Kevin is solving this problem. 737 × 205 What are the partial products Kevin will need to solve the problem? A. 3,685 and 147,400 B. 3,685 and 14,740 C. 3,685 and 1,474 D. 3,685 and 7,370 and 147,400

Answers

Answer 1

the answer is A

700 x 5 = 3500

30 x 5 = 150

7 x 5 = 35

3500 + 150 +35 = 3685

700 x 200 = 140,000

30 x 200 = 6000

7 x 200 = 1400

140000 + 6000 + 1400 = 147400


Related Questions

Zooey predicts the movie will be 90 minutes long. If the movie actually is 102 minutes long, what is Zooey's percent error? Round your answer to the nearest tenth of a percent.

Answers

102 - 90 = 12
12 / 102 = 0.1176 = 11.76 rounds to 11.8% <==
%error=100(prediction-actual)/actual

%error=100(90-102)/102

%error≈ -11.8%

Now the negative sign indicates that she underestimated the length of he movie by 11.8%, but technically the percent error is an absolute value so it is just 11.8% error.

what is the answer ?

Answers

The system of inequalities is the following:

i) y ≤ –0.75x
ii)y ≤ 3x – 2

since [tex]0.75= \frac{75}{100}= \frac{3}{4} [/tex], we can write the system again as 

[tex]i) y \leq - \frac{3}{4}x [/tex]
[tex]ii) y \leq 3x-2[/tex]

Whenever we are asked to sketch the solution of a system of linear  inequalities, we:

1. Draw the lines
2. Color the regions of the inequalities.
3. The solution is the region colored twice.


A.

to draw the line [tex] y =- \frac{3}{4}x[/tex]

consider the points: (-4, 1) and (0, 0), or any 2 other points (x,y) for which [tex] y =- \frac{3}{4}x[/tex] hold.

since we have an "smaller or equal to" inequality, the line is a solid line (not dashed, or dotted).

In order to find out which region of the line to color, consider a point not on the line, for example P(1, 1), which is clearly in the upper region of the line.

For (x, y)=(1, 1) the inequality [tex]y \leq - \frac{3}{4}x[/tex], does not hold because 

[tex]1 \leq - \frac{3}{4}*1= -\frac{3}{4} [/tex] is not true,

this means that the solution is the region of the line not containing (1, 1), as shown in picture 1.


B.
similarly, to draw the solution of inequality ii) y ≤ 3x – 2, 

we first draw the line y=3x-2, using the points (0, -2) and (2, 4), or any other 2 points (x,y) for which y=3x-2 holds.

after we draw the line, we can check the point P(1, 7) which clearly is above the line y=3x-2.

for (x, y) = (1, 7), the inequality y ≤ 3x – 2 does not hold

because 7 is not ≤ 3*1-2=1, so the region we color is the one not containing P(1, 7), as shown in picture 2.


The solution of the system is the region colored with both colors, the solid lines included. Check picture 3.

the lines intersect at (0.533, -0.4) because:

–0.75x=3x-2
-0.75x-3x=-2
-3.75x=-2, that is x= -2/(-3.75)=0.533

for x=0.533, y=3x-2=3(0.533)-2=-0.4

Answer: Picture 3, the half-lines included. So the graph is in the 3rd and 4th Quadrants

A man divided $9,000 among his wife, son, and daughter. The wife received twice as much as the daughter, and the son received $1,000 more than the daughter. How much did each receive?

If x is the amount the wife received, then which of the following expressions represents the amount received by the son?

Answers

your answer is A. x/2+1000

the mother recieved $4000 and the son recieved $3000, $4000/2 equals $2000, $2000 plus $1000 equals $3000 

Answer:

Step-by-step explanation:

A man divided $9,000 among his wife, son and daughter.

The wife received twice as much as the daughter.

Let the daughter received d amount.

Then the wife received = 2d

and son received $1,000 more than the daughter.

The son received the amount = 1000+d

So the expression will be = d + 2d +(1000+d) = 9,000

3d + (1000+d) = 9000

4d = 9000 - 1000

4d = 8000

d =  [tex]\frac{8000}{4}[/tex]

d = 2000

Daughter received $2,000

Wife received 2d = 2 × 2000 = $4,000

Son received 1000 + d = 1000 + 2000 = $3,000

If x is the amount the wife received, then the expression represents the amount received by the son :

S = 1000 + (x/2)

can someone solve this for me

Answers

[tex]b^2+35^2=40^2\\ b^2+1225=1600\\ b^2=375\\ b=\sqrt{375}\approx19.4[/tex]
a^2 + b^2 = c^2

35^2 + b^2 = 40^2

1225 + b^2 = 1600
-1225 -1225
b^2 = 375

b = 19.36

So your answer will be 19.4

A ball is thrown vertically upward. After t seconds, its height h (in feet) is given by the function h(t)= 120t-16t^2 . What is the maximum height that the ball will reach? Do not round

Answers

There are many ways to solve this, but if we ignore calculus and derivations from physics motions under constant acceleration, we can either find the midpoint of the two zeros of the function or we can more directly view the maximum height if we translate the quadratic into vertex form.  Personally the easiest way for simple quadratics like this is to find the midpoint of the two zeros of the function...

h(t)=120t-16t^2, h(t)=0 when

16t^2-120t=0

4t(4t-30)=0  so the two zeros are when t=0 and 30/4

t=0 and 7.5

So the midpoint is 7.5/2=3.75

h(3.75)=-16t^2+120t-225 ft

Now if we did do the vertex form, which is important because it shows a general solution for all quadratics vertexes, which are the maximum/minimum points for all parabolas.

It is useful to commit to memory that the vertex, ie minimum/maximum point for all quadratics of the form ax^2+bx+c=y is:

(-b/(2a),  (4ac-b^2)/(4a))  Again, this is very important as it is an absolute minimum/maximum, ie vertex for all parabolas...

In this case we are only concerned with the maximum height, or the y coordinate of the vertex, which is

(4ac-b^2)/(4a) which is in this instance (0-120^2)/(-64)=225 ft

The answer is: 225.

To find the maximum height that the ball will reach, we need to determine the vertex of the parabola described by the function [tex]\( h(t) = 120t - 16t^2 \)[/tex]. The vertex form of a parabola is[tex]\( h(t) = a(t - h)^2 + k \)[/tex], where [tex]\( (h, k) \)[/tex] is the vertex of the parabola. The value of [tex]\( k \)[/tex] will give us the maximum height.

The given function can be rewritten in the form [tex]\( h(t) = -16(t^2 - \frac{120}{16}t) \)[/tex]. To complete the square, we take the coefficient of [tex]\( t \)[/tex], divide it by 2, and square it. This value is then added and subtracted inside the parentheses:

[tex]\( h(t) = -16(t^2 - \frac{120}{16}t + (\frac{120}{32})^2 - (\frac{120}{32})^2) \)[/tex]

[tex]\( h(t) = -16((t - \frac{120}{32})^2 - (\frac{120}{32})^2) \)[/tex]

Now, we expand the squared term and multiply through by -16:

[tex]\( h(t) = -16(t - \frac{120}{32})^2 + 16(\frac{120}{32})^2 \)[/tex]

[tex]\( h(t) = -16(t - 3.75)^2 + 16(3.75)^2 \)[/tex]

The maximum height [tex]\( k \)[/tex] is the constant term when the equation is in vertex form:

[tex]\( k = 16(3.75)^2 \)[/tex]

[tex]\( k = 16 \times 14.0625 \)[/tex]

[tex]\( k = 225 \)[/tex]

Therefore, the maximum height that the ball will reach is 225 feet.

Write as a single power: 4​^20​ + 4​^20​ + 4^​20​ + 4^​20

Answers

Sorry, I misinterpreted the question before.\\\\ 4^20+4^20+4^20+4^20 \\\\ 4(4^20)\\\\ 4^21\\\\

Which of the following is the radical expression of a to the four ninths power

Answers

Answer:

[tex]\sqrt[9]{a^{4}}[/tex]

Step-by-step explanation:

To convert a fraction form into a radical form you need to know that the denominator will be the root index and the numerator will be the exponent into the root. For the case of four ninths:

[tex]a^{\frac{4}{9}} = \sqrt[9]{a^{4}} .[/tex]

A certain recipe requires 458 cups of flour and 659 cups of sugar. a) If 3/8 of the recipe is to be made, how much sugar is needed?

If the above ingredients are required for one batch, find the amount of flour needed for a double batch.

Answers

a) To make 3/8 of the recipe calculate 3/8 of each ingredient.

This is how to do it:

Flour: 458 cups * 3/8 = 3* 458 / 8 cups = 3*229/4 cups = 687/4 cups = 171.75 cups = 171 and 3/4 cups

Sugar: 659 cups * 3/8 = 3*659 / 8 = 1977 / 8 cups = 247.125 cups = 247 and 1/8 cup.

For a double batch multiply all the ingredients by 2:

Flour: [687 /4] * 2 = 687/2 = 343.5 cups = 343 and 1/2 cups

Sugar: [1977/8]*2 = 1977/4 = 494.25 cups = 494 and 1/4 cups.

Write the equation in spherical coordinates. 3x + 2y + 3z = 1

Answers

[tex]\begin{cases}x=\rho\cos\theta\sin\varphi\\y=\rho\sin\theta\sin\varphi\\z=\cos\varphi\end{cases}[/tex]

[tex]3x+2y+3z=1[/tex]
[tex]\implies3\rho\cos\theta\sin\varphi+2\rho\sin\theta\sin\varphi+3\rho\cos\varphi=1[/tex]
[tex]\implies\rho=\dfrac1{(3\cos\theta+2\sin\theta)\sin\varphi+3\cos\varphi}[/tex]

If (f + g)(x) = 3x2 + 2x – 1 and g(x) = 2x – 2, what is f(x)?

Answers

F(x)= 3x^2+1

I'm taking that 3x2 equals 3x^2

Evaluate the integral below, where e lies between the spheres x2 + y2 + z2 = 9 and x2 + y2 + z2 = 25 in the first octant.

Answers

The student's question involves integrating a function in a region bounded by two spheres in the first octant, implying the use of spherical coordinates and integration over a sphere with a constant radius.

The question pertains to evaluating an integral within the region bounded by two spheres in the first octant. When dealing with spheres and integrals, the use of spherical coordinates is often beneficial. The question suggests using spheres with a constant radius and spherical coordinates (r, θ, φ), where a typical point in space is represented as (r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)). To integrate over the sphere, we consider the bounds given by the radii of the inner and outer spheres, (r = 3 and r = 5, respectively, since the square roots of 9 and 25 are 3 and 5), and the fact that it is within the first octant which further restricts the limits of θ and φ. The rest of the provided excerpts seem to be unrelated specifically to this problem but are examples of standard integrals and applications of integration in physics and potential theory.

The final answer after evaluating the integral is: [tex]\[\frac{49\pi}{3}\][/tex]. This is the value of the integral over the region between the spheres [tex]\( x^2 + y^2 + z^2 = 9 \) and \( x^2 + y^2 + z^2 = 25 \)[/tex] in the first octant.

To evaluate the given integral over the region between the spheres [tex]\( x^2 + y^2 + z^2 = 9 \)[/tex]and [tex]\( x^2 + y^2 + z^2 = 25 \)[/tex]  in the first octant, we can use spherical coordinates. In spherical coordinates, the volume element is given by [tex]\( r^2 \sin(\phi) \, dr \, d\theta \, d\phi \),[/tex] where r is the radial distance, [tex]\( \theta \)[/tex] is the azimuthal angle, and [tex]\( \phi \)[/tex] is the polar angle.

The limits for the integral are as follows:

[tex]- \( 3 \leq r \leq 5 \) (limits of the radii for the spheres)\\- \( 0 \leq \theta \leq \frac{\pi}{2} \) (first octant)\\- \( 0 \leq \phi \leq \frac{\pi}{2} \) (first octant)[/tex]

The integral to evaluate is not specified, so let's assume it's a simple function like \( f(x, y, z) = 1 \) for the sake of demonstration. The integral would then be:

[tex]\[\iiint_E 1 \, dV = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{3}^{5} r^2 \sin(\phi) \, dr \, d\theta \, d\phi\][/tex]

Now, let's evaluate this integral step by step:

[tex]\[\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{3}^{5} r^2 \sin(\phi) \, dr \, d\theta \, d\phi\][/tex]

[tex]\[= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \left[ \frac{1}{3} r^3 \sin(\phi) \right]_{3}^{5} \, d\theta \, d\phi\][/tex]

[tex]\[= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \left( \frac{125}{3} - \frac{27}{3} \right) \sin(\phi) \, d\theta \, d\phi\][/tex]

[tex]\[= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{98}{3} \sin(\phi) \, d\theta \, d\phi\][/tex]

[tex]\[= \int_{0}^{\frac{\pi}{2}} \left[ \frac{98}{3} \theta \right]_{0}^{\frac{\pi}{2}} \, d\phi\][/tex]

[tex]\[= \int_{0}^{\frac{\pi}{2}} \frac{98}{3} \cdot \frac{\pi}{2} \, d\phi\][/tex]

[tex]\[= \frac{98\pi}{6}\][/tex]

[tex]\[= \frac{49\pi}{3}\][/tex]

So, the value of the integral over the specified region is[tex]\( \frac{49\pi}{3} \).[/tex]

Simplify Negative 3 over 2 ÷ 9 over 6.

Answers

1 because you can simply switch the numerator and the denominator when dividing.
3/2 divided by 9/6 is 3/2 X 6/9 = 18/18 which simplifies to 1.

Five individuals, including a and b, take seats around a circular table in a completely random fashion. suppose the seats are numbered 1, . . . , 5. let x = a's seat number and y = b's seat number. if a sends a written message around the table to b in the direction in which they are closest, how many individuals (including a and
b.would you expect to handle the message?

Answers

Will use A and B in place of a and b for clarity.
Let x=number of individuals away from A, including A & B

Without loss of generality, assume A is seated in seat #1.

Then B is seated at 2,3,4,5 with equal probability.
Half of the time B is seated at 2 or 5, each of which is next to A, therefore x=2
The other half of the time B is seated at 3 or 4, each of which is separated from A by one seat, then x=3.

The expected number of individuals
E[X]=sum (x*P(x))
=2*(1/2)+3(1/2)
=2.5

So the expected number of individuals to handle the message is 2.5.

The number of  individuals you would expect to handle the message is 2.5.

Joint probability distribution

Let Z represent the number of individuals that handle the message

Table for the possible joint value of X and Y

Z                       Y

                         1          2          3            4         5  

X         1             -          2           3            3         2

          2           2         -           2            3         3

          3           3         2           -             2         3

           4           3         3           2            -          2

           5            2         3           3           2          -

Each cell contain=1/4×1/5=1/20

Hence:

Number of individual=10×2×1/20+10×3×1/20

Number of individual=20×0.05+30×0.05

Number of individual=2.5

Therefore the number of  individuals you would expect to handle the message is 2.5.

Learn more about Joint probability distribution here:https://brainly.com/question/17279418

#SPJ6

The sum of a number and -20 is 40.What is the number?

Answers

sum means addition

 so x +-20 = 40

x = 40 +20 = 60

x=60


is 5.21 a rational number

Answers

yes; since 9 over 10 is 0.9 as a decimal, 5 and then 21 over 100 is 5.21 as a decimal.

The scores on an exam are normally distributed, with a mean of 74 and a standard deviation of 7. What percent of the scores are less than 81?

Answers

Mean = 74
Standard deviation = 7

For 81%, the Z-score is
Z=(X-mean)/(standard deviation)
=(81-74)/7
=1

So look up table of normal distribution for
P(Z<1)=0.8413
=>
On average, 84% of scores are less than 81.

Rewrite with only sin x and cos x. cos 3x

Answers

[tex]\cos (3x)=4\cos^3 x-3\cos x[/tex]

One custodian cleans a suite of offices in 3 hrs. When a second worker is asked to join the regular custodian, the job takes only 2 hours. How long does it take the second worker to do the same job alone?

Answers

The regular custodian's cleaning rate is 1/3 suites per hour. The combined cleaning rate is 1/2 suites per hour. The combined cleaning rate is (rate 1) + (rate 2) = 1/2 rate 2 = 1/2 - 1/3 = 3/6 - 2/6 = 1/6 The second worker's rate is 1/6 suites per hour. Therefore, the second worker can do the same job alone in 6 hours.

Help.. :)

Which equation is not equivalent to the formula e = mc?
m equals e over c
c equals e over m
e = cm
m equals c over e
Please help THANKS!

Answers

m equals c over e is not equal to e=mc


Answer with Step-by-step explanation:

we are given a equation:

e=mc

We have to find which equation is not equivalent to the above formula.

e=mc

Dividing both sides by c,we get

m=e/c

i.e. m equals e over c

e=mc

Dividing both sides by m,we get

c=e/m

i.e. c equals e over m

e=mc=cmBut m is not equal to c over e

Hence, The equation which is not equivalent to e=mc is:

m equals c over e

Let f(x) = -20x2 + 14x + 12 and g(x) =5x-6 Find f/g and state its domain a. 5x - 6; all real numbers except x =6/5 b. 5x - 6; all real numbers c. –4x – 2; all real numbers except x =6/5 d. –4x – 2; all real numbers

Answers

Final answer:

To find f/g, divide each term in f(x) by g(x). Resulting in f(x)/g(x) = -4x - 2 with the domain being all real numbers except x = 6/5. Hence, the correct answer is c. -4x - 2; all real numbers except x = 6/5.

Explanation:

To find the function f/g, we divide the function f(x) by g(x). Given f(x) = -20x2 + 14x + 12 and g(x) = 5x - 6, we divide these to get:

f(x)/g(x) = (-20x2 + 14x + 12) / (5x - 6)

Dividing each term in f(x) by g(x):

f(x)/g(x) = -4x - 2

The domain of this function would be all real numbers except where g(x) = 0, since we cannot divide by zero. g(x) = 0 when x = 6/5. Thus, the domain is all real numbers except x = 6/5.

The correct answer to the student's question is therefore c. -4x - 2; all real numbers except x = 6/5.

Find the taylor polynomial t3(x) for the function f centered at the number
a. f(x) = eâ4xsin(2x), a = 0

Answers

[tex]e^{-4x}=\displaystyle\sum_{n=0}^\infty\frac{(-4x)^n}{n!}=1+(-4x)+\dfrac{(-4x)^2}2+\dfrac{(-4x)^3}6+\cdots[/tex]
[tex]e^{-4x}=1-4x+8x^2-\dfrac{32x^3}3+\cdots[/tex]

[tex]\sin2x=\displaystyle\sum_{n=0}^{\infty}\frac{(-1)^k(2x)^{2k+1}}{(2k+1)!}=(2x)-\dfrac{(2x)^3}6+\cdots[/tex]
[tex]\sin2x=2x-\dfrac{4x^3}3+\cdots[/tex]

[tex]e^{-4x}\sin2x=\left(1-4x+8x^2-\dfrac{32x^3}3+\cdots\right)\left(2x-\dfrac{4x^3}3+\cdots\right)[/tex]
[tex]e^{-4x}\sin2x=2x-8x^2+\dfrac{44x^3}3+\cdots[/tex]

[tex]\implies T_3(x)=2x-8x^2+\dfrac{44x^3}3[/tex]

The Taylor polynomial [tex]T_3(x)[/tex] will be written as [tex]2x-8x^2+\dfrac{44x^3}{3}+......[/tex].

Given:

The given function is [tex]f(x) = e^{-4x}sin(2x)[/tex].

It is required to find the Tylor polynomial [tex]t_3(x)[/tex] centered at a=0.

Now, the expansion of the function [tex]e^{-4x}[/tex] can be written as,

[tex]e^{-4x}=\sum\dfrac{(-4x)^n}{n!}\\e^{-4x}=1+(-4x)^1+\dfrac{(-4x)^2}{2!}+\dfrac{(-4x)^3}{3!}+.....\\e^{-4x}=1-4x+\dfrac{16x^2}{2}-\dfrac{64x^3}{6}+.....\\e^{-4x}=1-4x+8x^2-\dfrac{32x^3}{3}+.....[/tex]

Similarly, the expansion of the function [tex]sin(2x)[/tex] will be,

[tex]sin(2x)=\sum\dfrac{(-1)^n(2x)^{2n+1}}{(2n+1)!}\\=\dfrac{2x}{1!}+\dfrac{-(2x)^3}{3!}+.....\\=2x-\dfrac{4x^3}{3}+......[/tex]

So, the function [tex]f(x) = e^{-4x}sin(2x)[/tex] will be written as,

[tex]f(x) = e^{-4x}sin(2x)\\f(x)=(1-4x+8x^2-\dfrac{32x^3}{3}+.....)(2x-\dfrac{4x^3}{3}+......)\\f(x)=2x-8x^2+16x^3-\dfrac{4x^3}{3}+.......\\f(x)=2x-8x^2+\dfrac{(48-4)x^3}{3}+......\\f(x)=2x-8x^2+\dfrac{44x^3}{3}+......[/tex]

Therefore, the Taylor polynomial [tex]T_3(x)[/tex] will be written as [tex]2x-8x^2+\dfrac{44x^3}{3}+......[/tex].

For more details, refer to the llink:

https://brainly.com/question/15739221

What is the property of 16+31=31

Answers

We have the equation here is

16 + 31 = 31

When we simplify the equation to the understandable form, we move all terms or numbers to right and on left side zero will be left.

0 = 31-16-31

We get, 0 = -16

Now we see that both sides of equations are not equal, it means there is no solution so it is an invalid equation.

Rs = 8y + 4 , ST = 4y + 8 , and RT = 36 , find the value of y

Answers

I assume that you meant RS and ST are segments of RT.  If that is true then:

RS+ST=RT, using the values for these given...

8y+4+4y+8=36  combine like terms on left side

12y+12=36  subtract 12 from both sides

12y=24  divide both sides by 12

y=2

The probability that an archer hits a target on a given shot is .7 if five shots are fired find the probability that the archer hits the target on three shots out of the five.

Answers

This is a problem in "binomial probability."  Either the archer hits his target or he does not.  This experiment is performed 5 times (so that n=5), and the probability that the archer will hit the target is 0.7 (so that p=0.7).

We need to find the binomial probability that x=3 when the possible outcomes are {0, 1, 2, 3, 4, 5}.

You could use a table of binomial probabilities to evaluate the following:

P(5, 0.7, 3).

Alternatively, you could use a TI-83 or TI-84 calculator and its built-in "binompdf(  " function.

I evaluated binompdf(5,0.7,3) and obtained the result 0.309.


The probability that the archer hits the target on exactly three out of five shots is 0.3087, or 30.87%, calculated by using the binomial probability formula.

The probability that an archer hits a target on a given shot is 0.7 and the goal is to calculate the probability that the archer hits the target on exactly three out of five shots. This is a binomial probability problem, as each shot can end in either a success (hitting the target) with a probability of 0.7, or a failure (missing the target) with a probability of 0.3.

To calculate the probability of exactly three successes (hits) out of five, we use the binomial probability formula:

P(X=k) = (n choose k) * (p)^k * (1-p)^(n-k)

Where:

n = total number of trials (5 shots)

k = number of successes (3 hits)

p = probability of success on a single trial (0.7)

Applying the formula, we get:

P(3 hits out of 5) = (5 choose 3) * (0.7)^3 * (0.3)^2

= 10 * (0.343) * (0.09)

= 10 * 0.03087

= 0.3087

Therefore, the probability that the archer hits the target on exactly three out of five shots is 0.3087, or 30.87%.

What is the answer to this question?

Answers

9/12= 0.75

8.00 * 0.75 = 6.00

 the 9" costs $6.00

A local carpet company has been hired to carpet a planetarium which is in the shape of a circle. If the radius of the planetarium is six yards, and the cost of the carpet is $14 per square yard, find the total cost to carpet the planetarium.

Answers

The cost of the carpet will be given by:
cost=[area of the carpet]*[price per yard]
area of the carpet will be given by:
area=πr^2
=π*6^2
=113.1 square yards
thus the cost of the carpet will be:
113.1*14
=$1,583.4

What is the value of x in the equation below?

1+2e^x+1=9

Answers

I am sure the correct answer is x=0.38629436…hope this help you

Answer:

X = In4-1    C on edge, just took the test

You take a three-question true or false quiz. You guess on all the questions. What is the probability that you will get a perfect score?

Answers

It would be 1/8. 2 to the third is 8, and all three answers correct is one option.
these are all independent events being that answering one question does not effect the other questions. Each question can be either true or false....so the probability of getting 1 correct is 1/2.

the probability of getting them all correct is : 1/2 * 1/2 * 1/2 = 1/8 <=

what does it mean to say that's data point has a residual of 0

Answers

The point lies directly on the regression line (Apex)

Answer:

The correct answer is “the point lies directly on the regression line”

Step-by-step explanation:

When you do a regression analysis, then you get a line of regression that best fits it. The data points usually tend to fall in the regression line, but they do not precisely fall there but around it. A residual is the vertical distance between a data point and the regression line. Every single one of the data points had one residual. If one of this residual is equal to zero, then it means that the regression line truly passes through the point.  

Assume that y varies inversely with x

Answers

y = k/x

7=k/-2

k = 7/-2 = -3.5

y =-3.5/7 =-0.5

y=-0.5

Other Questions
in the system shown below, what are the coordinates of the solution that lies in quadrant I? x^2-y^2=25, x+y=25 Find the measure of each interior angle and each exterior angle of the following regular polygons. Show your work Which energy conversion occurs in a battery-powered flashlight? When identifying risks, which domain is an example of insurance denial of care and billing and collections:? Of children who drown, a significant number were under some form of supervision, but drowned when left unattended for only a brief time. what is the percentage who drown under these circumstances Both petroleum and coal are made up of complex carbon-based molecules, and both originated with living creatures of some kind. Both are vital sources of energy for the modern world and both were formed by geologic processes over millions of years. However, petroleum was mainly formed from the remains of ocean-dwelling microorganisms. Coal, on the other hand, originated from decayed vegetation in ancient swamps and bogs. In any case, it took millions of years for both coal and oil to be produced. This is the case because it took that much time for overlying sediments to produce the unimaginable heat and pressure that would one day allow us to harvest these energy resources. This passage uses a combination of comparison and contrast and A. cause and effect. B. examples and explanations. C. supporting details. D. chronological order Increased secretion of aldosterone would result in a(n) ______________ of blood ____________? increase, potassium decrease, volume increase, calcium levels decrease, ph increase, sodium Write out a short conversation in Spanish between two people who are meeting each other for the first time. Each person needs to say at least three lines. Greg is trying to solve a puzzle where he has to figure out two numbers, x and y. Three less than two-third of x is greater than or equal to y. Also, the sum of y and two-third of x is less than 4. Which graph represents the possible solutions? in the figure below, angle y and angle x form vertical angles. Angle y forms a straight line with 80 degrees angle and the 60 degree angle. write and solve the equation to determine the measure of angle x Given how the process of evolution appears to occur, how might concepts presented in this unit be used to help predict how any given organism might evolve in the future? How might this knowledge lead to human intervention, positive or negative, in that organisms natural evolutionary process? A cluster of symptoms that regularly occur together is known as a: What conclusion would be most appropriate about the genetic variation between humans and the 3 apes as illustrated by the phylogenetic tree Nicotine, a substance found in cigarettes, causes blood vessels to constrict. What effect might prolonged smoking have on the body? A. Decreased heart rate B.Decreased heart strength C.High blood pressure D. High blood volume Who was Phillis WheatleyA) an African American slaveB) one of the first women to own slavesC) one of the first female puritans preachersD) a leader of the Massachusetts bay colony What is the length of CF? look at image attached The ________ approach to the study of personality came about in reaction to the dominance of western approaches to the study of personality in non-western settings. A website has 826,140 hits what is the value of the 8 in 826,140 Which of the following lists accurately describes the major motivations for European exploration during the 15th and 16th centuries Jeremiah is asked to write the equation of an ellipse. He is given one vertex along the major axis and the location of the center. He realizes he does not have enough information to write the equation. He asks his teacher for one additional piece of information. What information could Jeremiah ask for to help him write the equation? Check all that apply.-the location of the focus nearest the given vertex-the location of the focus nearest the other vertex-the location of the other vertex along the major axis-the location of one covertex along the minor axis-the location of the directrix nearest the given vertex-the location of the directrix nearest the other vertex-the length of the minor axis Steam Workshop Downloader