A 20 year par value bond with semi-annual coupons at a nominal annual rate of 8% convertible semi-annually is purchased at a price of 1783.27. The bond can be called at par value X on any coupon date starting at the end of year 12 after the coupon is paid. The price guarantees a nominal annual rate of interest convertible semi-annually of at least 6%. Calculate X.

Answers

Answer 1

Answer:

3.216%

Step-by-step explanation:

This bond sells at a higher price or value, which means that its coupon is bogus of market interest rate. Therefore, the minimum yield rate that accounts for the possibility of the bond being called is calculated at the earliest possible call date. Let say exactly 15 years from the date of purchase, because that would be the most disadvantageous date for the bondholder for the call to occur.

The minimum semiannual yield:

j= i²/2

i² = 2j

which therefore satisfies the expression below for the worst possible case scenario yield:

1722.25 = 0.04*1100*[tex]a]_30[/tex]+[tex]\frac{1100}{(1+j)^30}[/tex]

Also, with the use of a financial calculator (making sure that the calculator is not in BGN mode)

1722.25 PV, -44 PMT, -1100 FV, 30 N, CPT 1/Y.

j can be found to be 1.608245%. The corresponding nominal annual rate compounded semiannually is (X) = i² = 2j =3.216%


Related Questions

Write the formula for Newton's method and use the given initial approximation to compute the approximations x_1 and x_2. f(x) = x^2 + 21, x_0 = -21 x_n + 1 = x_n - (x_n)^2 + 21/2(x_n) x_n + 1 = x_n - (x_n)^2 + 21 x_n + 1 = x_n - 2(x_n)/(x_n)^2 + 21 Use the given initial approximation to compute the approximations x_1 and x_2. x_1 = (Do not round until the final answer. Then round to six decimal places as needed.)

Answers

Answer:

[tex]x_{n+1} = x_{n} - \frac{f(x_{n} )}{f^{'}(x_{n})}[/tex]

[tex]x_{1} = -10[/tex]

[tex]x_{2} = -3.95[/tex]

Step-by-step explanation:

Generally, the Newton-Raphson method can be used to find the solutions to polynomial equations of different orders. The formula for the solution is:

[tex]x_{n+1} = x_{n} - \frac{f(x_{n} )}{f^{'}(x_{n})}[/tex]

We are given that:

f(x) = [tex]x^{2} + 21[/tex]; [tex]x_{0} = -21[/tex]

[tex]f^{'} (x)[/tex] = df(x)/dx = 2x

Therefore, using the formula for Newton-Raphson method to determine [tex]x_{1}[/tex] and [tex]x_{2}[/tex]

[tex]x_{1} = x_{0} - \frac{f(x_{0} )}{f^{'}(x_{0})}[/tex]

[tex]f(x_{0}) = x_{0} ^{2} + 21 = (-21)^{2} + 21 = 462[/tex]

[tex]f^{'}(x_{0}) = 2*(-21) = -42[/tex]

Therefore:

[tex]x_{1} = -21 - \frac{462}{-42} = -21 + 11 = -10[/tex]

Similarly,

[tex]x_{2} = x_{1} - \frac{f(x_{1} )}{f^{'}(x_{1})}[/tex]

[tex]f(x_{1}) = (-10)^{2} + 21 = 100+21 = 121[/tex]

[tex]f^{'}(x_{1}) = 2*(-10) = -20[/tex]

Therefore:

[tex]x_{2} = -10 - \frac{121}{20} = -10+6.05 = -3.95[/tex]

A company produces regular and deluxe ice cream at three plants. Per hour of operation,


Plant A produces 40 gallons of regular ice cream and 20 gallons of deluxe ice cream.


Plant H produces 20 gallons of regular ice cream and 40 gallons of deluxe ice cream,


and Plant M produces 40 gallons of regular and 40 gallons of deluxe.



It costs $60 per hour to operate Plant A, $92 per hour to operate Plant H, and $140 per hour to operate Plant M. The company must produce at least 350 gallons of regular ice cream and at least 240 gallons of deluxe ice cream each day.To minimize the cost of production, Plant A should operate for ___ hours per day, Plant H should operate for ___ hours per day, and Plant M should operate for ______ hours per day. (Round to the nearest tenth as needed.)

Answers

Answer:

Answer explained below

Step-by-step explanation:

Let a be the working hours of plant A.

Let b be the working hours of plant H.

Let c be the working hours of plant M.

We have to minimize , Z = 60a + 92b + 140c

subject to constraint , 40a + 20b + 40c >=350

                20a + 40b + 40c >=240

where a>=0 , b>=0 ,c>=0

So ,by solving this , a = 7.67 , b= 2.17 , c = 0

So ,working hours of plant A = 8 hrs

working hours of plant H = 3 hrs

working hours of plant M = 0 hrs

Answer:

A = 8hrs  

H = 3hrs  

M = 0hrs  

Step-by-step explanation:

Let a be the working hours of plant A.  

Let b be the working hours of plant H.  

Let c be the working hours of plant M.  

∴ Hours of plants A,H,M are a,b,c respectively.  

We have to minimize the cost of production, Z = 60a + 92b + 140c  

Regular ice cream: 40a + 20b + 40c = 350  

Deluxe ice cream: 20a + 40b +40c =240  

Where a>=0, b>=0, c>=0  

So, by solving this, a= 7.67, b= 2.77,c= 0  

So working hours of plant A = 8 hrs  

Working hours of plant H = 3 hrs  

Working hours of plant M = 0 hrs  

Can the following points be on the graph of the equation x-y = 0? Explain

Answers

Hi there! I don’t see any answer choices listed, however this function takes place in the First and Third quadrants of an xy plane. This means that the values will either be at the origin (0,0) or equal numbers with the same sign. For example, (2,2), (-8,-8), and (1.38,1.38) would all be possible points. When looking at points that are given, plug x and y into your equation and see if they give the right answer. If you come across a value with different signs, such as (-4,4) or (9.3,-9.3), that will be excluded from the equation or line on a graph. PS. x-y=0 simplifies to x=y, which might make it a bit easier to look at, and on a graph y=x is simply a diagonal line across quadrants I and III. Let me know if you need any extra help!

Intelligence quotas on two different tests are normally distributed. Test A has a mean of 100 and a standard deviation of 13. Test B has a mean of 100 and a standard deviation of 18. Use​z-scores to determine which person has the higher​ IQ: an individual who scores 123 on Test A or an individual who scores 121 on Test B. Which individual has the higher​ IQ?

Answers

Answer:

The individual who scores 123 on test A has a higher zscore, so he has the higher IQ.

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

The individual with the higher IQ is the one with the higher z-score. So

Test A has a mean of 100 and a standard deviation of 13. An individual who scores 123 on Test A.

So [tex]\mu = 100, \sigma = 13, X = 123[/tex]

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{123 - 100}{13}[/tex]

[tex]Z = 1.77[/tex]

Test B has a mean of 100 and a standard deviation of 18. An individual who scores 121 on Test B.

So [tex]\mu = 100, \sigma = 18, X = 121[/tex]

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{121 - 100}{18}[/tex]

[tex]Z = 1.17[/tex]

The individual who scores 123 on test A has a higher zscore, so he has the higher IQ.

In 2011, the Institute of Medicine (IOM), a non-profit group affiliated with the Select one US National Academy of Sciences, reviewed a study measuring bone quality 10 points and levels of vitamin-D in a random sample from bodies of 675 people who died in good health. 8.5% of the 82 bodies with low vitamin-D levels (below 50 nmol/L) had weak bones. Comparatively, 1% of the 593 bodies with regular vitamin-D levels had weak bones. Is a normal model a good fit for the sampling distribution? A. Yes, there are close to equal numbers in each group. B. O Yes, there are at least 10 people with weak bones and 10 people with strong bones in each group. C. O No, the groups are not the same size. D. O No, there are not at least 10 people with weak bones and 10 people with strong bones in each group.

Answers

Answer:

B. Yes, there are at least 10 people with weak bones and 10 people with strong bones in each group.

Step-by-step explanation:

The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], a large sample size can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\frac{\sigma}{\sqrt{n}}[/tex]

The correct answer is:

B. Yes, there are at least 10 people with weak bones and 10 people with strong bones in each group.

As regards using the normal model, the correct answer is D. No, there are not at least 10 people with weak bones and 10 people with strong bones in each group.

Why can't the normal model be used?

In sampling distributions, the normal model can be used if np ≥ 10 and n (1 - p) ≥ 10.

In this case, those with weak bones are:

= 8.5% x 82

= 6.97 people which is less than 10

= 1% x 593

= 5.93 people

We do not have 10 or more people for the sample sizes so the normal model will not be a good fit.

Find out more on the normal model at https://brainly.com/question/15399601.

A school board has a plan to increase participation in the PTA. Currently only about 15 parents attend meetings. Suppose the school board plan results in logistic growth of attendance. The school board believes their plan can eventually lead to an attendance level of 45 parents. In the absence of limiting factors the school board believes its plan can increase participation by 20% each month. Let m denote the number of months since the participation plan was put in place, and let P be the number of parents attending PTA meetings

(a) What is the carrying capacity K for a logistic model of P versus m? K45

(b) Find the constant b for a logistic model. b15

(c) Find ther value for a logistic model. Round your answer to three decimal places

(d) Find a logistic model for P versus m. Pw

Answers

You’re answer would be C love!
Final answer:

The carrying capacity K for the logistic model is 45. In the context of the problem, the constant b, which refers to the growth rate divided by the carrying capacity, would be approximately 0.00444. The logistic model representing P vs. m under these conditions would be P(m) = 45/ (1+ (45/15-1) * e^(-0.00444m)).

Explanation:

In the field of mathematics, specifically in growth modeling, a logistic model incorporates a carrying capacity. The carrying capacity, denoted as K, is the maximum stable value of the population, in this case, the number of parents attending the PTA meeting. The carrying capacity is expected to be 45 in this instance.

The constant b in the logistic model can be found using the initial value (15 parents) and the growth rate (20%). However, the question does not specify whether this rate is relative or absolute. Assuming relative growth, the initial growth rate r is 0.2 and the constant b = r/K would be 0.00444. This is not the traditional definition of b in a logistic equation; typically, b would denote the initial population size, so the question seems to have a specific, non-standard usage in mind that we need to respect.

A good starting value of ther, in order to ensure convergence and stability of the numerical method, can be 15, the initial population size.

The logistic model would thus be represented as P(m) = K/ (1+ (K/P_0-1) * e^(-bm)), where P_0 is the initial number of parents, K is the carrying capacity, b is the constant/ growth rate, m is the number of months, and e is the mathematical constant approximated as 2.718.

Learn more about Logistic Growth Model here:

https://brainly.com/question/32373798

#SPJ3

In some year, a candy shop produced 100 boxes of candy per working day in January. In each month following this, the shop produced 25 more boxes of candy per working day in addition to the previous month.
How much boxes did the candy shop produce on each working day in October?

Answers

Answer: 325 boxes of candy will be produced on each working day in October

Step-by-step explanation:

The initial number of boxes of candy produced is 100. In each month following this, the shop produced 25 more boxes of candy per working day in addition to the previous month. This means that the number of boxes produced each month is increasing in arithmetic progression. The formula for the nth term of an arithmetic sequence is expressed as

Tn = a + (n-1)d

Where

a is the first term of the sequence

n is the number of terms

d is the common difference.

From the given information,

a = 100

d = 25

n = number of months from January to October = 10

Tn = 100 + (10 - 1)25

Tn = 100 + 9×25

Tn = 100 + 225 = 325

Calculate the volume of the solid of revolution generated by revolving the region bounded by the parabolas y 2 = 2 (x − 3) and y 2 = x about y = 0.

Answers

Answer:

[tex]9\pi[/tex]

Step-by-step explanation:

given are two parabolas with vertex as (3,0) and (0.0)

[tex]y^2 =2(x-3)\\y^2 =x[/tex]

These two intersect at x=6

Volume of II  curve rotated about x axis - volume of I curve rotated about x axis = Volume of solid of revolution

For the second curve limits for x are from 0 to 6 and for I curve it is from 3 to 6

V2 =\pi [tex]\int\limits^6_0 {y^2} \, dx \\=\pi\int\limits^6_0 {x} \, dx\\= \pi\frac{x^2}{2} \\=18\pi[/tex]

V1 =[tex]\pi \int\limits^6_3 {y^2} \, dx\\\pi \int\limits^6_3 {2x-6} \, dx\\=\pi(x^2-6x)\\= \pi[(36-9)-6(6-3[)\\= (27-18)\pi\\=9\pi[/tex]

Volume of solid of revolutin = V2-V1 = [tex]9\pi[/tex]

Compute the upper Riemann sum for the given function f(x)=x2 over the interval x∈[−1,1] with respect to the partition P=[−1,−14,14,34,1].

Answers

Answer:

Upper Riemann Sum is 9/16

Step-by-step explanation:

Final answer:

To compute the upper Riemann sum for the function f(x) = x^2 over the interval x ∈ [-1, 1] with respect to the partition P = [-1, -1/4, 1/4, 3/4, 1], we need to find the value of the function at each partition point and multiply it by the width of the corresponding subinterval. The upper Riemann sum is obtained by summing up all these values.

Explanation:

To compute the upper Riemann sum, we need to find the value of the function at each partition point and multiply it by the width of the corresponding subinterval.

Given the function f(x) = x^2 and the partition P = [-1, -1/4, 1/4, 3/4, 1], we can calculate the upper Riemann sum as follows:

Calculate the width of each subinterval: Δx = (1 - (-1)) / 4 = 1/2.

Find the value of the function at each partition point:

Multiply the value of the function at each partition point by the width of the corresponding subinterval:

Sum up all the values obtained: 1/2 + 1/32 + 1/32 + 9/32 + 1/2 = 17/16

Therefore, the upper Riemann sum for the given function over the interval x ∈ [-1, 1] with respect to the partition P = [-1, -1/4, 1/4, 3/4, 1] is 17/16.

I need help with 1 and 4 please!

Answers

Answer:

Step-by-step explanation:

1) The diagram is a polygon with unequal sides. The number of sides and angles is 5. This means that it is an irregular Pentagon. The formula for the sum of interior angles of a polygon is expressed as

(n - 2)180

Where n is the number if sides of the polygon. Since the number of sides of the given polygon is 5, the sum if the interior angles would be

(5-2)×180 = 540 degrees. Therefore,

10x - 3 + 5x + 2 + 7x - 11 + 13x - 31 + 8x - 19 = 540

43x - 62 = 540

43x = 540 + 62 = 602

x = 602/43 = 14

Angle S = 13 - 31 = 13×14 - 31 = 182 - 31

Angle S = 151 degrees.

4) The diagram is a rectangle. Opposite sides are equal. Triangle JNM is an isosceles triangle. It means that its base angles, Angle NMJ and angle NJM are equal. Therefore

3x + 38 = 7x - 2

7x - 3x = 38 + 2

4x = 40

x = 40/4

x = 10

Angle NMJ = 7x - 2 = 7×10 - 2 = 68 degrees.

Angle JML = 90 degrees ( the four angles in a rectangle are right angles). Therefore,

Angle NML = 90 - 68 = 22 degrees

Park officials make predictions of times to the next eruption of a particular​ geyser, and collect data for the errors​ (minutes) in those predictions. The display from technology available below results from using the prediction errors to test the claim that the mean prediction error is equal to zero. Comment on the accuracy of the predictions. Use a 0.05 significance level. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim.

Answers

Answer:

a) Null hypothesis: [tex]\mu =0[/tex]

Alternative hypothesis: [tex]\mu \neq 0[/tex]

b) t =-7.44

c) [tex]p_v = 2*P(t_{98}<-7.44)<0.0001[/tex]

d) Reject Null hypothesis. The is enough evidence to conclude that the mean prediction error is not equal to 0.

We reject the null hypothesis because the [tex]p_v <\alpha[/tex]. So we can conclude that the difference is significantly different from 0 at 5% of significance.

Step-by-step explanation:

Assuming this output:

[tex]t_{difference}=-0.395[/tex]

t(observed value) =-7.44

t(Critical value )= 1.984

DF = 98

p value (two tailed) < 0.0001

[tex]\alpha =0.05[/tex]

a) What are the null and alternative hypothesis

Null hypothesis: [tex]\mu =0[/tex]

Alternative hypothesis: [tex]\mu \neq 0[/tex]

The reason is because the output says a bilateral test so for this case w eselect this option.

b) Identify the statistic

The correct formula for the statistic is given by:

[tex]t=\frac{\bar X_1 -\bar X_2 -0}{\sqrt{(\frac{s^2_1}{n_1}+\frac{s^2_2}{n_2})}}[/tex]

Based on the output the calculated value its t =-7.44

c) Identify the p value

We have the degrees of freedom given 98

Based on the alternative hypothesis the p value is given by:

[tex]p_v = 2*P(t_{98}<-7.44)<0.0001[/tex]

d) State the final conclusion that addresses the original claim

Reject Null hypothesis. The is enough evidence to conclude that the mean prediction error is not equal to 0.

We reject the null hypothesis because the [tex]p_v <\alpha[/tex]. So we can conclude that the difference is significantly different from 0 at 5% of significance.

The amount of soda a dispensing machine pours into a 12-ounce can of soda follows a normal distribution with a mean of 12.30 ounces and a standard deviation of 0.20 ounce. Each can holds a maximum of 12.50 ounces of soda. Every can that has more than 12.50 ounces of soda poured into it causes a spill and the can must go through a special cleaning process before it can be sold. What is the probability that a randomly selected can will need to go through this process? A) .1587 B) .6587 C) .8413 D) .3413

Answers

Answer: A) .1587

Step-by-step explanation:

Given : The amount of soda a dispensing machine pours into a 12-ounce can of soda follows a normal distribution with a mean of 12.30 ounces and a standard deviation of 0.20 ounce.

i.e. [tex]\mu=12.30[/tex] and [tex]\sigma=0.20[/tex]

Let x denotes the amount of soda in any can.

Every can that has more than 12.50 ounces of soda poured into it must go through a special cleaning process before it can be sold.

Then, the probability that a randomly selected can will need to go through the mentioned process =  probability that a randomly selected can has more than 12.50 ounces of soda poured into it =

[tex]P(x>12.50)=1-P(x\leq12.50)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{12.50-12.30}{0.20})\\\\=1-P(z\leq1)\ \ [\because z=\dfrac{x-\mu}{\sigma}]\\\\=1-0.8413\ \ \ [\text{By z-table}]\\\\=0.1587[/tex]

Hence, the required probability= A) 0.1587

Final answer:

The probability that a randomly selected can will need a special cleaning process because it holds more than 12.50 ounces of soda is calculated using the Z-score. The correct answer is A) 0.1587.

Explanation:

The question asks us to calculate the probability that a randomly selected can will require a special cleaning process if it holds more than 12.50 ounces of soda, given a normal distribution with a mean of 12.30 ounces and a standard deviation of 0.20 ounce. To find this probability, we can use the standard normal distribution, also known as the Z-score.

First, we calculate the Z-score for 12.50 ounces using the formula: Z = (X - \\mu\) / \\sigma\, where X is the value we are evaluating (12.50 ounces), \mu is the mean (12.30 ounces), and \sigma is the standard deviation (0.20 ounce). Plugging in the values gives us Z = (12.50 - 12.30) / 0.20 = 1. The Z-score represents the number of standard deviations the value X is from the mean.

Next, to find the probability that a can will overflow (have more than 12.50 ounces), we look up the corresponding probability in the standard normal distribution table or use a calculator suitable for such statistical computations. The probability corresponding to a Z-score of 1 is approximately 0.8413. However, since we are interested in the probability of a can having more than 12.50 ounces, we need the area to the right of the Z-score, which is 1 - 0.8413 = 0.1587. Therefore, the probability that a randomly selected can will require a special cleaning process is 0.1587.

The correct answer to the question is A) 0.1587.

Which polyhedron is convex?

Answers

Answer:

The fourth one

Step-by-step explanation:

Because Convex polygons can only be shapes like hexagons and squares and stuff like that. They cant be curved or zig zagged.

Answer:

The fourth one

Step-by-step explanation:

Convex polygons can be hexagons and stuff like that.

To determine the aptness of the model, which of the following would most likely be performed?

A. Check to see whether the residuals have a constant variance
B. Determine whether the residuals are normally distributed
C. Check to determine whether the regression model meets the assumption of linearity
D. All of the above

Answers

Answer:

D. All of the above

Step-by-step explanation:

Linear regression models relate to some assumptions about the distribution of error terms. If they are violated violently, the model is not suitable for drawing conclusions. Therefore, it is important to consider the suitability of the model for information before further analysis can be performed based on this model.

The fit of the model is related to the remaining behavior complying with the basic assumptions for error values in the model. When a regression model is constructed from a series of data, it should be shown that the model responds to the standard statistical assumptions of the linear model because of conducting inference. Residual analysis is an effective tool to investigate hypotheses. This method is used to test the following statistical assumptions for a simple linear regression model:

-Regression function is linear in parameters,

-Error conditions have constant variance,

-Error conditions are normally distributed,

-Error conditions are independent.

If no statistical hypothesis of the model is fulfilled, the model is not suitable for data. The fourth hypothesis (independence of error conditions) relates to the regulation of time series data. It is now used some simple graphical methods to analyze analysis, the feasibility of a model, and some formal statistical tests. In addition, when a model fails to meet these assumptions, some data changes may be made to ensure that the assumptions are reasonable for the modified model.

Best answer gets brainliest!

You must find the horizontal distance between two towers (points A and B) at the same elevation on opposite sides of a wide canyon running east and west. The towers lie directly north and south of each other. You mark off an east/west line CD running perpendicular to AB.


A: From C you measure the angle between the two towers (angle ACB) as 88.60°. Given the distance from C to B is 389 feet, write an equation and solve it to find an expression for the distance AB to the nearest whole foot. (note: AB is perpendicular to CD.)


B: You want to check your work to make sure it’s right.You should be able to both measure and compute the angle at D. Knowing the distance between the two towers from above and the distance BD is 459 feet, what is the angle at D to the nearest hundredth degree?


C: What is angle CAD in radians? Give your answer rounded correctly to 4 decimal places.

Answers

A. 15917 ft   B.∠D=88.35°  C.0.0532 rad

Step-by-step explanation:

A. Given  that angle ∠ACB = 88.60° and the distance from C to B is 389 ft then triangle ABC is right ,90° at B. Applying the formula for tangent of an angle which is;

Tan of an angle = opposite side length/adjacent side length

Tan Ф = O/A =AB/389 ft

Tan 88.60°= AB/389

AB=389*tan 88.60° = 389×40.92 =15916.87 ft ⇒15917 ft

B.

The distance from B to D is given as 459 ft and the distance between the towers , AB, is 15917 ft. To get angle ∠D apply the formula for tangent of an angle where ;

Tan ∠D=O/A =15917/459 =34.6775599129

∠D =tan⁻(34.6775599129)

∠D=88.35°

C. To get angle ∠A subtract the sum of angle ∠C and ∠D from 180°. Apply the sum of angles in a triangle theorem

 ∠A =180° - (88.60°+88.35°)

   ∠A = 180°-(176.95°)=3.05°

    Changing degrees to radians you multiply the degree value with 0.0174533

3.05°=3.05*0.0174533=0.05323254 rad

To 4 decimal places

=0.0532 rad

Learn More

Tangent of an angle :https://brainly.com/question/12003325

Keywords : horizontal distance, elevation, equation, expression, distance

#LearnwithBrainly

Answer:

                                                                               

Step-by-step explanation:

                                                                                                                     

An individual can take either a scenic route to work or a nonscenic route. She decides that use of the nonscenic route canbe justified only if it reduces the mean travel time by more than 10 minutes.a. If u 1 is the mean for the scenic route and u 2 for the nonscenic route. what hypotheses should be tested?b. If u 1 is the mean for the nonscenic route and u Zfor the scenic route, what hypotheses should be tested?

Answers

Final answer:

The null and alternative hypotheses for testing the mean travel time on scenic and nonscenic routes.

Explanation:

a. In this case, the hypotheses to be tested are:

Null hypothesis (H0): The mean travel time for the nonscenic route is not shorter than 10 minutes compared to the scenic route, or in other words, u2 - u1 ≤ 10.

Alternative hypothesis (Ha): The mean travel time for the nonscenic route is shorter than 10 minutes compared to the scenic route, or in other words, u2 - u1 > 10.

b. If u1 is the mean for the nonscenic route and u2 for the scenic route, the hypotheses to be tested would be:

Null hypothesis (H0): The mean travel time for the scenic route is not shorter than 10 minutes compared to the nonscenic route, or in other words, u2 - u1 ≤ 10.

Alternative hypothesis (Ha): The mean travel time for the scenic route is shorter than 10 minutes compared to the non scenic route, or in other words, u2 - u1 > 10.

The correct options are : - (a) The correct hypothesis is 2. [tex]\(\mu_1 - \mu_2 < -10\)[/tex] and (b) The correct hypothesis is 5. [tex]\(\mu_1 - \mu_2 < 10\)[/tex]

Part (a): [tex]\(\mu_1\)[/tex] is the mean for the scenic route and [tex]\(\mu_2\)[/tex] is the mean for the non-scenic route

The individual decides that the non-scenic route is justified only if it reduces the mean travel time by more than [tex]10[/tex] minutes. In this context, we need to test whether the mean travel time for the scenic route [tex]\(\mu_1\)[/tex] minus the mean travel time for the non-scenic route [tex](\(\mu_2\))[/tex] is less than [tex]\(-10\)[/tex]

Null Hypothesis [tex](\(H_0\)) : \(\mu_1 - \mu_2 = -10\)[/tex]

Alternative Hypothesis[tex](\(H_a\)) : \(\mu_1 - \mu_2 < -10\)[/tex]

So, the correct option for (a) is: 2.[tex]\(\mu_1 - \mu_2 < -10\)[/tex]

Part (b): [tex]\(\mu_1\)[/tex] is the mean for the non-scenic route and [tex]\(\mu_2\)[/tex] is the mean for the scenic route

In this case, we need to test whether the mean travel time for the non-scenic route [tex](\(\mu_1\))[/tex] minus the mean travel time for the scenic route [tex](\mu_2\))[/tex] is less than [tex]\(-10\)[/tex]

Null Hypothesis [tex](\(H_0\)) : \(\mu_1 - \mu_2 = 10\)[/tex]

Alternative Hypothesis [tex](\(H_a\)) : \(\mu_1 - \mu_2 < 10\)[/tex]

So, the correct option for (b) is: 5. [tex]\(\mu_1 - \mu_2 < 10\)[/tex]

The complete Question is

An individual can take either a scenic route to work or a non-scenic route. She decides that use of the non-scenic route can be justified only if it reduces the mean travel time by more than 10 minutes.

(a) If μ1 is the mean for the scenic route and μ2 for the non-scenic route, what hypotheses should be tested?

1. μ1 − μ2 = −10

2. μ1 − μ2 < −10μ1 − μ2 = −10

3. μ1 − μ2 > −10 μ1 − μ2 = −10

4. μ1 − μ2 ≠ −10μ1 − μ2 = 10

5. μ1 − μ2 < 10μ1 − μ2 = 10

6. μ1 − μ2 > 10

(b) If μ1 is the mean for the non-scenic route and μ2 for the scenic route, what hypotheses should be tested?

1. μ1 − μ2 = −10

2. μ1 − μ2 < −10μ1 − μ2 = −10

3. μ1 − μ2 > −10 μ1 − μ2 = −10

4. μ1 − μ2 ≠ −10μ1 − μ2 = 10

5. μ1 − μ2 < 10μ1 − μ2 = 10

6. μ1 − μ2 > 10

The temperature in degrees Celsius on the surface of a metal plate is T(x, y) = 19 − 4x2 − y2 where x and y are measured in centimeters. Estimate the average temperature when x varies between 0 and 2 centimeters and y varies between 0 and 4 centimeters. °C

Answers

Answer:

Average value of temperature will be [tex]8.335^{\circ}C[/tex]

Step-by-step explanation:

We have given the temperature in degree Celsius [tex]T(x,y)=19-4x^2-y^2[/tex]

It is given that x varies between 0 to 2

So [tex]0\leq x\leq 2[/tex]

And y varies between 0 and 4

So [tex]0\leq y\leq 4[/tex]

So area between the region A = 4×2 = 8[tex]cm^2[/tex]

Now average temperature is given by

[tex]Average\ value=\frac{1}{A}\int \int T(x,y)dA[/tex]

[tex]Average\ value=\frac{1}{8}\int \int (19-4x^2-y^2)dxdy[/tex]

[tex]=\frac{1}{8}\int \int (19x-4\frac{x^3}{3}-y^2x)dy[/tex]

As limit of x is 0 to 2

[tex]=\frac{1}{8}\int  (19\times 2-4\times \frac{2^3}{3}-y^2\times 2)-(19\times 0-4\times \frac{0^3}{3}-y^2\times 0))dy=\frac{1}{8}\int(38-\frac{32}{3}-2y^2)dy[/tex]

=[tex]=\frac{1}{8}(38y-\frac{32}{3}y-\frac{2y^3}{3})[/tex]

As limit of y is 0 to 4

So [tex]Average\ value=\frac{1}{8}(38\times 4-\frac{16}{3}\times 4-\frac{2\times 4^3}{3})-0=8.335^{\circ}C[/tex]

A sample of eight workers in a clothing manufacturing company gave the following figures for the amount of time(in minutes) needed to join a collar to a shirt11 13 14 10 9 16 11 12Construct a 95% confidence interval for the true mean amount of time needed to join a collar.

Answers

Answer:

[tex]10.108 < \mu < 13.892[/tex]    

Step-by-step explanation:

1) Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

[tex]\bar X[/tex] represent the sample mean for the sample  

[tex]\mu[/tex] population mean (variable of interest)

s represent the sample standard deviation

n represent the sample size  

We have the following distribution for the random variable:

[tex]X \sim N(\mu , \sigma=0.45)[/tex]

And by the central theorem we know that the distribution for the sample mean is given by:

[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]

2) Confidence interval

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

In order to calculate the mean and the sample deviation we can use the following formulas:  

[tex]\bar X= \sum_{i=1}^n \frac{x_i}{n}[/tex] (2)  

[tex]s=\sqrt{\frac{\sum_{i=1}^n (x_i-\bar X)}{n-1}}[/tex] (3)  

The mean calculated for this case is [tex]\bar X=12[/tex]

The sample deviation calculated [tex]s=2.268[/tex]

In order to calculate the critical value [tex]t_{\alpha/2}[/tex] we need to find first the degrees of freedom, given by:

[tex]df=n-1=8-1=7[/tex]

Since the Confidence is 0.95 or 95%, the value of [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and we can use excel, a calculator or a tabel to find the critical value. The excel command would be: "=-T.INV(0.025,7)".And we see that [tex]t_{\alpha/2}=2.36[/tex]

Now we have everything in order to replace into formula (1):

[tex]12-2.36\frac{2.268}{\sqrt{8}}=10.108[/tex]    

[tex]12+2.36\frac{2.268}{\sqrt{8}}=13.892[/tex]

So on this case the 95% confidence interval would be given by (10.108;13.892)

[tex]10.108 < \mu < 13.892[/tex]    

If the p-value for a hypothesis test is 0.07 and the chosen level of significance is α = 0.05, then the correct conclusion is to ____________________. A. reject the null hypothesis B. not reject the null hypothesis if σ = 10 C. reject the null hypothesis if σ = 10 D. reject the null hypothesis

Answers

Final answer:

The correct conclusion is to not reject the null hypothesis.

Explanation:

If the p-value for a hypothesis test is 0.07 and the chosen level of significance is α = 0.05, then the correct conclusion is to not reject the null hypothesis.

When conducting a hypothesis test, the p-value represents the probability of obtaining the observed data or more extreme values assuming the null hypothesis is true. If the p-value is greater than the significance level (α), which is the threshold for rejecting the null hypothesis, we fail to reject the null hypothesis.

In this case, the p-value of 0.07 is greater than the significance level of 0.05. Therefore, we cannot reject the null hypothesis.

At time t=0 sec, a tank contains 15 oz of salt dissolved in 50 gallons of water. Then brine containing 88oz of salt per gallon of brine is allowed to enter the tank at a rate of 55 gal/min and the mixed solution is drained from the tank at the same rate.a. How much salt is in the tank at an arbitrary time t? b. How much salt is in the tank after 25 min?

Answers

Answer:

a) [tex]s(t) =400- 385 e^{-\frac{1}{10} t}[/tex]

b) [tex]s(t=25min) =400- 385 e^{-\frac{1}{10}25}=368.397 [/tex]

Step-by-step explanation:

Part a

Assuming that the original concentration of salt is 8 oz/gal and that the rate of in is equal to the rate out = 5 gal/min.

For this case we know that the rate of change can be expressed on this way:

[tex]Rate change = In-Out[/tex]

And we can name the rate of change as [tex]\frac{ds}{dt}=rate change[/tex]

And our variable s would represent the amount of salt for any time t.

We know that the brine containing 8oz/gal and the rate in is equal to 5 gal/min and this value is equal to the rate out.

For the concentration out we can assume that is [tex]\frac{s}{50gal}[/tex]

And now we can find the expression for the amount of salt after time t like this:

[tex]\frac{dS}{dt}= 8 \frac{oz}{gal}(5\frac{gal}{min}) -\frac{s}{50gal} 5 \frac{gal}{min} =40\frac{oz}{min}- \frac{s}{10} \frac{oz}{min}[/tex]

And we have this differential equation:

[tex]\frac{dS}{dt} +\frac{1}{10} s = 40[/tex]

With the initial conditions y(0)=15 oz

As we can see we have a linear differential equation so in order to solve it we need to find first the integrating factor given by:

[tex]\mu = e^{\int \frac{1}{10} dt }= e^{\frac{1}{10} t}[/tex]

And then in order to solve the differential equation we need to multiply with the integrating factor like this:

[tex]e^{\frac{1}{10} t} s = \int 40 e^{\frac{1}{10} t} dt[/tex]

[tex]e^{\frac{1}{10} t} s = 400 e^{\frac{1}{10} t} +C[/tex]

Now we can divide both sides by [tex] e^{\frac{1}{25} t} [/tex] and we got:

[tex]s(t) =400 + C e^{-\frac{1}{10} t}[/tex]

Now we can apply the initial condition in order to solve for the constant C like this:

[tex]15 = 400+C[/tex]

[tex]C=-385[/tex]

And then our function would be given by:

[tex]s(t) =400- 385 e^{-\frac{1}{10} t}[/tex]

Part b

For this case we just need to replace t =25 and see what we got for the value of the concentration:

[tex]s(t=25min) =400- 385 e^{-\frac{1}{10}25}=368.397 [/tex]

a) The quantity of salt in time is described by [tex]m(t) = V_{T}\cdot c_{in}+(m_{T}-V_{T} \cdot c_{in})\cdot e^{-\frac{\dot V}{V_{T}} \cdot t}[/tex].

b) There are 4400 ounces of salt in the tank after 25 minutes.

How to model a dissolution process in a tank

In this question we must model the salt concentration in the tank ([tex]c(t)[/tex]), in ounces per gallon, as a function of time ([tex]t[/tex]), in minutes, in which salt is dissolved into the tank due to a constant inflow rate ([tex]\dot V[/tex]), in gallons. Likewise, an equal outflow rate exists with resulting concentration.

a) The process is modelled mathematically by a non-homogeneous first order differential equation and physically by principle of mass conservation, whose description is shown below:

[tex]\frac{dc(t)}{dt} + \frac{\dot V}{V_{T}}\cdot c(t) = \frac{\dot V}{V_{T}}\cdot c_{in}[/tex]   (1)

Where:

[tex]V_{T}[/tex] - Tank volume, in gallons[tex]c_{in}[/tex] - Inflow salt concentration, in ounces per gallon

The solution of this differential equation is:

[tex]c(t) = c_{in} + \left(\frac{m_{T}}{V_{T}}-c_{in} \right)\cdot e^{-\frac{\dot V}{V_{T}}\cdot t }[/tex]   (2)

Where [tex]m_{T}[/tex] is the initial salt mass of the tank, in ounces.

And the salt mass in the tank at an arbitrary time [tex]t[/tex] ([tex]m(t)[/tex]), in ounces, is obtained by multiplying (2) by the volume of the tank. That is to say:

[tex]m(t) = c(t)\cdot V_{T}[/tex]   (3)

By replacing [tex]c(t)[/tex] in (3) by (2), we have the following expression:

[tex]m(t) = V_{T}\cdot c_{in}+(m_{T}-V_{T} \cdot c_{in})\cdot e^{-\frac{\dot V}{V_{T}} \cdot t}[/tex]   (4)

The quantity of salt in time is described by [tex]m(t) = V_{T}\cdot c_{in}+(m_{T}-V_{T} \cdot c_{in})\cdot e^{-\frac{\dot V}{V_{T}} \cdot t}[/tex]. [tex]\blacksquare[/tex]

b) If we know that [tex]V_{T} = 50\,gal[/tex], [tex]\dot V = 55\,\frac{gal}{min}[/tex], [tex]c_{in} = 88\,\frac{oz}{gal}[/tex], [tex]m_{T} = 15\,oz[/tex] and [tex]t = 25\,min[/tex], then the quantity of salt is:

[tex]m(25) = (50)\cdot (88)+[15-(50)\cdot (88)]\cdot e^{-\left(\frac{55}{50} \right)\cdot (25)}[/tex]

[tex]m(25) = 4400\,oz[/tex]

There are 4400 ounces of salt in the tank after 25 minutes. [tex]\blacksquare[/tex]

To learn more on dissolution processes, we kindly invite to check this verified question: https://brainly.com/question/25752764

Is this sequence arithmetic, geometric, or neither 45, 59, 65, 70, 85

Answers

Answer: It's neither arithmetic or a geometric sequence

Explanation: For an arithmetic sequence, to get the common difference, we subtract the first term from the second, third term from second which should give the same value. While for a geometric sequence, to get the common ratio, divide the second term by the first term, third term by second term and so on, all of which should give the same answer. But in the above sequence, it doesn't follow this pattern

The sequence 45, 59, 65, 70, 85 is neither arithmetic nor geometric.

To determine if a sequence is arithmetic, one must check if the difference between consecutive terms is constant. For this sequence:

- The difference between the second and first terms is 59 - 45 = 14.

- The difference between the third and second terms is 65 - 59 = 6.

- The difference between the fourth and third terms is 70 - 65 = 5.

- The difference between the fifth and fourth terms is 85 - 70 = 15.

Since these differences are not the same, the sequence is not arithmetic.

To determine if a sequence is geometric, one must check if the ratio between consecutive terms is constant. For this sequence:

- The ratio between the second and first terms is 59/45.

- The ratio between the third and second terms is 65/59.

- The ratio between the fourth and third terms is 70/65.

- The ratio between the fifth and fourth terms is 85/70.

Simplifying these ratios:

- 59/45 = 1.3111

- 65/59 = 1.1017

- 70/65 = 1.0769

- 85/70 = 1.2143

Since these ratios are not the same, the sequence is not geometric.

A professor compared differences in class grades between students in their freshman, sophomore, junior, and senior years of college. If different participants were in each group, then what type of statistical design is appropriate for this study?(a) a two-independent sample t test(b) a one-way between-subjects ANOVA(c) a two-way between-subjects ANOVA(d) both a two-independent sample t test and a one-way between-subjects ANOVA

Answers

Answer:

(b) a one-way between-subjects ANOVA

That's the correct option since we have one factor (class grade) and we have more than two groups.

Step-by-step explanation:

(a) a two-independent sample t test

We can't apply a two independnet t test since we are comparing more than two groups (Freshman, sophomore, Junior and senior). And for this case when we have more than two groups, the most powerful method is the one way ANOVA between subjects.

(b) a one-way between-subjects ANOVA

That's the correct option since we have one factor (class grade) and we have more than two groups.

One way Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".

The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"

If we assume that we have [tex]p[/tex] groups and on each group from [tex]j=1,\dots,p[/tex] we have [tex]n_j[/tex] individuals on each group we can define the following formulas of variation:  

[tex]SS_{total}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x)^2 [/tex]

[tex]SS_{between}=SS_{model}=\sum_{j=1}^p n_j (\bar x_{j}-\bar x)^2 [/tex]

[tex]SS_{within}=SS_{error}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x_j)^2 [/tex]

And we have this property

[tex]SST=SS_{between}+SS_{within}[/tex]

(c) a two-way between-subjects ANOVA

We can't apply a two way ANOVA since we have just one factor (or variable of interest) the class grades measured with a score. So then is not appropiate use this method for this case.

(d) both a two-independent sample t test and a one-way between-subjects ANOVA

False since we can't apply the two way ANOVA, that's not correct.

Mr. Kim needs to buy 3 plane tickets for him, his wife & their 2 children at $259 for each person. How much will he spend on all of their plane tickets?

Answers

Answer: [tex]\$3108[/tex]

Step-by-step explanation:

Mr. Kim, his wife and two children are 4 persons. Now, he needs to buy 3 plane tickets for each one, which means he has to buy 12 plane tickets:

[tex](3 tickets)(4)=12 tickets[/tex]

On the other hand, we know each ticket costs [tex]\$259[/tex] per person. So, if we have 12 tickets to buy, we will have to multiply [tex]\$259[/tex] by 12:

[tex](12)(\$259)=\$3108[/tex] This is the amount Mr. Kim will spend in the plane tickets

The yield stress of a random sample of 25 pieces of steel was measured, yielding a mean of 52,800 psi. and an estimated standard deviation of s = 4,600 psi. a. What is the probability that the population mean is less than 50,000 psi? b. What is the estimated fraction of pieces with yield strength less than 50,000 psi? c. Is this sampling procedure sampling-by-attributes or sampling-by-variable?

Answers

Answer:

Step-by-step explanation:

Given than n = 25 , mean = 52800 sd = 4600

1) P(X<50000) , so please keep the z tables ready

we must first convert this into a z score so that we can look for probability values in the z table

using the formula

Z = (X-Mean)/SD

(50000- 52800)/4600 = -0.608

checkng the value in the z table

P ( Z>−0.608 )=P ( Z<0.608 )=0.7291

b)

again using the same formula and converting to z score

we need to calculate P(X<50000)

Z = (X-Mean)/SD

(50000- 52800)/4600 = -0.608

P ( Z<−0.608 )=1−P ( Z<0.608 )=1−0.7291=0.2709

proportion is 27% approx

c)

When your data points are measurements on a numerical scale you have variables data , here yield stress is numeric in nature , hence its a sampling by variable plan

To determine the health benefits of walking, researchers conduct a study in which they compare the cholesterol levels of women who walk at least 10 miles per week to those of women who do not exercise at all. The study finds that the average cholesterol level for the walkers is 198, and that the level for those who don't exercise is 223. Which of the following statements is true?I. This study provides good evidence that walking is effective in controlling cholesterol.II. This is an observational study, not an experiment.III. Although the study was conducted only on women, we can confidently generalize the results to men in the same age group.A. I onlyB. II onlyC. III onlyD. II and III onlyE. I and III only

Answers

Answer:

B. II only

Step-by-step explanation:

For this case the correct options would be:

B. II only

We analyze one by one the statements:

I.This study provides good evidence that walking is effective in controlling cholesterol

That's FALSE because there are many other factors that can influence the cholesterol and we just have two possible conditions (women who walk at least 10 miles and women who do not exercise at all), and we have just two averages obtained from two samples that we don't know if is a paired values or independent values. And is not appropiate to conclude this with the lack of info on this case.

II. This is an observational study, not an experiment

Correct we don't have a design for this experiment or factors selected in order to test the hypothesis of interest. So for this case we can conclude that we have an observational study for this case.

III. Although the study was conducted only on women, we can confidently generalize the results to men in the same age group.

False, we can't generalize results from women to men since they are different groups of people and with different characteristics.

A BINGO card is a 5 × 5 grid. The center square is a free space and has no number. The first column is filled with five distinct numbers from 1 to 15, the second with five numbers from 16 to 30, the middle column with four numbers from 31 to 45, the fourth with five numbers from 46 to 60, and the fifth with five numbers from61 to 75.
Since the object of the game is to get five in a row horizontally, vertically, or diagonally, the order is important.

How many BINGO cards are there?

Answers

Answer:

[tex]5.52*10^{26}[/tex]

Step-by-step explanation:

For the columns with 5 slots, there are 15 distinct options to fill in. The number of ways to fill them in is

15 * 14 * 13 * 12 * 11 = 360360 ways (order matters)

For the column with 4 slots and 15 options. The number of ways to fill them in is

15 * 14 * 13 * 12 = 32760  ways (order matters)

Since a bingo card has 4 columns of 5 slots and 1 column with 4 slots, the total number of combination there is:

[tex]360360^4*32760 \approx 5.52*10^{26}[/tex] (order matters)

The seating for an outdoor stage is arranged such that there are 11 seats in the first row. For each additional row after the first row, there are 3 more seats than there are in the previous row. If there are 30 rows altogether, how many seats are there in all? Select one: O

A. 1470
B. 1635
C. 2940
D. 3270

Answers

Answer:

B. 1635

Step-by-step explanation:

We have been given that the seating for an outdoor stage is arranged such that there are 11 seats in the first row. For each additional row after the first row, there are 3 more seats than there are in the previous row.

We can see that the seating order is in form of arithmetic sequence, whose first term is 11 and common difference is 3.

Since there are 30 rows altogether, so we need to find the sum of 30 first terms of the sequence using sum formula.

[tex]S_n=\frac{n}{2}[2a+(n-1)d][/tex], where,

[tex]S_n=[/tex] Sum of n terms,

n = Number of terms,

a = First term,

d = Common difference.

Upon substituting our given value is above formula, we will get:

[tex]S_n=\frac{30}{2}[2(11)+(30-1)3][/tex]

[tex]S_n=15[22+(29)3][/tex]

[tex]S_n=15[22+87][/tex]

[tex]S_n=15[109][/tex]

[tex]S_n=1635[/tex]

Therefore, there are 1635 seats in all and option B is the correct choice.

Answer: the total number of seats is 1635

Step-by-step explanation:

For each additional row after the first row, there are 3 more seats than there are in the previous row. This means that the seats in each row is increasing in arithmetic progression with a common difference of 3. The formula for determining the sum of n terms of an arithmetic sequence is expressed as

Sn = n/2[2a + (n - 1)d]

Where

n represents the number of terms in the sequence.

a represents the first term,

d represents the common difference.

From the information given,

a = 11

n = 30

d = 3

Therefore,

S30 = 30/2[2×11 + (30 - 1)3]

S30 = 15[22 + 29×3]

S30 = 15 × 109= 1635

Listed below are systolic blood pressure measurements (mm Hg) taken from the right and left arms of the same woman. Consider the differences between right and left arm blood pressure measurements.
Right Arm 102 101 94 79 79
Left Arm 175 169 182 146 144
a. Find the values of d and sd (you may use a calculator).
b. Construct a 90% confidence interval for the mean difference between all right and left arm blood pressure measurements.

Answers

Answer:

a) [tex]\bar d= \frac{\sum_{i=1}^n d_i}{n}= \frac{361}{5}=72.2[/tex]

[tex]s_d =\frac{\sum_{i=1}^n (d_i -\bar d)^2}{n-1} =9.311[/tex]

b) [tex]63.331 < \mu_{left arm}-\mu_{right arm} <81.069[/tex]  

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

Solution

Let put some notation  

x=value for right arm , y = value for left arm

x: 102, 101,94,79,79

y: 175,169,182,146,144

The first step is calculate the difference [tex]d_i=y_i-x_i[/tex] and we obtain this:

d: 73, 68, 88, 67, 65

Part a

The second step is calculate the mean difference  

[tex]\bar d= \frac{\sum_{i=1}^n d_i}{n}= \frac{361}{5}=72.2[/tex]

The third step would be calculate the standard deviation for the differences, and we got:

[tex]s_d =\frac{\sum_{i=1}^n (d_i -\bar d)^2}{n-1} =9.311[/tex]

Part b

The next step is calculate the degrees of freedom given by:

[tex]df=n-1=5-1=4[/tex]

Now we need to calculate the critical value on the t distribution with 4 degrees of freedom. The value of [tex]\alpha=1-0.9=0.1[/tex] and [tex]\alpha/2=0.05[/tex], so we need a quantile that accumulates on each tail of the t distribution 0.05 of the area.

We can use the following excel code to find it:"=T.INV(0.05;4)" or "=T.INV(1-0.05;4)". And we got [tex]t_{\alpha/2}=\pm 2.13[/tex]

The confidence interval for the mean is given by the following formula:  

[tex]\bar d \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)  

Now we have everything in order to replace into formula (1):  

[tex]72.2-2.13\frac{9.311}{\sqrt{5}}=63.331[/tex]  

[tex]72.2+2.13\frac{9.311}{\sqrt{5}}=81.069[/tex]  

So on this case the 90% confidence interval would be given by (63.331;81.069).

[tex]63.331 < \mu_{left arm}-\mu_{right arm} <81.069[/tex]  

It is important that face masks used by firefighters be able to withstand high temperatures because firefighters commonly work in temperatures of 200-500°F. In a test of one type of mask, 12 of 60 masks had lenses pop out at 250°. Construct a 90% upper confidence limit for the true proportion of masks of this type whose lenses would pop out at 250°. (Round your answers to four decimal places.)

Answers

Final answer:

The upper 90% confidence limit for the true proportion of firefighter masks of this type whose lenses would pop out at 250° is approximately 0.2949.

Explanation:

To construct a 90% upper confidence limit for the true proportion of firefighter's masks whose lenses would pop out at 250°, firstly, we need to calculate the sample proportion (p) which is the ratio of the number of masks that had lenses popping out (12) to the total number of masks tested (60). Thus, the sample proportion is 12/60 = 0.2.

Next, we use the formula for an upper confidence limit for proportions: p + z*sqrt((p*(1-p))/n), where z is the z-score associated with the desired level of confidence (for 90% confidence, z is 1.645), p is the sample proportion, and n is the sample size.

So the upper 90% confidence limit would be calculated as: 0.2 + 1.645*sqrt((0.2*0.8)/60) = 0.2 + 1.645*0.05774 = 0.2949322. Rounding to four decimal places, we get an upper confidence limit of 0.2949.

Learn more about Confidence Limit here:

https://brainly.com/question/29048041

#SPJ11

Jake save cash into 5 different bank accounts . What is the probability that Jade save most into account A and save least into account B?

Answers

Answer:0.05

Step-by-step explanation:

There are 5 different bank accounts

Probability that A will give maximum benefit i.e. Jake save most in account A

[tex]P_1=\frac{1}{5}[/tex]

so picking 1 bank we are left with 4 banks . So we Probability that he will save least into account B is [tex]P_2=\frac{1}{4}[/tex]

Probability that Jake save most into account A and save least into account B is

[tex]=P_1\times P_2[/tex]

[tex]=\frac{1}{5}\times \frac{1}{4}=\frac{1}{20}[/tex]

                   

Other Questions
A developmental psychologist is showing a four-month-old infant a series of drawings. Each drawing shows a series of heavy black dots arranged in the shape of a square. After seeing a series of such pictures, the infant looks for shorter and shorter periods of time until she is barely glancing at each new version of the black dots in a square. Suddenly the researcher presents a new drawing of heavy black dots in the shape of a circle, and the baby shows renewed interest by gazing for a longer period of time. What is illustrated by this research project? Which type of NAC agent will be used during the posture assessment before allowing access to the VPN users? Although the cacao plant probably originated in the upper Amazon region, its first cultivation for seeds and pulp was apparently begun in Mexico and Central America.(A) its first cultivation for seeds and pulp was apparently begun(B) apparently it was cultivated for its seeds and its pulp beginning(C) it was apparently first cultivated for its seeds and pulp(D) the beginning of its cultivation for seeds and pulp appears to be(E) the first cultivation for its seeds and pulp appears to have begun Southern Alliance Company needs to raise $45 million to start a new project and will raise the money by selling new bonds. The company will generate no internal equity for the foreseeable future. The company has a target capital structure of 65 percent common stock, 5 percent preferred stock, and 30 percent debt. Flotation costs for issuing new common stock are 9 percent, for new preferred stock, 6 percent, and for new debt, 3 percent. The true initial cost figure Southern should use when evaluating its project is $.(Do not include the dollar sign ($). Do not round the weighted average floatation cost. Round your answer to the nearest whole dollar amount. (e.g., 32)) School Math. Homework. Six. Mental Half Cruel. Abuse OfHours. To. My Of. Humans Energy wasted on random knowledge AreLives In the name of Jesus why does school exist Why did tenant farmers need to be better at managing money than sharecroppers? a. They oversaw sharecroppers who worked for the landowner. b. They managed the financial accounts of the landowner. c. They were landowners and had to pay for an agricultural license. d. They controlled more of their own planning and finances. how do you find if these are similar solids? The cost of antivirus software package is $65 for the first year and $10 for each annual renewal. of the independent variable is the number of annual renewals and the dependant variable is the total amount paid, what is the slope and y-intercept of the graph of the equation representing this situation? ( Assume the x axes is labeled as renewals and y axes is labeled as dollars).A. The slope is 10, the y-intercept is 65B. The slope is 55. the y-intercept is 10C. The slope is 10, the y-intercept is 55D. The slope is 65, the y-intercept is 10 Where is cape verde located? Leiff goes online to buy a new video game. He finds a site that currently has a promotion of 15% off on all orders over $50. Leiff decides to buy his video game, with a price tag of $128, at this site because he knows that he will get the 15% discount when he checks out. Leiff pays 5.3% sales tax on the discounted price and pays a shipping fee of $4.75. What is the total of Leiffs online purchase? Which civilization created the earliest known solar observatory? Using PythonYou have been hired by a small software company to create a "thesaurus" program that replaces words with their synonyms. The company has set you up with a sample thesaurus stored in a Python dictionary object. Here's the code that represents the thesaurus:# define our simple thesaurus thesaurus = { "happy": "glad", "sad" : "bleak" }The dictionary contains two keys - "happy" and "sad". Each of these keys holds a single synonym for that key.Write a program that asks the user for a phrase. Then compare the words in that phrase to the keys in the thesaurus. If the key can be found you should replace the original word with a random synonym for that word. Words that are changed in this way should be printed in UPPERCASE letters. Make sure to remove all punctuation from your initial phrase so that you can find all possible matches. Here's a sample running of your program:Enter a phrase: Happy Birthday! exclaimed the sad, sad kittenGLAD birthday exclaimed the BLEAK BLEAK kitten The protein coat that surrounds the genetic material of the T2 phage is termed the:______A) Capsid.B) Envelope.C) Nucleoid.D) Membrane.E) Cell wall. Which describes religion as a social institution? Religious groups do not believe members should be punished for breaking rules. Every religion has a moral code for how people should behave. Everyone in the United States belongs to a religious group. Religious groups share the same, or very similar, values and rules. To find the quotient of 8 divided by 1/3, multiply 8 by? You are considering buying a company using leveraged buyout. The company is projected to have sales of 500 million each year in the three years after buyout. The cost of sales and other administrative expenses are 60% of the sale. Depreciation and amortization are 5% of the sale. Tax rate is 40%. Suppose that the change in net working capital and capital expenditure each year is zero. If you borrow 1.5 billion at interest rate of 8% per year, and you use all the cash flow to repay debt. What is the net income in the first year after the buyout? Which could be an example of an Adaptive Radiation? A. a burst of new species in a new habitat where selective pressure is different from an ancestral habitat, like has been noticed for "Darwins Finches" The Cichlid Fishes and numerous examples from the fossil record.B. HUMAN domestication of wild plants into crop plants due to selectively breeding plants with desirable characteristics over several hundred thousand years C. Descent with modification and natural selection Zimmerman, a real estate salesman, asked Robertson if she was interested in selling her property. Robertson said she might be. Zimmerman came to Robertson with an offer by Velten to buy the property. Both parties signed a contract for sale. Zimmerman told Robertson he was being paid a commission by Velten. Before the deal on the property was to close, Robertson asked for a copy of the agreement between Zimmerman and Velten, but they refused. Robertson refused to go through with the deal. Velten sued, claiming there was a valid contract. Robertson said that Zimmerman violated his fiduciary duty to her to disclose his interests. Is the deal valid? what's 20 times 2 and add 4? Assume that the marginal social benefit of the last unit of vaccination provided is greater than the marginal social cost. Which of the following can be used to achieve efficiency in the market for vaccination?Select the correct answer below:a. A per-unit subsidy for vaccinationsb. A lump-sum tax for vaccinationsc. A price ceiling for vaccinationsd. A per-unit tax on vaccinations Steam Workshop Downloader