im right but i think it 1 sorry if im wrong
Plug in 1, 2, 3, ... up to 8 into our sequence an.
You really just need to plug in 8, but plug in lower numbers to see the sequence emerge.
For example:
a1 means n equals 1, so a1 = 25 - (3 * 1) = 25 - 3 = 22
a2 means n equals 2, so a2 = 25 - (3 * 2) = 25 - 6 = 19
...
a8 means n equals 8, so a8 = 25 - (3 * 8) = 25 - 24 = 1
I hope this helps you understand the problem.
EDIT: You can also graph your iterative rule an on a graph. The values on the x axis correspond to the value of n and the y-axis would then correspond to the value of the sequence. Notice that a8 = 1, as shown in the attached picture.
What is the width of a rectangular room with an are 90 square feet and a length of 9 feet
[tex]A=lw\Rightarrow w=\frac{A}{l}=\frac{90}{9}=10\: ft[/tex]
Answer:
10 ft
Step-by-step explanation:
Area of a rectangular room is
A = l*w
We know the area and the length
90 = 9*w
Divide by 9
90/9 = 9w/9
10 =w
The width is 10 feet
Which equation is equivalent to 5√X+8=35? A. 3√x+8=175 B. X+8=343 C. X+8=21 D. X=351
Answer with explanation:
The equation whose equivalent equation we have to find is:
5 √X +8=35
Two equations are said to be equivalent,if they have same solution .
There is another definition of equivalent equation.Two equation are said to be equivalent ,also, if their solution are not same, but these equations appear Identical that is congruent but not Similar.
Option A: Equation ,3√X +8=175 is equivalent to 5√X+8=35.
Answer:
A
Step-by-step explanation
Help please!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer: 48°
Step-by-step explanation: The Answer is 48° this is because a triangle is equal to 180° and to find the missing side, add the two sides you do know and subtract them from 180 and you will get 48°
Have an awesome day,
Eric
Let’s say the area of the map is 21 square inches. You want to make an enlarged map of Central Park to take with you on your journey. Describe how you can determine the area of the enlarged map. plzzzzzzz answer quickly I have 20 minutes.
Answer:
find the perimeter and multiply it to a decent size to see what you would need to do to enlarge the map
Step-by-step explanation:
can i get brainliest i need 5
The area of the enlarged map is gotten by multiplying the square of the scale factor by 21 in²
What is scaling?Scaling is the increase or decrease in the size of a figure by a scale factor so as to create an image.
If a map is enlarged by a scale factor. To determine the area of the enlarged map, if the original map has an area of 21 in²:
Area of enlarged map = scale factor² * 21 in²
The area of the enlarged map is gotten by multiplying the square of the scale factor by 21 in²
Find out more on scaling at: https://brainly.com/question/25324744
How do I find the equation of a line parallel to y=-1/2x +3 passing through (3,1/2) please help I’ve been here for a hour
➷ If a line is parallel to the line, then the slope will remain the same
Now, you just need to substitute the values of that coordinate into the equation
1/2 = -1/2(3) + c
Simplify:
1/2 = -1.5 + c
Add 1.5 to both sides
c = 2
Therefore, the equation of the line would be:
y = -1/2x + 2
✽➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
Answer:
see explanation
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = - [tex]\frac{1}{2}[/tex] x + 3 is in this form
with m = - [tex]\frac{1}{2}[/tex]
• Parallel lines have equal slopes, hence
slope of parallel line = - [tex]\frac{1}{2}[/tex], thus
y = - [tex]\frac{1}{2}[/tex] x + c ← is the partial equation
To find c substitute (3, [tex]\frac{1}{2}[/tex]) into the partial equation
[tex]\frac{1}{2}[/tex] = - [tex]\frac{3}{2}[/tex] + c ⇒ c = 2
y = - [tex]\frac{1}{2}[/tex] x + 2 ← equation of parallel line
Find the lateral area of the cone in terms of π.
Answer:
[tex]15\pi\ cm^{2}[/tex]
Step-by-step explanation:
we know that
The lateral area of the cone is equal to
[tex]LA=\pi rl[/tex]
where
r is the radius of the base
l is the slant height
we have
[tex]r=3\ cm[/tex]
Applying the Pythagoras Theorem find the slant height
[tex]l^{2}=3^{2} +4^{2}\\ \\l^{2}=25\\ \\l=5\ cm[/tex]
substitute in the formula
[tex]LA=\pi (3)(5)=15\pi\ cm^{2}[/tex]
Tobias’s closet has 1 red hat and 1 black hat; 1 white shirt, 1 black shirt, and 1 black-and-white-striped shirt; and 1 pair of black pants and 1 pair of blue pants. He is picking an outfit by reaching into his closet and randomly choosing a hat, a shirt, and a pair of pants. How many possible outfit combinations are there?
Answer: C) 12
Answer:
12
Step-by-step explanation:
Let's calculate how many possible outfits does Tobias has.
Hats: 2, Shirts: 3, Pants: 2
If he's picking everything at random blindly from his closet, he could pick any of the hats, any of the shirts and any of the pants. That makes a total of:
2 x 3 x 2 = 12 possible combinations.
That doesn't mean the arrangement will look pretty :-)
Tobias has 12 possible outfit combinations from his closet. This is calculated by multiplying the choices he has for each item of clothing: 2 hats, 3 shirts, and 2 pairs of pants.
Explanation:In this mathematics problem, Tobias has 2 hats, 3 shirts, and 2 pairs of pants. In such problems, an easy rule to remember is that for independent choices you multiply your options. So, for his hats, he has 2 options. For shirts, he has 3 options and for pants, he has 2 options. To find the total number of outfit combinations, just multiply these options: 2 (hats) * 3 (shirts) * 2 (pants) = 12 possible outfit combinations. Therefore, Tobias can mix and match his clothing items to make 12 different outfits.
Learn more about Combination here:https://brainly.com/question/39347572
#SPJ12
Approximate the change in the lateral surface area (excluding the area of the base) of a right circular cone of fixed height of h=6 m when its radius decreases from r= 10m to r= 9.9 m
Answer:
The change in the lateral surface area is approximate [tex]6.32\ m^{2}[/tex]
Step-by-step explanation:
we know that
The lateral surface area of the cone is equal to
[tex]LA=\pi r l[/tex]
where
r is the radius of the base
l is the slant height
Part 1
we have
[tex]r=10\ m, h=6\ m[/tex]
Calculate the slant height l (applying the Pythagoras Theorem)
[tex]l^{2}=r^{2}+h^{2}[/tex]
substitute the values
[tex]l^{2}=10^{2}+6^{2}[/tex]
[tex]l^{2}=136[/tex]
[tex]l=\sqrt{136}\ m[/tex]
Find the lateral area of the cone
[tex]LA=\pi (10)(\sqrt{136})[/tex]
[tex]LA=10\pi \sqrt{136}\ m^{2}[/tex]
Part 2
we have
[tex]r=9.9\ m, h=6\ m[/tex]
Calculate the slant height l (applying the Pythagoras Theorem)
[tex]l^{2}=r^{2}+h^{2}[/tex]
substitute the values
[tex]l^{2}=9.9^{2}+6^{2}[/tex]
[tex]l^{2}=134.01[/tex]
[tex]l=\sqrt{134.01}\ m[/tex]
Find the lateral area of the cone
[tex]LA=\pi (9.9)(\sqrt{134.01})[/tex]
[tex]LA=9.9\pi \sqrt{134.01}\ m^{2}[/tex]
Part 3
Find the change in the lateral surface area
[tex]10\pi \sqrt{136}-9.9\pi \sqrt{134.01}[/tex]
assume [tex]\pi =3.14[/tex]
[tex]10(3.14)\sqrt{136}-9.9(3.14)\sqrt{134.01}=6.32\ m^{2}[/tex]
To approximate the change in the lateral surface area of a right circular cone with a fixed height of 6m, we can use the formula √A = 2πrL, where A is the cross-sectional area, r is the radius, and L is the slant height. By calculating the slant height for both radii and using the formula, we find that the change in the lateral surface area is 15.36m².
Explanation:To approximate the change in the lateral surface area of a cone, we can use the formula √A = 2πrL, where A is the cross-sectional area, r is the radius, and L is the slant height. In this case, the height (h) is fixed at 6m. So, we need to find the slant height for both radii, using the formula L = √(r² + h²).
Step 1: Find the slant height for the first radius, r1 = 10m:
L1 = √(10² + 6²) = √136 = 11.66m
Step 2: Find the slant height for the second radius, r2 = 9.9m:
L2 = √(9.9² + 6²) = √135.20 = 11.61m
Step 3: Calculate the change in the lateral surface area, using the formula √A1 - √A2:
√A1 = 2π x 10m x 11.66m = 732.94m²
√A2 = 2π x 9.9m x 11.61m = 717.58m²
Change in Lateral Surface Area = √A1 - √A2 = 732.94m² - 717.58m² = 15.36m²
Learn more about Approximating change in lateral surface area of a cone here:https://brainly.com/question/12392369
#SPJ3
Kim and her 2 brothers each use 1 1/2 cups of milk for breakfast.How many fluid ounces of milk do they use in 4 day's
The amount of fluid used in 4 days will be 18 ounces
Step-by-step explanation:Since each of them use 1 1/2 cups and they are 3
so the collective amount in 1 day will be
3 * 1 1/2 = 9/2
Now
The amount in 4 days will be
4 * 9/2 = 18
Therefore they will collectively use 18 ounces in 4 days
Jon makes a map of his neighborhood for a presentation. The scale of his map is 1 inch:125 feet. How many feet do 4 inches
represent on the map? Answer-500 feet ( I just need help on the problem below)
From the problem above Jon lives 250 feet away from Max. How many inches separate Jon’s home from Max’s on the map? Show your work.
Answer:
Part A) [tex]500\ ft[/tex]
Part B) [tex]2\ in[/tex]
Step-by-step explanation:
we know that
The scale of the map is [tex]\frac{1}{125} \frac{in}{ft}[/tex]
That means
1 in on the map represent 125 ft in the real
Part A) How many feet do 4 inches
using proportion
[tex]\frac{1}{125} \frac{in}{ft}=\frac{4}{x} \frac{in}{ft}\\ \\x=125*4\\ \\x=500\ ft[/tex]
Part B) Jon lives 250 feet away from Max. How many inches separate Jon’s home from Max’s on the map?
using proportion
[tex]\frac{1}{125} \frac{in}{ft}=\frac{x}{250} \frac{in}{ft}\\ \\x=250/125\\ \\x=2\ in[/tex]
Jon's home is 2 inches from Max's on the map, according to the scale of 1 inch:125 feet, considering Jon lives 250 feet from Max.
Explanation:To find out how many inches separate Jon's home from Max's on the map, we need to apply the given scale of the map which is 1 inch:125 feet. Since Jon lives 250 feet away from Max, we can set up a proportion to solve for the distance on the map as follows:
1 inch / 125 feet = x inches / 250 feet
Cross-multiply to solve for x:
125x = 1 * 250
125x = 250
Now, divide both sides by 125 to isolate x:
x = 250 / 125
x = 2
So, Jon's home is 2 inches from Max's on the map.
Angle AOB and angle AOC are complementary angles. What is the measure of angle AOB if the measure of angle AOC is 37°?
A. 53°
B. 63°
C. 323°
D. 143°
90-37=53 complementary angles are 90 degrees
Answer:
Option A, 53°
Step-by-step explanation:
If the two angles are complimentary to each other then sum of these angles is equal to 90°.
∠AOB + ∠AOC = 90°
If ∠AOC = 37°
Then ∠AOB = 90° - ∠AOC
= 90° - 37°
= 53°
Option A 53° is the answer.
The quadrilateral is inscribed in a circle with opposite angles measuring 3x + 2 and 3x – 32. Find the value of x.
Question 5 options:
35
22
25
30
Answer:
[tex]x=35\°[/tex]
Step-by-step explanation:
we know that
In a quadrilateral inscribed in a circle , the opposite angles are supplementary
so
In this problem
[tex](3x+2)\°+(3x-32)\°=180\°[/tex]
Solve for x
[tex]6x-30\°=180\°[/tex]
[tex]6x=210\°[/tex]
[tex]x=210\°/6=35\°[/tex]
Answer:
A. 35
Step-by-step explanation:
I did this question earlier and A. 35 was the answer that was right for me. Hope this helps!
Solve for x. Write the smaller solution first, and the larger solution second. 3x^2?9x?12=0
the operation functions are shown as question marks, please replace accordingly
Use the x-intercept method to find all real solutions of the equation.
x^3-8x^2+9x+18=0
Answer:
a. [tex]x=-1,3,\:or\:6[/tex]
Step-by-step explanation:
The given equation is;
[tex]x^3-8x^2+9x+18=0[/tex]
To solve by the x-intercept method we need to graph the corresponding function using a graphing calculator or software.
The corresponding function is
[tex]f(x)=x^3-8x^2+9x+18[/tex]
The solution to [tex]x^3-8x^2+9x+18=0[/tex] is where the graph touches the x-axis.
We can see from the graph that; the x-intercepts are;
(-1,0),(3,0) and (6,0).
Therefore the real solutions are:
[tex]x=-1,3,\:or\:6[/tex]
Answer:
Use a graphing utility or a graphing calculator.
x = -1, 3, 6. (3 real solutions).
Step-by-step explanation:
The points of intersection on the x axis are the 3 solutions to the equation.
What is the slope of the line passing through points A and B?
Answer:
1/3
Step-by-step explanation:
you go up 1 and down 3
Answer:
1/3
Step-by-step explanation:
The way to find slop is find the RISE/RUN between the two points.
How much would it cost to ship a package weighing 3.2 lbs at a cost of $2.69 per pound. Explain how you arrived at your answer.
Answer:
$8.608
Step-by-step explanation:
We are given that it costs $2.69 per pound to ship a package and we are to find how much would it cost to ship a package weighing 3.2 lbs.
To find this, we simply need to multiply the unit cost per pound with the weight of the package that is to be shipped.
Total cost to ship 3.2 lbs package = [tex] 3.2 \times 2.69 [/tex] = $8.608
Identify the domain of the function shown in the graph.
For this case, we find the equation of the line, for this we look for points where the line passes:
[tex](x1, y1) = (- 2,0)\\(x2, y2) = (- 10, -4)[/tex]
We found the slope:
[tex]m = \frac {y2-y1} {x2-x1} = \frac {-4-0} {- 10 - (- 2)} = \frac {-4} {- 10 + 2} = \frac {- 4} {- 8} = \frac {1} {2}[/tex]
Thus, the equation of the line is:
[tex]y = \frac {1} {2} x + b[/tex]
We substitute a point to find "b":
[tex]0 = \frac {1} {2} (- 2) + b\\0 = -1 + b\\b = 1[/tex]
Finally:
[tex]y = \frac {1} {2} x + 1[/tex]
Now, the domain is given by all the values for which the function is defined.
It is observed that "x" can take any value, that is, it is defined for all real numbers.
Answer:
Option A
Find the area of a triangle when A=22 B=105 and B=14
Answer:
a.30.4 units²
Step-by-step explanation:
Using the triangle attached, we can find the angle at C which is 180-(22+105)=53°
Then we use the sine rule to find the value of side c.
14/sin105=c/sin53
c=(14/sin105)× sin53
c=11.575
We can now use the sine formula to find the area of the triangle. A=(1/2)absin∅
A= (1/2)×14×11.575sin22
A=30.4
Answer:
30.4
Step-by-step explanation:
Correct on edg2020
manufacturer tests 1200 computers and finds that 9 of them have defects. Find the probability that a computer chosen at random has a defect. Round your answer to the nearest hundredth. Predict the number of computers with defects in a shipment of 15,000 computers. Round your answer to the nearest whole number.
Answer:
0.01.
113.
Step-by-step explanation:
Probability of a defect = 9/1200
= 0.0075
= 0.01 to the nearest hundredth.
Prediction of number of defects in 15,000 computers
= 15,000 * 0.0075
= 113.
The probability of choosing defective computers is 0.01 and the number of predictions is 113.
What is probability?Probability is defined as the ratio of the number of favorable outcomes to the total number of outcomes in other words the probability is the number that shows the happening of the event.
Probability = Number of favorable outcomes / Number of samples
Given that manufacturer tests 1200 computers and finds that 9 of them have defects. Find the probability that a computer chosen at random has a defect.
The probability will be calculated as,
Probability of a defect = 9/1200
= 0.0075
= 0.01 to the nearest hundredth.
Prediction of the number of defects in 15,000 computers
= 15,000 * 0.0075
= 113.
To know more about probability follow
https://brainly.com/question/24756209
#SPJ5
Identify the area of the kite. Please help!!
Answer:
[tex]\large\boxed{A=480\ m^2}[/tex]
Step-by-step explanation:
The formula of an area of a kite:
[tex]A=\dfrac{d_1d_2}{2}[/tex]
d₁, d₂ - diagonal
Look at the picture.
Use the Pythagorean theorem.
[tex]x^2+5^2=13^2[/tex]
[tex]x^2+25=169[/tex] subtract 25 from both sides
[tex]x^2=144\to x=\sqrt{144}\\\\x=12\ m[/tex]
Therefore d₁ = (2)(12 m) = 24 m.
[tex]y^2+12^2=37^2[/tex]
[tex]y^2+144=1369[/tex] subtract 144 from both sides
[tex]y^2=1225\to y=\sqrt{1225}\\\\y=35\ m[/tex]
Therefore d₂ = 5 + 35 = 40 m.
Substitute:
[tex]A=\dfrac{(24)(40)}{2}=(24)(20)=480\ m^2[/tex]
(1 point) Suppose F⃗ (x,y)=−yi⃗ +xj⃗ F→(x,y)=−yi→+xj→ and CC is the line segment from point P=(4,0)P=(4,0) to Q=(0,5)Q=(0,5). (a) Find a vector parametric equation r⃗ (t)r→(t) for the line segment CC so that points PP and QQ correspond to t=0t=0 and t=1t=1, respectively. r⃗ (t)=r→(t)= <4,0>+t<-4,5> (b) Using the parametrization in part (a), the line integral of F⃗ F→ along CC is ∫CF⃗ ⋅dr⃗ =∫baF⃗ (r⃗ (t))⋅r⃗ ′(t)dt=∫ba∫CF→⋅dr→=∫abF→(r→(t))⋅r→′(t)dt=∫ab 20 dtdt with limits of integration a=a= 0 and b=b= 1 (c) Evaluate the line integral in part (b). 20 (d) What is the line integral of F⃗ F→ around the clockwise-oriented triangle with corners at the origin, PP, and QQ
The vector parametric equation for the line segment CC is <4,0> + t<-4,5>. The line integral of F⃗ along CC is 20. The line integral of F⃗ around the clockwise-oriented triangle with corners at the origin, P, and Q cannot be determined without additional information.
Explanation:(a) To find a vector parametric equation for the line segment CC, we can use the points P=(4,0) and Q=(0,5). We can represent the line segment CC as r(t) = <4,0> + t<-4,5>, where t is the parameter. This equation represents the line segment from P to Q, with t=0 corresponding to P and t=1 corresponding to Q.
(b) Using the parametrization in part (a), we can evaluate the line integral of F⃗ along CC. The line integral is given by ∫CF⃗ ⋅ dr⃗ = ∫baF⃗ (r⃗ (t))⋅r⃗ ′(t)dt. In this case, the line integral is ∫01-5yi⃗ +4xj⃗⋅-4i⃗ +5j⃗ dt
(c) Evaluating the line integral from part (b), we get 20.
(d) The line integral of F⃗ around the clockwise-oriented triangle with corners at the origin, P, and Q can be found using the Green's theorem. We can calculate it by subtracting the line integral along CP from the line integral along CQ. However, we would need more information to determine the path from C to the origin.
Please help me with thesw question i will give 10 points
A is the answer to that question
At lunch, 8 friends share 6 sandwiches equally what fraction of a sandwich does each friend get?
Identify the area of the trapezoid. Please help!
Answer:
[tex]\large\boxed{A=46x\ m^2}[/tex]
Step-by-step explanation:
The formula of an area of a trapezoid:
[tex]A=\dfrac{b_1+b_2}{2}\cdot h[/tex]
b₁, b₂ - bases
h - height
We have
b₁ = 12m , b₂ = 6.4 m, h = 5x m.
Substitute:
[tex]A=\dfrac{12+6.4}{2}\cdot5x=\dfrac{18.4}{2}\cdot5x=9.2\cdot5x=46x[/tex]
The correct option is a) [tex]\large\boxed{A=46x\ m^2}[/tex]
The formula of an area of a trapezoid:
[tex]A=(b_1+b_2)/(2)\cdot h[/tex]
b₁, b₂ - bases
h - height
We have
b₁ = 12m , b₂ = 6.4 m, h = 5x m.
Substitute:
[tex]A=(12+6.4)/(2)\cdot5x=(18.4)/(2)\cdot5x=9.2\cdot5x=46x[/tex]
On a number line, what is the distance between ?17 and 9? A) -26 B) -8 C) 8 D) 26 Submit
Answer:
c) 8
Step-by-step explanation:
its C. because 17-9=8.
If you double a number and then add 8, you get fourteen more than the original number. What is the original number?
Answer: 6
Step-by-step explanation: The formula to solve this is 2x + 8 = x + 14
First, you need to subtract x from each side:
X + 8 = 14
Next, subtract 8 from each side:
X = 6
Final answer:
To find the original number, we can solve the equation 2x + 8 = 14 + x.
Explanation:
To solve this problem, let's represent the original number as 'x'.
If you double the number, it becomes 2x. If you then add 8 to it, the equation becomes: 2x + 8 = 14 + x.
To isolate 'x' on one side of the equation, we subtract 'x' from both sides: 2x - x = 14 - 8.
This simplifies to: x = 6.
So, the original number is 6.
The domain of f(x) is the set of all numbers greater than or equal to 0 and then less than or equal to 2
It means f(x) has a set of numbers from 0-2
i.e, 0,1,2
Find the following measure for this figure.
Slant height =
15.6 units
13 units
2√(11) units
Answer: second option.
Step-by-step explanation:
Let's represent the slant height of the figure with: [tex]l[/tex]
Then, to find the value of the slant height you must apply the Pythagorean Theorem, where:
[tex]l[/tex] is the hypotenuse and the other legs are 12 units and 5 units ([tex]\frac{10units}{2}=5units[/tex])
Therefore, you obtain that the slant height of the figure is the shown below:
[tex]l=\sqrt{(5units)^2+(12units)^2}\\l=13units[/tex]
Answer:
The correct answer is Slant height =13 units
Step-by-step explanation:
From the figure we can see a square pyramid
Points to remember
Hypotenuse² = Base² + Height²
To find the slant height
Fro figure we can see a right angles triangle with,
Base = 10/2 = 5 units and Height = 12 units
We have to find Hypotenuse (Slant height)
Hypotenuse² = Base² + Height²
Slant height² = 5² + 12² = 25 + 144 = 169
Slant height = √169 = 13 units
Therefore the slant height = 13 units