Check the picture below.
let's notice that 89/36 => 2 and 17/36, namely 2π or two revolutions and then a bit more, the 17/36 slack, so then -89π/36 = - 2π - 17π/36.
the positive angle will of course be 2π - 17π/36 = 55π/36.
Find the area of the trapezoid.
Answer:
The area of the trapezoid is 90 cm².
I’m not sure how to solve this. Please show how you solve this problem, thank you.
Answer:
Pretend that H is the midpoint of AB, connect O and H
=> OH is the median of ΔOAB
Since we know that OA = OB => ΔOAB is an isosceles triangle
=> OH is also the height of ΔOAB
=> ∠OBA = ∠OAB = (180° - ∠AOB)/2 = (180° - 120°)/2 = 60°/2 = 30°
Now look at ΔOHB (that you create by connecting O and H)
We have:
cos30° = BH/OB
=> BH = cos30° · OB = √3/2 · x = (√3 x)/2
Because we have H as the midpoint of AB, we know that:
AB = 2 · BH = 2 · (√3 x)/2 = √3 x
So the answer is B
How do I plot a decimal on a coordinate plane?
Answer:
To plot a decimal on a coordinate plane you plot it between the two whole numbers its close to.
Step-by-step explanation:
Which points are reflections of each other across both the y-axis
Answer:
Reflect over the y-axis
Step-by-step explanation:
When you reflect a point across the y-axis, the y-coordinate remains the same, but the x-coordinate is transformed into its opposite (its sign is changed).
Notice that B is 5 horizontal units to the right of the y-axis, and B' is 5 horizontal units to the left of the y-axis.
The reflection of the point (x,y) across
the y-axis is the point (-x,y).
a dealer gains the selling price of 10 radio sets by selling 6 sets. what is his profit percentage
How many liters are 21 cups 1 L=4.2 cups 21 cups=
Answer:5 cups
Step-by-step explanation:
21 cups divided by 4.2 is
5L are needed in 21 cups.
What is Unitary Method?The unitary technique involves first determining the value of a single unit, followed by the value of the necessary number of units.
For example, Let's say Ram spends 36 Rs. for a dozen (12) bananas.
12 bananas will set you back 36 Rs. 1 banana costs 36 x 12 = 3 Rupees.
As a result, one banana costs three rupees. Let's say we need to calculate the price of 15 bananas.
This may be done as follows: 15 bananas cost 3 rupees each; 15 units cost 45 rupees.
Given:
1 L= 4.2 Cups
and, for 21 cups = 21/4.2
= 210/42
= 5 L
Hence, 5L are needed in 21 cups.
Learn more about Unitary Method here:
https://brainly.com/question/22056199
#SPJ5
Answer please show steps please
Answer:
25 girls
Step-by-step explanation:
Let
x denote number of boys
and
y denote number of girls
According to the statement that total 45 people came,
x+y = 45 => Eqn 1
And total paid amount was 175
So,
5x + 3y = 175 => Eqn 2
For solving, We will use the substitution method
So, from eqn 1
x = 45-y
Putting value of x in eqn 2
5(45-y) +3y = 175
225 - 5y + 3y = 175
-2y+225 = 175
-2y = 175-225
-2y = -50
2y = 50
y = 25
Putting y =25 in eqn 1
x+25 = 45
x = 45 - 25
x = 20
As y= 25
So, 25 girls came to the dance ..
what is 5/8 + 3/4 divided by -2 /3 - 5/6
[tex]\text{Hey there!}[/tex]
[tex]\frac{5}{4}+\frac{3}{4}\div-\frac{2}{3}\ -\ \frac{5}{6}[/tex]
[tex]\frac{5}{8} +\frac{3}{4}=\frac{11}{8}[/tex]
[tex]\frac{-2}{3}-\frac{5}{6}=\frac{-3}{2}[/tex]
[tex]\text{Problem becomes:}\frac{11}{8}\div\frac{-3}{2}[/tex]
[tex]\frac{11}{8}\div\frac{-3}{2}=\frac{-11}{12}[/tex]
[tex]\boxed{\boxed{\bf{Answer:\frac{-11}{12}}}}\checkmark[/tex]
[tex]\text{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{LoveYourselfFirst:)}[/tex]
Side AB of triangle ABC lies on line k. The equation of line k is y = -2/5x + 8. The coordinates of C are (-10, 15)
True or false
Answer:
True
Step-by-step explanation:
When simplified and written in standard form, which quadratic function is equivalent to the polynomial shown?
2 + 7c – 4c2 – 3c + 4
Final answer:
The quadratic function equivalent to the polynomial 2 + 7c – 4c2 – 3c + 4 when simplified and written in standard form is – 4c2 + 4c + 6.
Explanation:
When you simplify and write the polynomial 2 + 7c – 4c2 – 3c + 4 in standard form, the quadratic function equivalent is – 4c2 + 4c + 6. First, combine like terms by adding the constants and the terms with c. This gives you – 4c2 + (7c – 3c) + (2 + 4), which simplifies to – 4c2 + 4c + 6.
The standard form of a quadratic equation is ax2 + bx + c = 0. In the case of the simplified polynomial, a = -4, b = 4, and c = 6. If needed, you can use the quadratic formula to find the roots of this quadratic equation by substituting these values into the formula.
Jamal simplified the expression √75x^5y^8 where x≥ 0 and y≥0. √75x^5y^8 = √25 times 3 times x^4 times x times y^8 = 5x^2y^2 √3x Which describes the error Jamal made? He should have written the square root of in the answer as , not . He should have written the square root of in the answer as , not . He should have written the 5 inside of the radical in the answer. He should have written the 3 outside of the radical in the answer. Mark this and return
Answer:
He should have written the square root of [tex]y^8[/tex] in the answer as [tex]y^4[/tex], not [tex]y^2[/tex]
Step-by-step explanation:
We need to remember that:
[tex]\sqrt[n]{x^n}=x[/tex]
The Product of powers property states that:
[tex](a^m)(a^n)=a^{(m+n)}[/tex]
The Power of a power a property states that:
[tex](a^m)^n=a^{(mn)}[/tex]
Let's check the procedure made by Jamal to simplify the expression [tex]\sqrt{75x^5y^8 }[/tex] where [tex]x\geq0[/tex] and [tex]y\geq0[/tex]:
[tex]=\sqrt{25*3*x^4*x*y^8}[/tex] (This is correct)
[tex]5x^2y^2\sqrt{3x}[/tex] (Jamal made a mistake)
The correct procedure is:
[tex]=\sqrt{25*3*x^4*x*y^8}[/tex]
[tex]=5x^2y^4\sqrt{3x}[/tex]
Because:
[tex]\sqrt{y^8}=\sqrt{(y^4)^2}=y^4[/tex]
Therefore: He should have written the square root of [tex]y^8[/tex] in the answer as [tex]y^4[/tex], not [tex]y^2[/tex],
Answer:
He should have written the square root of y Superscript 8 in the answer as y Superscript 4, not y squared.
Step-by-step explanation:
its A on Ed
A dolphin jumps from the water at a initial velocity of 16 feet per second the equation h=-8t^2 + 16t models the dolphins height at any given time t what is the maxim height the dolphin jumps
The maximum height that the dolphin jumps is 8 ft.
What is a parabola?A parabola is a planar curve which symmetrical across its vertex.
What is the standard equation of a parabola?The standard equation of a parabola is given by:
y = (x-h)² + k
Where (h, k) is the vertex of the parabola.
The maximum height that the dolphin reaches is the y-coordinate of the vertex of the parabola. We can change the given quadratic equation to standard form as follows:
h = -8t² + 16t
Subtract and add 8:
h = -8t² + 16t - 8 + 8
h = -8 (t² - 2t + 1) + 8
h = -8 (t - 1)² + 8
The negative coefficient outside the square term means that the parabola opens downward. From this standard form, we can see that the vertex of the parabola is (1, 8). This means that the maximum height that the dolphin can reach is 8 ft.
Therefore, we have found that the maximum height the dolphin jumps is 8 ft.
Learn more about parabolas here-https://brainly.com/question/25651698
#SPJ2
Final answer:
The dolphin reaches its maximum height after 2 seconds and jumps 32 feet.
Explanation:
To find the maximum height the dolphin jumps, we need to determine the time it takes for the dolphin to reach its highest point. The equation given is h = -8t^2 + 16t, where h represents the dolphin's height at any given time t. Since the dolphin jumps straight up, its final velocity at the highest point is 0. Setting h = 0 and solving the resulting quadratic equation, we can find the time it takes for the dolphin to reach its maximum height.
Using the equation -8t^2 + 16t = 0, we can factor out -8t to get t(-8t + 16) = 0. This yields two solutions: t = 0 and t = 2. As time cannot be negative, we discard t = 0. Therefore, the dolphin reaches its maximum height after 2 seconds.
To find the maximum height, we substitute t = 2 in the equation h = -8t^2 + 16t. Plugging in the value, we get h = -8(2)^2 + 16(2) = -8(4) + 32 = 0 + 32 = 32 feet. Thus, the maximum height the dolphin jumps is 32 feet.
find the midpoint of the segment with the given endpoints K(-2,-4) and L(-4,6)
[tex]\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ K(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-4})\qquad L(\stackrel{x_2}{-4}~,~\stackrel{y_2}{6}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{-4-2}{2}~~,~~\cfrac{6-4}{2} \right)\implies \left( \cfrac{-6}{2}~~,~~\cfrac{2}{2} \right)\implies (-3~,~1)[/tex]
the answer is...... (-3,1)
What is the solution set of the following equation? 4/5 x2 = 2x - 4/5
Answer:
[tex]x=\frac{1}{2}[/tex] or [tex]x=2[/tex]
Step-by-step explanation:
The given quadratic equation is:
[tex]\frac{4}{5}x^2=2x-\frac{4}{5}[/tex]
We multiply through by 5 to get:
[tex]4x^2=10x-4[/tex]
Rewrite in standard quadratic form;
[tex]4x^2-10x+4=0[/tex]
Or
[tex]2x^2-5x+2=0[/tex]
Split the middle term to get:
[tex]2x^2-4x-x+2=0[/tex]
Factor to get:
[tex]2x(x-2)-1(x-2)=0[/tex]
Factor further to get:
[tex](2x-1)(x-2)=0[/tex]
Either [tex](2x-1)=0[/tex] or [tex](x-2)=0[/tex]
Either [tex]x=\frac{1}{2}[/tex] or [tex]x=2[/tex]
What steps are used to solve this equation? 6f = 48 Complete each statement. First, on both sides of the equation. Next, simplify the equation to determine that the solution of the equation is . Check the solution by substituting for f and simplifying.
Edit: The answers are divide by 6, f = 8, and 8.
Answer:
f=8
Step-by-step explanation:
Given,
6f=48
f=48/6
f=8
Verification:
6*8=48 ✓
Answer:
divide by six
f=8
8
Step-by-step explanation:
i just did the assiment
which graph represents y=square root of x
Answer: b on edge 2020
Step-by-step explanation:
A conference room is in the shape of a rectangle. Its floor has a length of (x − 4) meters and a width of (3x − 1) meters. The expression below represents the area of the floor of the room in square meters:
(x − 4)(3x − 1)
Which of the following simplified expressions represents the area of the floor of the conference room in square meters?
x2 − 13x + 4
3x2 − 13x + 4
3x2 − 11x + 4
x2 − 12x + 4
Answer:
3x^2−13x+4
Step-by-step explanation:
(x−4)(3x−1)
=(x+−4)(3x+−1)
=(x)(3x)+(x)(−1)+(−4)(3x)+(−4)(−1)
=3x^2−x−12x+4
=3x^2−13x+4
Answer:
Option A. 3x² - 13x + 4 is the answer.
Step-by-step explanation:
A conference room is in the shape of a rectangle. Its floor has a length of (x - 4) and width of (3x - 1) meters.
The expression that represents the area of the room is (x - 4)(3x -1) meter²
We further simplify this expression representing the area of the conference room.
(x - 4)(3x -1) = x(3x -1) - 4(3x -1) [Distributive law]
= 3x² - x - 12x + 4
= 3x² - 13x + 4
Option A. 3x² - 13x + 4 is the simplified form of the given expression.
A certain element has a half-life of 69 years. An experiment starts with 1,500 grams of the element. The amount of the element remaining x years after the experiment began can be modeled with the function f(x) = 1,500(2)–x/69. The mathematical domain of the function is all real numbers.
Which statement describes how the reasonable domain compares to the mathematical domain?
1The reasonable domain is restricted to integers.
2The reasonable domain is restricted to positive real numbers.
3The reasonable domain has a minimum value of 1,500.
4The reasonable domain has a maximum value of 1,500.
Answer:
2. The reasonable domain is restricted to positive real numbers.
Step-by-step explanation:
The variable "x" is time in years from when the experiment began. It makes no sense to have negative values of x, as the experiment had not yet begun in negative time.
___
I would include x=0 in the domain, too, though you already know the amount of remaining element at x=0 and don't have to use the function to calculate it.
__
x might be restricted to integers if you're only measuring the remaining amount once a year.
The maximum value of 1500 applies to the *range* of the function, not its domain.
The minimum value of 1500 has nothing to do with anything.
Answer:
B) the reasonable domain is restricted to positive real numbers
Step-by-step explanation:
Find two consecutive odd numbers such that the sum of the first number and one-third of the second number is equal to fifty.
Answer:
37, 39
Step-by-step explanation:
n + 1/3 (n + 2) = 50
Multiply both sides by 3 to cancel out the 1/3:
3n + (n + 2) = 150
Simplify:
4n + 2 = 150
4n = 148
n = 37
n + 2 = 39
Answer:
37 and 39.
Step-by-step explanation:
Let the two odd numbers are x and ( x + 2 ) Then by statement " Sum of the first number and one third of second number is equal to 50."
So equation will be
x + [tex]\frac{1}{3}[/tex] (x+2) = 50
We multiply the equation by 3
3x + ( x+2 ) = 150
3x + x + 2 = 150
4x + 2 = 150
4x = 150 - 2 = 148
x = 37
So numbers are 37 and 39.
The length of a rectangle is one unit less than three times its width. Identify the graph that represents the relationship between the area of the
rectangle, y, and the width of the rectangle,x
Answer:
Answer:
The fourth graph
Step-by-step explanation:
Let x = width
The length is one less than 3 times the width, so length = 3x - 1
So we have a rectangle with length, 3x - 1, and width, x
So the area = y = (3x-1)(x)
So our equation:
y = (3x - 1)*(x)
If we check the x-intercepts, we see that y = 0 when x = 0 and 1/3. The only graph that has (0,0) and (1/3, 0) is the fourth graph, making that one our graph.
Step-by-step explanation:
Find the slope and Y-intercept
[tex]\bf y=\stackrel{\stackrel{m}{\downarrow }}{\cfrac{7}{5}}x\stackrel{\stackrel{b}{\downarrow }}{-3}\impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}\qquad \qquad \cfrac{7}{5};-3[/tex]
The formula y=mx+b which this equation is in shows the slope as m and y-intercept as b. In this situation where m is the fraction 7 over 5 and b is -3. So the slope is 7/5 and the y-intercept is -3
Solve the Equation
5x+15y=10
5x-10y=-40
Answer:
Step-by-step explanation:
-5x + 10 = 15y
(-5(x-2))/15
(-x+2)/3 = y
5x - 10((-x+2)/3)
5x - ((-10x + 20)/3)=-40
5x + (10x-20)/3
15x + 10x - 20 = -120
25x = -100
x = -4
5x + 15y = 10
-20 + 15y = 10
30 = 15y
y = 2
Answer:
x = -4, y = 2Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}5x+15y=10\\5x-10y=-40&\text{change the signs}\end{array}\right\\\underline{+\left\{\begin{array}{ccc}5x+15y=10\\-5x+10y=40\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad\qquad25y=50\qquad\text{divide both sides by 25}\\.\qquad\qquad\boxed{y=2}\\\\\text{Put the value of y to the first equation:}\\\\5x+15(2)=10\\5x+30=10\qquad\text{subtract 30 from both sides}\\5x=-20\qquad\text{divide both sides by 5}\\\boxed{x=-4}[/tex]
It is hard to calculate the volume of a mountain but several estimates put the volume of Mount Everest at around 2,413 cubic kilometers. The Dallas Cowboys Stadium (currently the largest football stadium in the U.S.) has a volume of 140 million cubic feet. How many Cowboy stadiums could fit inside of Mount Everest?
Answer:
About 609,000 Cowboy stadiums could fit inside of Mount Everest
Step-by-step explanation:
we have
The estimate volume of Mount Everest is at around [tex]2,413\ km^{3}[/tex]
The Dallas Cowboys Stadium has a volume of [tex]140,000,000\ ft^{3}[/tex]
step 1
Convert ft³ to km³
we know that
1 km=3,280.84 ft
so
[tex]140,000,000\ ft^{3}=140,000,000*(1/3,280.84)^{3}=0.003964\ km^{3}[/tex]
step 2
To find how many Cowboy stadiums could fit inside of Mount Everest, divide the volume of Mount Everest by the volume of the Dallas Cowboys Stadium
[tex]2,413/0.003964=608,729[/tex]
Round to the nearest Thousands
[tex]608,729=609,000[/tex]
The volume of Mount Everest is about 609,000 times greater than the volume of the Dallas Cowboys Stadium
Approximately 608,570 Dallas Cowboys Stadiums could fit inside the volume of Mount Everest.
Explanation:To answer this question, we first need to convert the volume of Mount Everest and Dallas Cowboys Stadium to the same units. Given that 1 cubic kilometer (km³) is equal to approximately 35.31 billion cubic feet (ft³), so the volume of Mount Everest is approximately 2,413 km³ * 35.31 billion ft³/km³ = 85.199 trillion ft³.
The volume of the Dallas Cowboys Stadium is 140 million ft³. Now, we can find out how many Cowboy stadiums could fit inside of Mount Everest by dividing the volume of Mount Everest by the volume of the stadium.
Mount Everest volume / Dallas Cowboys Stadium volume = 85.199 trillion ft³ / 140 million ft³ = approximately 608,570 Dallas Cowboys Stadiums.
Learn more about Volume Comparison here:https://brainly.com/question/28366744
#SPJ12
img1
Equation: w = 112 + 8t
Which input results in an output of 176?
What is the output in the ordered pair (4, 144)?
The equation
[tex]w=112+8t[/tex]
means that you choose a value for the input variable t, and you compute the correspondent value for the output variable w.
So, if the input is t = 176, the output will be
[tex]w=112+8\cdot 176 = 112+1408 = 1520[/tex]
Similarly, the ordered pair (4, 144) means that if you choose 4 as input, you get 144 as output, in fact you have
[tex]w=112+8\cdot 4= 112+32= 144[/tex]
Answer:
The first one is 8
The second one is 144
Step-by-step explanation:
I just did it on brainly
Help me please? This problem is really not that easy?
Answer:
1. x = 49.10 - 5 divided by 2.10
2. 21 miles
Answer:
X=49.10
21 miles
Step-by-step explanation:
First, you need to divide 2.10 and the $5 . which will give you 4.2.
this has nothing to do with the problem lol.
I would keep on mulitiplying if i were you.
And, once you hit 21 miles, you will get $44.10 and the $5 which will equal 49.10 :).
What is the correct answer for this equation? 6 ÷ 2(1+2) =
Answer:
9
Step-by-step explanation:
6 ÷ 2(1+2)
= 6 ÷ 2 x 3
= 3 x 3
= 9
The correct answer is 9
First you have to divide 6/2 is 3
Then you distribute 3 into the parentheses
3(1+2) = (3*1)+(3*2)
Then you solve
(3*1)=3
(3*2)=6
So,
6+3=9
the function g is defined by g(x)=3k-5x, where k is a constant. find k, if the graph of g passes through the point (3,11).
Answer:
[tex]k=26/3[/tex]
Step-by-step explanation:
we have
[tex]g(x)=3k-5x[/tex]
we know that
If the graph of g(x) passes through the point (3,11)
then
the ordered pair (3,11) must satisfy the equation g(x)
Substitute
[tex]x=3,g(3)=11[/tex]
[tex]11=3k-5(3)[/tex]
[tex]11=3k-15[/tex]
[tex]3k=11+15[/tex]
[tex]3k=26[/tex]
[tex]3k=26[/tex]
[tex]k=26/3[/tex]
Solve the Equation
-6x-4y=21
-6x+3y=0
Answer:
[tex]\large\boxed{x=-\dfrac{3}{2},\ y=-3\to\left(-\dfrac{3}{2},\ -3\right)}[/tex]
Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}-6x-4y=21\\-6x+3y=0&\text{change the signs}\end{array}\right\\\underline{+\left\{\begin{array}{ccc}-6x-4y=21\\6x-3y=0\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad-7y=21\qquad\text{divide both sides by (-7)}\\.\qquad\boxed{y=-3}\\\\\text{Put the value of}\ y\ \text{to the second equation}\ 6x-3y=0:\\\\6x-3(-3)=0\\6x+9=0\qquad\text{subtract 9 from both sides}\\6x=-9\qquad\text{divide both sides by 6}\\x=-\dfrac{9:3}{6:3}\\\boxed{x=-\dfrac{3}{2}}[/tex]
25 POINTS WILL MARK RIGHT ANSWER AS BRAINLIEST! What is the value of x to the nearest tenth?
Answer:
The value of x is 2.5 to the nearest tenth
Step-by-step explanation:
* Lets revise the trigonometry functions
- In any right angle triangle:
# The side opposite to the right angle is called the hypotenuse
# The other two sides are called the legs of the right angle
* If the name of the triangle is ABC, where B is the right angle
∴ The hypotenuse is AC
∴ AB and BC are the legs of the right angle
- ∠A and ∠C are two acute angles
- For angle A
# sin(A) = opposite/hypotenuse
∵ The opposite to ∠A is BC
∵ The hypotenuse is AC
∴ sin(A) = BC/AC
# cos(A) = adjacent/hypotenuse
∵ The adjacent to ∠A is AB
∵ The hypotenuse is AC
∴ cos(A) = AB/AC
# tan(A) = opposite/adjacent
∵ The opposite to ∠A is BC
∵ The adjacent to ∠A is AB
∴ tan(A) = BC/AB
* Now lets solve the problem
∵ x is opposite to the angle of measure 23°
∵ 6 is adjacent to the angle of measure 23°
∴ tan(23°) = x/6 ⇒ × 6 to both sides
∴ x = 6 × tan(23°) = 2.5
* The value of x is 2.5 to the nearest tenth
Answer: [tex]x=2.5[/tex]
Step-by-step explanation:
You need to remember the identity:
[tex]tan\alpha=\frac{opposite}{adjacent}[/tex]
You can identify in the figure that for the angle 67°:
[tex]\alpha=67\°\\opposite=6\\adjacent=x[/tex]
Then you need to substitute these values into [tex]tan\alpha=\frac{opposite}{adjacent}[/tex] and solve for "x":
[tex]tan(67\°)=\frac{6}{x}\\\\xtan(67\°)=6\\\\x=\frac{6}{tan(67\°)}\\\\x=2.5[/tex]
Which equation can you use to solve for X?
O X+56 = 180
O x + 56 = 146
X + 146 = 180
O 180 - 1 = 146
56°
146°
Answer:
I think the second option is correct.
because the unknown angle is 90.
and if replace anyone of the x with 90 the equation isn't correct except with the second option.
Step-by-step explanation:
if you want me to show you how I got 90 degree for x just tell me and I'll show you
Hope this helps