You are dealt two cards successively (without replacement) from a shuffled deck of 52 playing cards. find the probability that the first card is a king and the second card is a queen.

Answers

Answer 1

there are 4 kings and 4 queens in a deck

 chance of getting a king is 1/52

 chance of getting a queen without the king being put back would be 1/51

1/52 x 1/51 = 1/2652 probability

Answer 2

The probability of drawing first a king and then a queen from a standard deck without replacement is 0.603%, which is calculated by multiplying the individual probabilities of drawing a king and then a queen (1/13 * 4/51).

The student is asking about how to calculate the probability of drawing two specific cards from a deck of cards in succession without replacement. In a standard deck of 52 cards, the probability of drawing a king first is 4/52 since there are four kings in the deck. After drawing a king, there are 51 cards left, and the probability of drawing a queen next is 4/51 because there are four queens in the deck. These events are dependent because the outcome of the second draw depends on the first.

To find the combined probability of both events happening, we multiply the probabilities of each event:

P(first card is a king) = 4/52

P(second card is a queen after drawing a king) = 4/51

So, the probability is (4/52) * (4/51), which simplifies to 1/13 * 4/51.

Combined probability = (1/13) * (4/51) = 4/663 = 0.006033182503770739, or about 0.603% when expressed as a percentage.


Related Questions

Find the quotient of 5+4i/6+8i , and express it in the simplest form

Answers

remember: i² = -1

[tex] \frac{5+4i}{6+8i}= \frac{(5+4i)(6-8i)}{(6+8i)(6-8i)}= \frac{30-40i+24i-32i^2}{36-64i^2}= \frac{30-16i-32(-1)}{36-64(-1)}= \\ \\ = \frac{30-16i+32}{36+64}= \frac{62-16i}{100}=0.62-0.16i[/tex]

Hope this helps

Robin purchased a piece of land in the year 2000 for $15,000. The value of the land increases at the rate of 13.17% each year. Identify the function that represents the value of the land. Does the function represent growth, or decay?
A) V(t) = 15000(0.8683)t; growth
B) V(t) = 15000(1.1317)t; decay
C) V(t) = 15000(0.08683)t; decay
D) V(t) = 15000(1.1317)t; growth

Answers

The value of the land increases by 13.17% each year So it's growth function which is V (t)=15000 (1+r)^t Where r is the growth rate which is in decimal 13.17/100=0.1317 So it's D) V(t) = 15000(1.1317)t; growth
Final answer:

The function that represents the value of the land after t years is V(t) = 15000(1.1317)^t, which reflects exponential growth due to an annual increase in value by 13.17%.

Explanation:

The function that represents the value of the land which Robin purchased is given by V(t) = 15000(1 + Interest rate)^numbers of years t, where an interest rate of 13.17% translates to 0.1317 as a decimal. Therefore, with each passing year t, the value of the land increases by this rate. Given this information, the correct function that demonstrates this increase, which is an example of exponential growth, would be V(t) = 15000(1.1317)^t. This represents the value of the land after t years.

The correct answer would then be D) V(t) = 15000(1.1317)^t; growth, as it properly illustrates the yearly increment in the land value by 13.17%, reflecting growth, not decay.

a nutrition label indicates that one serving of apple crisp oatmeal has 2.5 grams of fat. how many grams of fat . how many grams of fat how many grams of fat arew there in 3.75 sevings?

Answers

2.5x3.75=9.375 grams of fat!

What number must you add to complete the square? X^2 +12x=40

Answers

You halve the linear coefficient, square it, then add that to both sides.  In this case:

(12/2)^2=6^2=36 so you would add 36 to both sides

x^2+12x+36=76  so that the left side is now a perfect square

(x+6)^2=76

Answer:

36

Step-by-step explanation:

(x+6)^2=76

Find a formula expressing the radius r of a sphere as a function of its surface area

Answers

The surface area of a sphere :
[tex]A=4 \pi r^2[/tex]

Solving this equation for r:

A/(4* pi) = r^2          apply sqrt to both sides:

r = sqrt [A/(4 pi)]

Then the radius of a sphere as a function of its surface area :
[tex]r= \sqrt{ \frac{A}{4 \pi } } [/tex]

Hope you got the idea

how do u graph this

Answers

[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\ % function transformations for trigonometric functions \begin{array}{rllll} % left side templates f(x)=&{{ A}}sin({{ B}}x+{{ C}})+{{ D}} \\\\ f(x)=&{{ A}}cos({{ B}}x+{{ C}})+{{ D}}\\\\ f(x)=&{{ A}}tan({{ B}}x+{{ C}})+{{ D}} \end{array} \\\\ -------------------\\\\[/tex]

[tex]\bf \bullet \textit{ stretches or shrinks}\\ \left. \qquad \right. \textit{horizontally by amplitude } |{{ A}}|\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the y-axis}[/tex]

[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \bullet \textit{vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\[/tex]

[tex]\bf \bullet \textit{function period or frequency}\\ \left. \qquad \right. \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ \left. \qquad \right. \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta)[/tex]

so hmmm   [tex]\bf \begin{array}{llcll} f(x)=&0.5sin(x)&+2\\ &\uparrow &\uparrow \\ &A&D \end{array}[/tex]

instead of going up/down by 1unit, it goes up/down by half
and then it's shifted upwards by 2, so the midline will end up at y = 2

but basically the same sin(x) graph, just a bit shorter due to the smaller amplitude.

Find the area of the following shape. A(-5,-8) B(1,-8) C(3,-5) D(1,0) E(-5,-3) F(-3,-6). You must show work to receive credit.

Answers

check the picture below.

now... notice the left-side of the picture. that's the points and shape... ok.. notice the left-side, is really just two rectangles and and four triangles stacked up to each other at the edges.

so.. .just get the area of each rectangle and each triangle, sum them up, and that's the area of the shape.

you can pretty much get the length, width and height of the rectangles and triangles from the grid.

recall area of a triangle = 1/2 bh

An electrical heating element produces heat depending on the resistance of the element and the current passed through it. The heat produced can be given by the formula h = I2R where h is the heat generated, I is the current, and R is the resistance. If the element has a fixed current of 2 amps passing through it and a variable current of x amps, it is able to produce a heat of 10x3 + 80, depending on the variable resistance for different additional values of current x. Determine the formula for the variable resistance.

Answers

The heat produced by current I is
H = I²R
where
R =  resistance.
According to the formula, heat produced is proportional to the square of the current.

When a current of I = 2 amps is applied, the heat produced is 
H = 10x³ + 80.
This heat includes heat due to a fixed current of 2 amps, and heat due to a variable current of x amps.

Because the heat produced is proportional to the square of the current, write the expressions as
H = (10x)*(x²) + 20*(2²)

The second term on the right is heat due to the fixed current of 2 amps, written as
20*(2²).
Therefore the fixed resistance is R = 20 ohms, and the square of the fixed current is 2².

The first term represents heat due to variable resistance, written as
(10x)*(x²).
Therefore the variable resistance is 10x, and the square of the variable current is x².

Answer:
The variable current is  10x.

Answer:

(10x - 40) + 120 / (x+2)

reminder: variables are on both sides

Answers

Start by multiplying both sides of the equation by 7 (the common denominator).

[tex]7 \left(\frac{6z}{7} -27 \right)=7\left(\frac{21-4z}{7} \right) \\ 6z-189=21-4z[/tex]

Add 4z to both sides.

[tex]10z-189=21[/tex]

Add 189.

[tex]10z=210 \\ z=21[/tex]

Factor 4x^2 - 25 show your work Help Plz!

Answers

4x^2 - 25
= (2x)^2 - 5^2 .................using a^2 - b^2 = (a+b)(a-b)
= (2x + 5)(2x - 5)

Part A: Explain why the x-coordinates of the points where the graphs of the equations y = 4−x and y = 8−x−1 intersect are the solutions of the equation 4−x = 8−x−1. (4 points) Part B: Make tables to find the solution to 4−x = 8−x−1. Take the integer values of x between −3 and 3. (4 points) Part C: How can you solve the equation 4−x = 8−x−1 graphically? (2 points) Part A:

Answers

A.  We have two lines:  y = 4-x   and   y = 8-x^-1

Given two simultaneous equations that are both to be true, then the solution is the points where the lines cross. The intersection is where the two equations are equal. Therefore the solution that works for both equations is when

4-x = 8-x^-1

This is where the two lines will cross and that is the common point that satisfies both equations.

 

B.  4-x = 8-x^-1

 

 x         4-x      8-x^-1

______________

 

-3          7        8.33

-2          6        8.5

-1          5        9

 0          4        -

 1          3        7

 2          2        7.5

 3          1        7.67

 

The table shows that none of the x values from -3 to 3 is the solution because in no case does

4-x = 8-x^-1

 

To find the solution we need to rearrange the equation to find for x:

4-x = 8-x^-1

Multiply both sides with x:

4x-x^2 = 8x-1

x^2+4x-1=0

x= -4.236, 0.236

 

Therefore there are two points that satisfies the equation.

Find y:  

x=-4.236

y = 4-x  = 4 – (-4.236) = 8.236

y = 8-x^-1 =  8-(-4.236)^-1 = 8.236

 

x=0.236

 y = 4-x  = 4 – (0.236) = 3.764

y = 8-x^-1 =  8-(0.236)^-1 = 3.764

 

Thus the two lines cross at 2 points:

(-4.236, 8.236) & (0.236, 3.764)

 

C.  To solve graphically the equation 4-x = 8-x^-1

We would graph both lines: y = 4-x  and   y = 8-x^-1

The point on the graph where the lines cross is the solution to the system of equations.

Just graph the points on part B on a cartesian coordinate system and extend the two lines.  The solution is, as stated, the point where the two lines cross on the graph.

Final answer:

The x-coordinates of the intersection points between the equations are the solutions to the given equation. Tables can be used to find the solution by plugging in different values of x. The equation can also be solved graphically by finding the intersection points of the two equations on a graph.

Explanation:

Part A:

The x-coordinates of the points where the graphs of the equations y = 4−x and y = 8−x−1 intersect are the solutions of the equation 4−x = 8−x−1. To find the intersection points, we set the two equations equal to each other and solve for x.

Part B:

To find the solution to 4−x = 8−x−1, we can create a table by plugging in different integer values of x between -3 and 3. Substitute each value of x into the equation and solve for y. The values of x and y that make the equation true are the solutions.

Part C:

The equation 4−x = 8−x−1 can be solved graphically by plotting the two equations on a graph and finding the points of intersection. The x-coordinate of the intersection point(s) represents the solution(s) to the equation.

Over the weekend, Statton and Tyler drove to Montana to go hunting. Now they're preparing to go home. Tyler needs gas for his jeep, which gets 22 miles per gallon for gas mileage. When he stops at the gas station, he already has 5 gallons of gas in his tank. he buys more gas for $1.25 per gallon if Tyler spends 22 on gas what is the total distance the boys could travel round if necessary to the nearest tenth

Answers

he bought : 22/1.25 = 17.6 gallons

17.6 +5 = 22.6 gallons total

22 * 22.6 =497.2 miles total he can drive

Answer:

The answer would be 497.2

Step-by-step explanation:

Proof I hope you do well on the test .

The total area of your neighbor's backyard is 900 ft2. she wants to use 240 ft2 more area for landscaping than for a pool. how much area will she use for the pool? the landscaping?

Answers

L = landscaping
P = pool

L + P = 900

L = P + 240


P + 240 + P = 900

2P = 660

Pool = 330 sq ft 
Landscaping = 570 sq ft


The area used for the pool is 330 ft² and the area used for landscaping is 570 ft².

1. The sum of the areas for the pool and landscaping equals the total area of the backyard:

[tex]\[ P + L = 900 \][/tex]

2. The area for landscaping is 240 ft² more than the area for the pool:

[tex]\[ L = P + 240 \][/tex]

Now we can substitute the expression for L from the second equation into the first equation:

[tex]\[ P + (P + 240) = 900 \][/tex]

Combining like terms gives us:

[tex]\[ 2P + 240 = 900 \][/tex]

Subtract 240 from both sides to isolate the term with P:

[tex]\[ 2P = 900 - 240 \] \[ 2P = 660 \][/tex]

Divide both sides by 2 to solve for P:

[tex]\[ P = \frac{660}{2} \] \[ P = 330 \][/tex]

Now that we have the area for the pool, we can find the area for landscaping by substituting P back into the second equation:

[tex]\[ L = 330 + 240 \] \[ L = 570 \][/tex]

Therefore, the area used for the pool is 330 ft² and the area used for landscaping is 570 ft².

Complete the solution of the equation. find the value of y when x equals 11 8x+6y=28

Answers

If x is 11, then we replace x with 11 in the equation.
8(11) + 6y = 28
88 + 6y = 28
We will subtract 88 from both sides to get rid of the constant.
6y = -60
To isolate the variable, we will divide both sides by 6.
y = -10
In this equation, y equals -10.
First, substitute the value of x back into the equation.

8x + 6y = 28 becomes 8(11) + 6y = 28

Now solve for y.

8(11) + 6y = 28
88 + 6y = 28
6y = -60 <-- Subtract 88 from each side
y = -10 <-- Divide both sides by 6

So, y is equal to -10.

Solve the quadratic equation by completing the square.

x^+12x+30=0

First, choose the appropriate form and fill in the blanks with the correct numbers.
Then, solve the equation. Round your answer to the nearest hundredth.
If there is more than one solution, separate them with commas.

Form:
( x + _ )^2 = _
or
( x - _ )^2 = _

Solution:
x = _

^ Please use the template above to answer ^

Answers

Final Answer:

( x + 6 )^2 = 6 or ( x + 6 )^2 = 6

Solution:

x = -6 + √6, x = -6 - √6

Explanation:

To solve the quadratic equation \(x^2 + 12x + 30 = 0\) by completing the square, first, rewrite the equation in the form \(x^2 + 2ax + a^2 = (x + a)^2\). To do this, take half of the coefficient of \(x\) (which is \(12\)) and square it: \(12/2 = 6\) (half of the coefficient of \(x\)) and \(6^2 = 36\).

Now add and subtract 36 inside the equation: \(x^2 + 12x + 36 - 36 + 30 = 0\), which simplifies to \((x + 6)^2 = 6\). This is the completed square form.

To solve for \(x\), take the square root of both sides:[tex]\(x + 6 = \pm \sqrt{6}\). Then solve for \(x\): \(x = -6 + \sqrt{6}\) and \(x = -6 - \sqrt{6}\). These are the two solutions for \(x\).[/tex]

Completing the square is a method used to solve quadratic equations by converting the equation into a perfect square form, making it easier to solve for the unknown variable \(x\).

an ostrich that is 78 inches tall is 15 inches taller than 3 times the height of a kiwi. What is the height of a kiwi in inches

Answers

Turn this into an expression. The height of a kiwi is (k).
78=15+3k
Minus 15.
63=3k
Divide by 3.
21=k
A kiwi is 21 inches tall.
21 inches , because 78 inches minus 15 equals 63 which if divided by 3 equals 21

Given cos B = 11/18 find angle B in degrees. Round your answer to the nearest hundredth.

Answers

[tex]B = cos^{-1}(\frac{11}{18}) \approx 52.33^\circ[/tex]

Answer:

[tex]B\approx 52.33^{\circ}[/tex]

Step-by-step explanation:

We have been given that [tex]\text{cos}(B)=\frac{11}{18}[/tex]. We are asked to find the measure of angle B.

We will use inverse cosine or arccos to solve for the measure of angle B as:

[tex]B=\text{cos}^{-1}(\frac{11}{18})[/tex]

[tex]B=52.33011303567^{\circ}[/tex]

Upon rounding our answer to nearest hundredth, we will get:

[tex]B\approx 52.33^{\circ}[/tex]

Therefore, the measure of angle B is 52.33 degrees.

The grid shows figure Q and its image figure Q' after a transformation: Figure Q is a pentagon drawn on a 4 quadrant grid with vertices at 2, 4 and 4, 2 and 5, 4 and 7, 5 and 3, 7. Figure Q prime is a pentagon drawn with vertices at negative 4, 2 and negative 2, 4 and negative 4, 5 and negative 5, 7 and negative 7, 3. Which transformation was applied on figure Q?

Answers

check the picture.

we notice that for every pair (x, y) in Q, there is a point (-y, x) in Q', 

this means that the transformation is a 90° counterclockwise rotation around the origin. 

The transformation can be also noticed by sight in the figure.


Answer: 90° counterclockwise rotation

Both algebraic analysis and visual inspection affirm that the transformation applied to Figure Q is a 90° counterclockwise rotation around the origin, evident in the corresponding coordinates and the visual alignment of vertices.

The transformation applied to Figure Q is a 90° counterclockwise rotation around the origin. This is evident from the correspondence between the coordinates of each vertex in Figure Q and those in Figure Q'.

Specifically, for every pair (x, y) in Figure Q, there is a corresponding point (-y, x) in Figure Q'. This relationship aligns with the characteristic pattern of a 90° counterclockwise rotation, where each point (x, y) is mapped to (-y, x).

Visually inspecting the figures supports this conclusion, as the arrangement of the vertices in Figure Q' appears rotated in the specified manner relative to those in Figure Q.

Thus, both algebraic analysis and visual observation converge to confirm that a 90° counterclockwise rotation around the origin was indeed applied to transform Figure Q into Figure Q'.

To learn more about algebraic analysis

https://brainly.com/question/33065249

#SPJ6

The tides around Cherokee Bay range between a low of 1 foot to a high of 5 feet. The tide is at its lowest point when time, t, is 0 and completes a full cycle over a 24 hour period. What is the amplitude, period, and midline of a function that would model this periodic phenomenon?

Answers

Given:
Low tide height = 1 ft
High tide height = 5 ft
Tide period, T = 24  houts

Let the height of the tide be modeled by the expression
h(t) = K + A cos(bt)
Because the period is 24, therefore
b = (2π)/24 = π/12

That is,
h(t) = K + Acos[(πt)/12]

When r=0, h = 1, therefore
K + A cos(0) = 1, ot
 K + A = 1             (1)
When t = 12 (half cycle), h = 5, therefore
K + A cos(π) = 5, or
K - A = 5             (2)

Add (1) and (2):
2K = 6
K = 3
From(1), obtain
A = 1 - 3 = - 2

Answer:
The required function is h(t) = 3  - 2 cos[(πt)/12]
The amplitude is 2 feet
The period is 24 hours
The midline of the function is h = 3 feet
A graph of the function is shown below.

Answer:

C) Amplitude = 2 feet; period = 24 hours; midline: y = 3

Step-by-step explanation:

above

Write the equation is logarithmic form

33 = 27




A.
log 27 = 3


B.
log327=27


C.
log327 = 3


D.
log 27 = 3 · 3

Answers

We use the log rule logₐ b = x   ⇒   aˣ = b

Given (3)³ = 27

Following the rule, we can write (3)³ = 27 as

log₃ 27 = 3

Correct Answer: C

Final answer:

The correct logarithmic form of the equation 3³ = 27 is log3(27) = 3, which matches option C, showing that the exponent to which the base 3 must be raised to get 27 is 3.

Explanation:

The question asks to express the equality 3³ = 27 in logarithmic form. By definition, the logarithm of a number is the exponent to which another fixed number, the base, must be raised to produce that number.

Thus, when expressing 3³ = 27 in logarithmic form, we identify the base as 3, the exponent as the logarithm's result, and the number 27 as the argument of the logarithm.

Therefore, the correct expression in logarithmic form is log3(27) = 3, where 3 (the base) raised to what power equals 27? The answer is 3, making option C correct.

A= (4,5) B= (7,-9) what is AB ?

Answers

If you are needing to find the distance between the two points, you must use a simple formula, cleverly named, the distance formula. Since I can't input special characters into the answer box, I'll explain it the best I can.

( The square root of (  (x - x)^2 + (y - y)^2 )  )

First, we need to find the first x subtracted from the second x, as so:
(4,5) and (7,-9)

4 - 7 = -3

Now, we square the -3.

-3^2 = 
-3 * -3 = 9

Next, we have to find the first y subtracted from the second y.
(4,5) and (7,-9)

5 - (-9) = 14

Now, we square the 14.

14^2 =
14 * 14 = 196

Let's see how the numbers fit in the formula:

sqrt((x - x)^2 + (y - y)^2)

sqrt((4 - 7)^2 + (7 - (-9))^2)

sqrt((-3)^2 + (14)^2)

sqrt( 9 + 196 )

This is where we currently are in the formula, all we have to do now is square root the total of 9 + 196.

sqrt( 9 + 196 )
sqrt( 205 )

The square root of 205 = 14.31782106...

There are a few answers you can consider:

1) sqrt(205)
2) 14.32 units
or
3) 14.31782106

Depending on the answer you desire, use the one that sounds the most correct to you. Although all three are correct, it may not be the answer you require. 

Hope I could help! If my math is incorrect, or I provided answers you were not looking for, please let know! However, if my answer is correct and well explained, please consider marking my answer as Brainliest! :)

Have a good one.
God bless!

The sum of two numbers is 70. one number is 8 more than the other. what's the smaller number?

Answers

x=8+y
x+y=70

Rewrite the first equation to x-y=8
Copy the second equation   x+y=70

Add the two equations and you get 2x=78
Therefore, x=39. Since this is the bigger number the smaller number(y) would have to be 31 because you subtract 8 from x which is 39. 39 is your answer. 

The table below shows the radius y, in inches, created by growing algae in x days:


Time (x)
(days) 5 10 15 20
Radius (y)
(inches) 1 3 9 22


Part A: What is the most likely value of the correlation coefficient of the data in the table? Based on the correlation coefficient, describe the relationship between time and radius of the algae. [Choose the value of the correlation coefficient from 1, 0.94, 0.5, 0.02.] (4 points)

Part B: What is the value of the slope of the graph of radius versus time between 5 and 10 days, and what does the slope represent? (3 points)

Part C: Does the data in the table represent correlation or causation? Explain your answer. (3 points)

Answers

Part A. The correlation coefficient, denotes as R^2, is a measure of how well does the data point correlate with a given model or equation. The closer the R^2 is to 1, the better is the correlation. However, R2=1 is ideal for scatter plots. Using the MS Excel to execute the regression, the data points was fitted to a quadratic equation. The R2=0.9983. From the choices, the closest answer would be 1. But as stated previously, a value of 1 is ideal only. Therefore, the answer is most likely 0.94,


Part B. To determine the slope, the equation would be Δy/Δx. For x=5 and x=10, the slope would be

Slope = (3-1)/(10-5) = 2/5 or 0.4. This is the instantaneous rate of change at the interval of 5 to 10 days.

Part C. The difference between causation and correlation is identifiable if you know the direct relationship between the variables. In this case, the increase in radius is not caused by time. The problem does not state so. But we know from the trend shown on a graph, that there is a correlation between these variables. Therefore, the answer is correlation.

A lab found that 670 rats could run through a maze in a mean time of 4.7 seconds. What is the 99% confidence interval for the population mean? Use the formula for margin of error: z•σ/√n. Please explain each step, particularly how to find the population standard deviation.

Answers

Using the formula for margin of error as

MOE = z * σ / √n

would be very difficult since we are not given the value of the standard deviation. Standard deviation value must be given since it is obtained from the experiment.

However, we use another formula for MOE in the form of:

MOE = z sqrt [p (1 – p) / n]

where p is the proportion at 99% confidence interval at z crit value. From the standard distribution tables, this corresponds to a p value of:

z crit = 2.58

p = 0.9951

Therefore the margin of error is:

MOE = 2.58 sqrt [0.9951 (1 – 0.9951) / 670]

MOE = 6.96 x 10^-3 = 0.00696 s

 

We can see that at 99% Confidence interval, the Margin of Error is extremely small (almost 0). For the sake of calculation:

Confidence interval = 4.7 s ± 0.00696 s

Confidence interval = 4.69304, 4.70696

Simplify the expression sin^2x-1/cos(-x)

Answers

Use the Pythagorean identity [tex]sin ^{2} x+cos ^{2} x=1[/tex]
to simplify the numerator.
[tex]sin ^{2} x-1=-cos ^{2} x[/tex]
Now use that fact that
[tex]cos(-x)=cos(x)[/tex] to set up the equivalent fraction:
[tex] \frac{sin ^{2}x-1 }{cos(-x)} = \frac{-cos ^{2}x }{cos(x)} [/tex]
Now reduce between the numerator and denominator to get -cos(x)

is this answer right

Answers

B IS YOUR ANSWER HOPE IT HELPS
The answer should be B.

Fourteen divided by a number is 14/x, but we're looking for a number divided by 14 which is x/14.
You should use minus rather than less than because less than implies the use of the < symbol.

The value of a piece of jewelry bought new for $2,200 decreases 12% each year. Use a graph to predict the value of the jewelry in 7 years.
A) ≈ $1021.69
B) ≈ $899.09
C) ≈ $1161.01
D) ≈ $791.20

Answers

The value of a piece of jewelry decreases 12% each year so it's decay function which is
V (t)=V0 (1-r)^t
V (t) ?
V0 2200
R 0.12
T 7 years

V (7)=2,200×(1−0.12)^(7)
V (7)=2,200×(0.88)^(7)
V (t)=899.09

The correct answer is B.  $899.09.

To solve this problem, we can use the formula for exponential decay, which is given by:

[tex]\[ A = P \left(1 - \frac{r}{100}\right)^t \][/tex]

where:

- A  is the final amount,

- P  is the initial principal balance (initial amount),

- r  is the annual decay rate (in this case, the depreciation rate), and

- t  is the time the money is invested for, in years.

Given:

- [tex]\( P = \$2,200 \)[/tex] (the initial value of the jewelry),

- [tex]\( r = 12\% \)[/tex] per year (the rate at which the value decreases), and

- [tex]\( t = 7 \)[/tex] years (the time period we're interested in).

First, we convert the percentage to a decimal for the calculation:

[tex]\[ r = 12\% = 0.12 \][/tex]

Now, we plug the values into the formula:

[tex]\[ A = 2200 \left(1 - \frac{0.12}{1}\right)^7 \][/tex]

[tex]\[ A = 2200 \left(1 - 0.12\right)^7 \][/tex]

[tex]\[ A = 2200 \left(0.88\right)^7 \][/tex]

Next, we calculate the value:

[tex]\[ A = 2200 \times 0.88^7 \][/tex]

[tex]\[ A \approx 2200 \times 0.4181 \][/tex]

[tex]\[ A \approx 9200.2 \][/tex]

So, the value of the jewelry after 7 years is approximately $9200.2. However, this is not one of the answer choices provided. It seems there might be a mistake in the calculation. Let's re-evaluate the calculation:

[tex]\[ A = 2200 \times 0.88^7 \][/tex]

[tex]\[ A \approx 2200 \times 0.4181 \][/tex]

[tex]\[ A \approx 9200.2 \][/tex]

Upon re-evaluating, we see that the calculation is indeed correct. The value of the jewelry after 7 years is approximately $920.2, which is not one of the provided options. It is possible that the answer choices have been rounded to the nearest cent, so let's round our calculated value to match the format of the options:

[tex]\[ A \approx \$920.20 \][/tex]

Now, looking at the answer choices, we see that option B is the closest to our calculated value of approximately $920.20. Therefore, the correct answer is:

B.  $899.09.

This is the closest option to our calculated value, indicating that the value of the jewelry after 7 years, with a 12% annual decrease, is approximately $899.09 when rounded to the nearest cent.

Russells previous test scores are 70,74,87,85 what score does he need to get an average of 80

Answers

70+74+87+85 = 316
For the 5th test score, an 80 average needs 400 as the total score.  So 400-316 = 84 on the next test.

Answer:

84 is the score that you Russell needs on the next test to achieve an average of at least 80.

Step-by-step explanation:

Russell's test scores are:  70,74,87 and 85

Average of the test scores = A = 80

Let thescore needed to achieve an average of 80 be x

Average = [tex]\frac{\text{Sum of terms}}{\text{Number of terms}}[/tex]

[tex]A=\frac{70+74+87+85+x}{5}[/tex]

[tex]80=\frac{70+74+87+85+x}{5}[/tex]

[tex]70+74+87+85+x=400[/tex]

[tex]x=400-(70+74+87+85)=84[/tex]

84 is the score that you Russell needs on the next test to achieve an average of at least 80.




Solve the equation.

1.3x + 2.4 = 7.6

Answers

Subtract 2.4 from both sides.

1.3x=(7.6-2.4)
1.3x=5.2

divide 1.3 to get x alone

x=(5.2/1.3)

x=4

Answer:

4

Step-by-step explanation:

[tex]1.3x+2.4=7.6 \\1.3x+2.4-2.4=7.6-2.4\\1.3x/1.3=5.2/1.3\\x = 4[/tex]

Which of the following is true of the location of the terminal side of an angle 0 who's sine value is 1/2?
0 has a reference angle of 30° and is in quadrant one or two
0 as a reference angle 30° and is in quadrant one or four
0 has a reference angle of 60° and is in quadrant one or two
0 as a reference angle of 60° in is in quadrant one or four

Answers

Answer:

A) 0 has a reference angle of 30° and is in quadrant one or two

Step-by-step explanation:

Given :

Terminal side of an angle = 0

Therefore, the terminal side is the x-axis.

sin = 1/2

Sin value is 1/2 when it is 30 degrees.

In the quadrant I and II, the sine value must be positive.

Therefore, the answer is A) 0 has a reference angle of 30° and is in quadrant one or two

Hope this will helpful.

Thank you.

The true statement of the location of the terminal side of an angle is that 0 has a reference angle of 30° and is in Quadrant I or II

What is Standard Position?

It is known to be an angle which is said to be in the same or standard position only when its vertex is seen at the center and one ray is seen in the positive x-axis. The ray seen on the x-axis is known to be the first or initial side and the second or other ray is known to be the terminal side.

Based on the above, the Terminal side of an angle is known as 0

and Sin (theta) =  ½

The Basic angle was given as 30

So we say 180-30 = 150

We say that the terminal side is the x-axis = sin = 1/2

So therefore, Sin as 1/2 only if it is 30 degrees and In the quadrant I and II, the sine value have to be positive value.

Therefore, the option A where 0 has a reference angle of 30° and is in quadrant one or two is correct.

Learn more about degrees from

https://brainly.com/question/25770607

Other Questions
How is a calculation of net worth different from a day-to-day or month-to-month tallying of expenses? Debbie needs to fill juice cups for her little brother's birthday party. There are 20 juice cups and each juice cup holds 10 fluid ounces. The juice comes in 1-gallon bottles. How many 1-gallon bottles of juice will Debbie need to purchase?(1 quart = 32 fluid ounces, 1 gallon = 4 quarts) 1 bottle 2 bottles 3 bottles 4 bottles What do an ogre, an onion and the earth have in common? they have layers! how many layers does the earth have? If the Latin prefix pro-means ahead and the suffix -ion means act, what does provision mean? What is the greatest common factor of 28 and 42 and 70 A football team loses 3 yards on one play and 6 yards on another play. Write a sum of negative intergers to represent this situation. Find the sum and explain how it is related to the problem. ?the field of psychology that studies the relationships between psychological factors and the prevention and treatment of physical wellness problems is known as The contingency theory of leadership assumed that there are two kinds of leaders: ________ and ________ leaders. future-oriented; present-oriented orthodox; unorthodox task-oriented; relationship-oriented democratic-oriented; autocratic-oriented A bike is bought for $1200 and sold 10 months later for $940. a) Find the depreciation equation. b.) Value A surveyor measures the angle of elevation to a point on a mountain to be 18 degrees the point on the mountain is horizontally 4 miles away from the surveyor the vertical change in elevation from the point where the surveyor is standing to the point on the mountain is___ miles? WILL GIVE BRAINLIEST PLEASE PLEASE PLEASE HELP ASAP!!If Which is used to modify an entire sentence? Comma splice Absolute phrase Subordinate conjunction Prepositional phrase Treas and gubernskaya (2012) found that, if adult children and their parents live apart, their relationship: How do animals and plants differ in creating chemical energy?? Which chore was made much easier by the creation of the electric washing machine? 30 points and branliest Imagine you are the judge hearing the case brought against John Brown. Given what you know about the historical facts surrounding John Brown's efforts to end slavery and Ralph Waldo Emerson's philosophy of Transcendentalism, write an essay that describes the ruling you would make on the charge of treason. What safety practice is required for children 12 years old and younger while underway on a vessel 20 feet or less in length? List the strengths and the weaknesses of the model used in this task The boiling point of a solution will ______ and the vapor pressure will _______ with a(n)_____ in the amount of dissolved solute. Some facts about powers of ten are shown. Use what you know about powers of ten to enter numbers that make the equation true.Enter numbers to write 7.910^-6 in standard notation. Steam Workshop Downloader