WZ and XR are diameters of circle C. The diagram is not drawn to scale. What is the measure of ZWX?
322
230
272
38

Answers

Answer 1

Answer:

Measure of arc ZWX is 230°.

Step-by-step explanation:

Given:

arc WX = 50°

Now

The diameter divide a circle into two equal parts

so

[tex]arc\ ZWX=arc\ ZRW+arc\ WX[/tex]

Since WZ is diameter of the circle.

[tex]arc\ ZRW=180\°[/tex]

substituting in above equation we get

[tex]arc\ ZWX=180\°+50\°=230\°[/tex]

Hence Measure of arc ZWX is 230°.

WZ And XR Are Diameters Of Circle C. The Diagram Is Not Drawn To Scale. What Is The Measure Of ZWX?32223027238
Answer 2

Answer:

B. 230

Step-by-step explanation:

Just took the test


Related Questions

What type of variable is the number of gallons of gasoline pumped by a filling station during a day? Select one: a. Qualitative b. Continuous c. Attribute d. Discrete

Answers

Answer:

b. Continuous

Step-by-step explanation:

Continuous variable is a variable that can take on any value between its minimum value and its maximum value. A continuous variable is a type of quantitative variable used to describe data that is measurable while Discrete variables are countable in a finite amount of time. Now, justifying whether the gallons of gasoline pumped by a filling station during a day is continuous or discrete. The number of gallons of gasoline pumped by a filling during during a day is a continuous variable because it has a measurable volume which can take value from the minimum to maximum values of the total volume of gasoline the filling station have in the storage tank.

Final answer:

The number of gallons of gasoline pumped by a filling station in a day is a Continuous variable because it can take on an infinite number of values between any two given points.

Explanation:

The number of gallons of gasoline pumped by a filling station during a day is a Continuous variable. Continuous variables are numerical variables that have an infinite number of values between any two values. A continuous variable can be numeric or date/time. For instance, the number of gallons pumped, which can take on possibly infinite values ranging from zero upwards, is a continuous variable.

In contrast, a Discrete variable is a variable whose value is obtained by counting. A Qualitative (or categorical) variable is a variable that can be put into categories, but the numbers placed on the categories have no numerical meaning. An Attribute is a specific domain within qualitative data, like a sub-category.

Learn more about Continuous Variable here:

https://brainly.com/question/31373369

#SPJ3

If log_a(13)= 4, what is the value of a^4?​

Answers

Answer:

Step-by-step explanation:

[tex]log_{a}(13)=4\\so~ a^{4}=13[/tex]

Imagine that you take a road trip from A to D, but you have to do it in segments. Let’s say the distance from A to B is 145 miles; from B to C is 160 miles, and C to D is 115 miles. It takes you 6 hours to drive from A to D. What was your average speed (in miles per hour) during your trip from A to D? (Hint: How many miles did you drive from A to D? Then divide the total miles by the number of hours).
A. 50
B. 60
C. 70
D. 80
E. 90

Answers

Answer:

C

Step-by-step explanation:

The average speed can be obtained by adding the distances together and dividing by the total amount of time.

The total distance the man traveled from A to D is the addition of the distance from A to B plus the distance from B to C plus the distance from C to D. This is mathematically equal to 145 + 160 + 115 = 420 miles.

Dividing 420 miles by 6 = 70 miles per hour

If ABCD is congrunent to , pqrs, then AD is congrent to ?

Answers

Answer:

AD is congruent to RS

Step-by-step explanation:

we know that

If two figures are congruent, then its corresponding sides and its corresponding angles are congruent

In this problem

If

ABCD≅PQRS

then

Corresponding angles

∠A≅∠P

∠B≅∠Q

∠C≅∠R

∠D≅∠S

Corresponding sides

AB≅PQ

BC≅QR

CD≅RS

AD≅PS

What is the perimeter of rectangle ABCDABCD? (1) The longer side of the rectangle is 2 meters shorter than its diagonal (2) The ratio of the shorter side of the rectangle to its diagonal is 13

Answers

Answer:

(1) P=4a+4

(2) P=2a+4[tex]\sqrt{42}[/tex]a

Step-by-step explanation:

Well, let us call longer side b, shorter side a and diagonal d. The perimeter of a rectangle is 2*(a+b). Let us write this formula as P=2*(a+b)

In (1) it is stated that b=a+2. Hence, the perimeter of the rectangle is P=2*(a+b). In terms of b, let us write (a+2). So P=2*(a+a+2)=4a+4.

In (2) it is stated that d/a=13 or d=13a. From Pythagorean theorem d^2=a^2+b^2. Hence, b^2=168a^2 or b=2[tex]\sqrt{42}[/tex]a. Finally, P=2*(a+b)=2*(a+2[tex]\sqrt{42}[/tex]a)=2a+4[tex]\sqrt{42}[/tex]a

I NEED THE ANSWERS TO THIS QUESTION AS SOON AS POSSIBLE CHECKING UP ON BEHIND SCHOOL WORK THANK YOU

Answers

Answer:

See all four answers with their explanation below and the graph attached.The green arrow on the number line is the solution of the inequality.

Explanation:

a). Description of what Brian did wrong.

Brian did not solve the inequality correctly. It seems he made several wrong steps:

He added up 2 and 3 to get 5, which is wrong because 2 and 3 are in opposite sides of the inequalityHe use the symbol <, which is wrong because there is a negative sing in front of the varialbe (x) which changes the symbol to >.

b). Your work solving the inequality:

Subtract 2 from both sides:

        - x < 3 - 2

        -x < 1

Muliply both sides by - 1, which changes the symbol < to >:

       x > - 1

Then the solution of the inequality is all the real numbers greater than - 1.

c). The correct solution graphed on a number line

Since the number - 1 is not included in the solution set of the inequality you must use an oper circle around the number - 1 on the number line.Since the solution set is all the numbers greater than - 1 you draw an arrow pointing to the right of the number - 1 on the number line.See the correct graph in the diagram attached. The green line on the number line is the solution to the inequality.

d). The correct solution in set notation.

Three valid forms indicating the solution in set notation are:

{x: > - 1}, which is read x such that x is greater than - 1

{x | x > - 1}, which is read x such that x is greater than - 1

{x ∈ R | x > - 1}, which is read, x belonging to real numbers, such that x is greater than - 1.

Both the colon (:) and the straight bar (|) mean "such that".

A painting is covering up some of the tiles on the wall. The tiled wall is shaped like a rectangle . There are 28 square tiles on the whole wall. How many of the tiles are covered by the painting?

Answers

Answer:

The number of tiles are covered by the painting are 12.

Step-by-step explanation:

Consider the provided information.

The painting is covering up some of the tiles on the wall as shown below:

Here it is given that there are 28 squares tiles on the wall.

Total tiles = Number of tiles covered by the painting - uncovered tiles

28 =  Number of tiles covered by the painting - 16

Number of tiles covered by the painting = 28 - 16

Number of tiles covered by the painting = 12

Hence, the number of tiles are covered by the painting are 12.

Nancy knows that the perimeter of her garden is 28 feet, and the length is 8 feet. She forgot to measure the width, but was able to solve for it by subtracting 16 from 28, and then dividing by 2. Which of the equations below can be solved with these steps?

Answers

Answer:

W = (P - 2L)/2 = (28- 2*8)/2 = 6

Where W is the width, P is the perimeter and L is the length of the garden.

Step-by-step explanation:

Since the equations are not given, i will try to come up with the similar equation than the ne that was the correct option in this exercise.

You can obtain the perimeter of a rectangle by summing the length of its four sides. Thus, the perimeter of the garden, lets call it P, is 2W + 2L, where W denotes the width and L the length. Since Nancy knows the perimeter, in order to calculate the width she can substract from it 2L (which is also known), and divide by 2 to obtain W, thus

W = (P - 2L)/2

If we reemplace P by 28 and L by 8, we obtain

W = (28-8*2)/2 = (28-16)/2 ) = 12/2 = 6.

find the radius pls. help

Answers

Good morning,

Answer:

r = 4 cm

Step-by-step explanation:

V = h × (base area)

  = 12 × (π×r²)

then 192π = 12π×r²

Then 192 = 12×r²

Then r² = 192÷12 = 16

Then r = √16 = 4.

:)

VThe speed of sound is approximately 768768768 miles per hour. When an object travels faster than the speed of sound, it creates a sonic boom. Write an inequality that is true only for speeds (s)(s)left parenthesis, s, right parenthesis at which a moving object creates a sonic boom.

Answers

Answer:

The Inequality [tex]s > 768\ mi/hr[/tex] is true at which a moving object creates a sonic boom.

Step-by-step explanation:

Given:

Speed of Sound = 768 miles per hour

Also Given:

When an object travels faster than the speed of sound, it creates a sonic boom.

We need to find the inequality which is true only for speeds (s) at which a moving object creates a sonic boom

So We can say;

When;

[tex]s < 768\ mi/hr[/tex]  ⇒ Normal sound no sonic boom (false)

[tex]s = 768\ mi/hr[/tex]  ⇒ speed of sound but no sonic boom (false)

[tex]s > 768\ mi/hr[/tex]  ⇒ sonic boom is created (True)

Hence The Inequality [tex]s > 768\ mi/hr[/tex] is true at which a moving object creates a sonic boom.

You are a researcher studying the lifespan of a certain species of bacteria. A preliminary sample of 35 bacteria reveals a sample mean of ¯ x = 80 x ¯ = 80 hours with a standard deviation of s = 4.8 s = 4.8 hours. You would like to estimate the mean lifespan for this species of bacteria to within a margin of error of 0.65 hours at a 98% level of confidence. What sample size should you gather to achieve a 0.65 hour margin of error? Round your answer up to the nearest whole number.

Answers

Final answer:

To calculate the desired sample size with a 98% confidence level and 0.65-hour margin of error, we use the appropriate formula for sample size calculation in statistics, which leads us to a required sample size of 98 bacteria.

Explanation:

In this case, we are trying to determine the appropriate sample size using statistical methodology. To calculate this, we can use the formula for the sample size which is n = (Z∗σ/E)^2. Here, 'Z' is the z-value corresponding to the desired confidence level (for 98% confidence, Z score or z-value is 2.33), σ is the standard deviation (which is 4.8 hours in this case), and 'E' is the desired margin of error (0.65 hours).

Substituting these values into the formula gives: n = (2.33∗4.8/0.65)^2. After simplifying this calculation, we get n = 97.46. However, we can't have a fractional part of a sample, so we round up to the nearest whole number which is 98. So, you would need a sample size of 98 bacteria in order to achieve a 0.65-hour margin of error at a 98% confidence level.

Learn more about Sample Size Calculation here:

https://brainly.com/question/34288377

#SPJ3

Sam makes $400 per week plus $20 commission on each new sell phone plan he sells. Write an equation to determine how many new plans she sold to earn $680 last week

Answers

Answer:

She sold 14 new plans to earn $680 last week.

Step-by-step explanation:

$400 + 20(x) = $680

Take 400 away from total cost. So, 680 - 400 = 280.

Now, divide 280 by 20, and x = 14.

The equation would be $400 + 20(14) = $680

A person 100 meters from the base of a tree, observes that the angle between the ground and the top of the tree is 18 degrees. Estimate the height h of the tree to the nearest tenth of a meter.

Answers

This is right angle trig. We know that...

cos(18°) x hypotenuse = 100

hypotenuse = 100/cos(18°)

hypotenuse = 105.15 meters approx.

Because they want the height of the tree we want "sin(18°) x hypotenuse".

sin(18°) x 105.15 = 32.5 meters approx.

answer: 32.5 meters approx.

The required height of the tree is 32.5 meters.

Given that,
A person 100 meters from the base of a tree, observes that the angle between the ground and the top of the tree is 18 degrees.  To estimate the height h of the tree to the nearest tenth of a meter.

What are trigonometric equations?

These are the equation that contains trigonometric operators such as sin, cos.. etc.. In algebraic operations.

Here,
let the height of the tree be x, and the slant height from the foot of the person to the top of the tree be h,
according to the question,
base length = 100
cos 18 = 100 / h
h = 105.14
Now,
sin 18 = x / h
sin 18 = x / 105.14
x = 32.5 meters

Thus, the required height of the tree is 32.5 meters.

Learn more about trigonometry equations here:

brainly.com/question/22624805

#SPJ2


Point C = (4/9,-5/9) lies on the circle with the center at S=(-2/3, 3/4). If CD is a diameter of circle S, find the coordinates for D. Answer must be given as a simplified fraction to receive full credit.

Answers

Answer:

Step-by-step explanation:

If CD is a diameter of circle S, then CD goes through circle S at point S.  CS is a radius, and so is DS.  That means that they are the same length.  That also means that S is the midpoint of CD.  We can use the midpoint formula and the 2 points we are given to find the other endpoint, D.

[tex](-\frac{2}{3},\frac{3}{4})  =(\frac{\frac{4}{9}+x }{2},\frac{-\frac{5}{9}+y }{2})[/tex]

To solve for x, we will use the x coordinate of the midpoint; likewise for y.  x first:

[tex]-\frac{2}{3}=\frac{\frac{4}{9}+x }{2}[/tex]

Multiply both sides by 2 to get rid of the lowermost 2 and get

[tex]-\frac{4}{3}=\frac{4}{9}+x[/tex]

Subtract 4/9 from both sides to get

[tex]x=-\frac{16}{9}[/tex]

Now y:

[tex]\frac{3}{4}=\frac{-\frac{5}{9}+y }{2}[/tex]

Again multiply both sides by that lower 2 to get

[tex]\frac{3}{2}=-\frac{5}{9}+y[/tex]

Add 5/9 to both sides to get

[tex]y=\frac{37}{18}[/tex]

And there you go!

[tex]D(-\frac{16}{9},\frac{37}{18})[/tex]

4x/ 2x + y + 2y/ 2x + y Perform the indicated operation. Be sure the answer is reduced.

Answers

Answer:

[tex]\frac{4x}{2x+y} +\frac{2y}{2x+y}=2[/tex]

Step-by-step explanation:

Given:

The expression to simplify is given as:

[tex]\frac{4x}{2x+y} +\frac{2y}{2x+y}[/tex]

Since, the denominator is same, we add the numerators and divide it by the same denominator. This gives,

[tex]\frac{4x+2y}{2x+y}[/tex]

Now, we simplify further by factoring out the common terms from the numerator and denominator if possible.

We observe that, 2 is a common factor to both [tex]4x\ and\ 2y[/tex]. So, we factor out 2 from the numerator. This gives,

[tex]\frac{2(2x+y)}{2x+y}[/tex]

Now, the term [tex]2x+y[/tex] is common in both the numerator and denominator. Hence, [tex]\frac{2x+y}{2x+y}=1[/tex]

So, the simplified form is:

[tex]=2\times \frac{2x+y}{2x+y}\\\\=2\times 1\\\\=2[/tex]

NEED HELP NOW 30 POINTS. Which number is closest to square root of 57? 7.8 7.5 8.5 6.7

Answers

√57 = 7.549

Round to 7.5

Answer:

7.5

Step-by-step explanation:

7.549

Liam and evan are mixing paint. Liam uses 2 quarts of yellow paint and adds 3 1/4 jars of blue paint. Evan uses 1/2 quart of yellow paint and adds 5 1/2 jars of red paint. They end up with the same volume of paint. Write an equation to represent the situation.

Answers

Answer:

The required equation is given by,

2 + [tex]\frac {13x}{4}[/tex] = [tex]\frac {1}{2} + \frac {11y}{2}[/tex]

Step-by-step explanation:

Let, each jar of  Liam's paint contains x quarts of paint.

Then, Liam's solution contains,

2 + [tex]3\dfrac {1}{4} \times x[/tex]  quarts of paint  or,

2 + [tex]\frac {13x}{4}[/tex] quarts of paint

and,

let, each jar of Evan's paint  contains, y quarts of paint.

Then, Evan's solution contains,

[tex]\frac {1}{2} + 5 \dfrac {1}{2} \times y[/tex] quarts of paint or,

[tex]\frac {1}{2} + \frac {11y}{2}[/tex] quarts of paint

now, according to the question,

the required equation is given by,

2 + [tex]\frac {13x}{4}[/tex] = [tex]\frac {1}{2} + \frac {11y}{2}[/tex]

Final answer:

To find an equation that represents the volume of paint mixed by Liam and Evan, we assume that 1 jar equals 1 quart. By adding the quarts of paint each person uses, we get the equation 2 + 3 1/4 = 1/2 + 5 1/2, meaning they both used the same total volume of paint.

Explanation:

To find the equation that represents the situation, we need to equate the total volume of paint used by Liam to the total volume used by Evan. We know that Liam uses 2 quarts of yellow paint and adds 3 1/4 jars of blue paint. Evan, on the other hand, uses 1/2 quart of yellow paint and adds 5 1/2 jars of red paint. Assuming that 1 jar is equivalent to 1 quart, we can simply add the volumes for Liam and Evan:

Liam's total volume = 2 quarts (yellow) + 3 1/4 quarts (blue)

Evan's total volume = 1/2 quart (yellow) + 5 1/2 quarts (red)

Since they end up with the same volume of paint, we have the equation:

2 + 3 1/4 = 1/2 + 5 1/2

To solve for quarts, simplify both sides:

5 1/4 = 6

This equation represents the volumes of paint mixed by Liam and Evan.

Use a right triangle to write the following expression as an algebraic expression. Assume that x is positive and that the given inverse trigonometric function is defined for the expression in x. sin (cos^-1 14x) Show the triangle that is correct to write the given expression as an algebraic expression?

Answers

Answer:

[tex]Sin(Cos^{-1} (14x))=\sqrt{1-196x^2}[/tex]

Step-by-step explandation:

First of all, from the figure we can define the cosine and sine functions as

[tex]Cos(theta)=\frac{adjacent }{hypotenuse }[/tex]

[tex]Sin(theta)=\frac{Opposite}{hypotenuse }[/tex]

And by analogy with the statement:

[tex]14x=\frac{adjacent }{hypotenuse }[/tex]

Which can be rewritten as:

[tex]\frac{14x}{1}=\frac{adjacent }{hypotenuse }[/tex]

You have then that, for the given triangle, the values of the adjacent and hypotenuse sides, are then given by:

:

Adjacent=14x

Hypotenuse=1

And according to the Pythagorean theorem:

[tex] Opposite=\sqrt{1-(14x)^2}[/tex]

Finally, by doing:

[tex]Cos^-1(14x)=theta[/tex]

We have that:

[tex]Sin(Cos^{-1} (14x))=Sen(theta)=\frac{Opposite}{hypotenuse}=\frac{\sqrt{1-(14x)^2}}{1}=\sqrt{1-(14x)^2}[/tex]

The expression [tex]\( \sin(\cos^{-1}(14x)) \)[/tex] is equivalent to the expression [tex]\[ \sqrt{1 - 196(x)^2} \][/tex].

To express [tex]\( \sin(\cos^{-1}(14x)) \)[/tex] using a right triangle, we proceed as follows:

1. Understand the expression:

[tex]\( \cos^{-1}(14x) \)[/tex] denotes the angle [tex]\( \theta \)[/tex] such that [tex]\( \cos(\theta) = 14x \)[/tex].

We are required to find [tex]\( \sin(\theta) \)[/tex].

2. Use a right triangle:

Let's consider a right triangle where:

One of the acute angles is [tex]\( \theta \)[/tex].

Assume [tex]\( \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{14x}{1} \)[/tex]

To find the opposite side (let's call it [tex]\( \sqrt{1 - (14x)^2} \))[/tex], we use the Pythagorean identity:

[tex]\[ \sin(\theta) = \sqrt{1 - \cos^2(\theta)} = \sqrt{1 - (14x)^2} \][/tex]

[tex]\[ \sin(\cos^{-1}(14x)) = \sqrt{1 - (14x)^2} \][/tex]

[tex]\[ \sin(\cos^{-1}(14x)) = \sqrt{1 - 196(x)^2} \][/tex]

What would be the difference at the end of one year between the simple interest earned on a deposit of $450 at 4.5% and the compound interest earned on $450 at 4.5% compounded annually?


$22.50


$22.25


$0


$20.25

Answers

Answer: $0

Step-by-step explanation:

The formula for simple interest is expressed as

I = PRT/100

Where

P represents the principal

R represents interest rate

T represents time in years

I = interest after t years

From the information given

T = 1 year

P = $450

R = 4.5%

Therefore

I = (450 × 4.5 × 1)/100

I = 2025/100

I = 20.25

For compound interest,

Initial amount deposited into the account is $450 This means that the principal,

P = 450

It was compounded annually. This means that it was compounded once in a year. So

n = 1

The rate at which the principal was compounded is 4.5%. So

r = 4.5/100 = 0.045

It was compounded for just a year. So

t = 1

The formula for compound interest is

A = P(1+r/n)^nt

A = total amount in the account at the end of t years. Therefore

A = 450 (1+0.045/1)^1×1

A = 450(1.045) = $470.25

Compound interest = 470.25 - 450 = 20.25

The difference is 20.25 - 20.25 = 0

Answer:

$0

Step-by-step explanation:

There is no difference between the simple interest and compound interest at the end of one year.

A person rolls a standard six-sided die 9 times. In how many ways can he get 3 fours, 5 sixes, and 1 two?

Answers

Final answer:

The person can roll the die in 1512 different ways to get 3 fours, 5 sixes, and 1 two in 9 rolls.

Explanation:

When rolling a standard six-sided die, there are 6 possible outcomes for each roll. To find the number of ways the person can get 3 fours, 5 sixes, and 1 two in 9 rolls, we can use the concept of combinations. The number of combinations of getting 3 fours, 5 sixes, and 1 two from 9 rolls is calculated by multiplying the number of ways to choose the positions of the fours, sixes, and two, and then multiplying it by the probability of each outcome.

To calculate this, we can use the formula for combinations:

C(n, r) = n! / ((n - r)! x r!)

Using this formula, we can find the number of ways to choose the positions of the fours, sixes, and two:

Number of ways to choose the positions of the fours: C(9, 3) = 9! / ((9 - 3)! x3!) = 84Number of ways to choose the positions of the sixes: C(6, 5) = 6! / ((6 - 5)! x 5!) = 6Number of ways to choose the positions of the two: C(3, 1) = 3! / ((3 - 1)! x 1!) = 3

Finally, we can multiply these numbers together to find the total number of ways:

Total number of ways = 84 x 6 x 3 = 1512

Learn more about Combinations here:

https://brainly.com/question/24703398

#SPJ3

Jack accepted a job to paint a new house. He calculated that he can complete the job in 30 hours. He hired a trainee to assist him. He has seen the trainee work and estimates that it the trainee working alone would take 45 hours to complete the job. How much time should the two of them working together need to paint the house? (Round your answer to the nearest tenth.)

Answers

Answer:

20hours

Step-by-step explanation:

Jack can complete the painting in 30hours. The fraction he can paint per hour is thus 1/30

Trainee can complete the painting in 45hours, the fraction he can paint per hour is 1/45

If they are working together, the fraction that can paint in an hour is :

1/45 + 1/30 = 5/90 = 1/18

Now we know they can paint 1/18 of the room in an hour, the number of hours needed to completely paint the room is thus 1/1/18 = 18 hours

Rounding up answer to the nearest tenth is 20hours

Find the length of the curve with equation $y=\dfrac{1}{3}(x^2+2)^{3/2}$ for $1\leq x\leq 4$.

Answers

To find the length of the curve defined by $y=\dfrac{1}{3}(x^2+2)^{3/2}$ over the interval $1\leq x\leq 4$, we must integrate the square root of the sum of 1 and the square of the derivative of our function from 1 to 4.

To begin with, we want to find the derivative of our function. In other words, we need to compute $dy/dx$.

The derivative, with the Chain Rule gives us:
$y' = \dfrac{1}{3} \cdot \dfrac{3}{2} \cdot 2x \cdot (x^2+2)^{1/2}$
Simplifying gives:
$y' = x \cdot (x^2+2)^{1/2}$

Next, we substitute $y'$ into the formula for finding the length of a curve:

$L = \int_{a}^{b}\sqrt{1+(y')^2}dx$

We should note that $a = 1$ and $b = 4$ here. We substitute $y'=x \cdot (x^2+2)^{1/2}$ and obtain:

$L = \int_{1}^{4}\sqrt{1+(x \cdot (x^2+2)^{1/2})^2}dx$

We can now evaluate the integral, where we will square the entire derivative and add 1 as being under the square root.

So, finally, evaluating this integral gives us the length of the curve, which in this case is 24.

Therefore, the length of the curve $y=\dfrac{1}{3}(x^2+2)^{3/2}$ over the interval $1\leq x\leq 4$ is 24.

Learn more about Curve Length here:

https://brainly.com/question/32515746

#SPJ12

Could someone help me with this exercise?

Answers

Answer:

5%: 66 2/3 mL6.5%: 133 1/3 mL

Step-by-step explanation:

Let x represent the number of milliliters of 6.5% vinegar required. Then the total amount of acetic acid in the mix is ...

  6.5%·x + 5%(200 -x) = 6%·200

  1.5x = 200 . . . . . . . . . . . . . multiply by 100, subtract 1000

  x = 200/1.5 = 133 1/3 . . . . mL of 6.5% vinegar

  200-x = 66 2/3 . . . . . . . . . mL of 5% vinegar

construct an equation for the expression: the sum of a number and itself is 8. Show the solution to the equation and prove your solution to be true through your work.



PLEASE HELP ME I'M SO BEHIND ON MY SCHOOLING NEED THE ANSWER ASAP PLEASE!!!!!!!! THANK YOU

Answers

Answer:

equation : 2x = 8

solution : x = 4

Step-by-step explanation:

let the number be x

"the sum of a number and itself "

= sum of x and x

= x + x

= 2x

"the sum of a number and itself  is 8"

2x = 8

solving the equation, divide both sides by 2

2x = 8

x = 8/2

x = 4

geometry, thanks if you help me! :)

Answers

Answer:

A is a function/B is not.

Step-by-step explanation:

A, there are 1 x value for 1 y value.

B, is not a function because for 1 x value, there are 2 y values.

Answer:

See below.

Step-by-step explanation:

Graph A is a function because it passes the vertical line test. You could draw a vertical line anywhere on the graph which will only pass through the graph at one point. It is a many-to-one relation.

Graph B is not a function because some vertical lines will pass through the graph at  2 points. It is a one-to-many relation.,

One-to-one and many-to-one relations are functions  but one-to-many are not functions.

What conic section degenerates into a line?




Parabola



Hyperbola



Circle



Ellipse

I think it's Ellipse? I'm not sure though

Answers

Answer: A) parabola

Some degenerate parabola cases form a single straight line, while other cases form one pair of parallel lines.

A degenerate hyperbola forms two lines that intersect at the vertex of the cone. We can rule out choice B.

A degenerate circle is a single point, so we can rule out choice C.

A degenerate ellipse is also a single point. Any circle is an ellipse (but not the other way around). We can rule out choice D.

f(m) = 2.5 + 0.12m
If Natalie paid $6.82 for one call, how many minutes long was it?
Select one:
A. 28
B. 36
C. 42
D. 45

Answers

Answer:

36 minutes long

Step-by-step explanation:

6.82 = 2.5 + 0.12m

4.32 = 0.12m

36 = m; 36 minutes long.

Answer:

B. 36.

Step-by-step explanation:

Substituting 6.82 for m:

6.82 = 2.5 + 0.12m

0.12 m = 6.82 - 2.5

0.12m = 4.32

m = 4.32 / 0.12

m = 36 minutes.

A machine has four components, A, B, C, and D, set up in such a manner that all four parts must work for the machine to work properly. Assume the probability of one part working does not depend on the functionality of any of the other parts. Also, assume that the probabilities of the individual parts working are P(A) = P(B) = 0.93, P(C) = 0.95, and P(D) = 0.92. Find the probability that the machine works properly.

Answers

Answer:

0.756

Step-by-step explanation:

It is given that a machine has four components, A, B, C, and D.

[tex]P(A)=P(B)=0.93, P(C)=0.95,P(D)=0.92[/tex]

If these components set up in such a manner that all four parts must work for the machine to work properly.

We need to find the probability that the machine works properly. It means we have to find the value of [tex]P(A\cap B\cap C\cap D)[/tex].

If two events X and Y are independent, then

[tex]P(X\cap Y)=P(X)\times P(Y)[/tex]

Assume the probability of one part working does not depend on the functionality of any of the other parts.

[tex]P(A\cap B\cap C\cap D)=P(A)\times P(B)\times P(C)\times P(D)[/tex]

Substitute the given values.

[tex]P(A\cap B\cap C\cap D)=0.93\times 0.93\times 0.95\times 0.92[/tex]

[tex]P(A\cap B\cap C\cap D)=0.7559226[/tex]

[tex]P(A\cap B\cap C\cap D)\approx 0.756[/tex]

Therefore, the probability that the machine works properly is 0.756.

Final answer:

The probability that the machine works properly is found by multiplying the probabilities of all four components working: P(A) * P(B) * P(C) * P(D) = 0.93 * 0.93 * 0.95 * 0.92 = 0.7513, or 75.13%.

Explanation:

To find the probability that the machine works properly, we need to calculate the probability that all four components, A, B, C, and D, are working. Since the functionality of each component is independent, we can find this combined probability by multiplying the individual probabilities together.

The probability of A working is P(A) = 0.93, B working is P(B) = 0.93, C working is P(C) = 0.95, and D working is P(D) = 0.92. So the probability of the machine working is:

P(Machine works) = P(A) * P(B) * P(C) * P(D) = 0.93 * 0.93 * 0.95 * 0.92 = 0.7513

Therefore, the probability that the machine works properly is 0.7513, which is 75.13%.

The useful life of a certain piece of equipment is determined by the following formula: u =(8d)/h^2, where u is the useful life of the equipment, in years, d is the density of the underlying material, in g/cm3, and h is the number of hours of daily usage of the equipment. If the density of the underlying material is doubled and the daily usage of the equipment is halved, what will be the percentage increase in the useful life of the equipment?A. 300%B. 400%C. 600%D. 700%E. 800%

Answers

Answer:

E. 800%

Step-by-step explanation:

Since,

u = 8d/h²      __________ eqn (1)

Now, density (d) is doubled and usage (h) is halved.

Hence the new life (u'), becomes:

u' = 8(2d)/(0.5h)²

u' = 8(8d/h²)

using eqn (1), we get:

u' = 8u

In percentage,

u' = 800% of u

In words, the percentage increase in useful life of the equipment is 800%.

Answer: E. 800%

Step-by-step explanation:

The useful life of a certain piece of equipment is determined by the following formula: u =(8d)/h^2, where u is the useful life of the equipment, in years, d is the density of the underlying material, in g/cm3, and h is the number of hours of daily usage of the equipment.

Assuming d = 1 and h = 1, then

u = (8 × 1)/1^2 = 8

If the density of the underlying material is doubled and the daily usage of the equipment is halved, it means that

d = 2 and h = 1/2 = 0.5, therefore,

u = (8 × 2)/0.5^2 = 16/0.25 = 64

64/8 = 8

The percentage increase in the useful life of the equipment is

8 × 100 = 800%

Need help this and I need both them to show work

Answers

Answer:

11. ∠ABC = 96°

12. (x – 2)² + (y + 3)² = 4

Step-by-step explanation:

11. The inscribe angle (the angle inside the circle, ∠ABC) is equal to half of the outer circle.

∠ABC = 1/2∠AC

∠ABC = 1/2(192°) = 96°

12. The general equation for a circle is: (x – h)² + (y – k)² = r², where

h and k are the center of the circle (h, k), and r is the radius.

Look at the graph, the circle is centered at (2, -3), so

h=2

k=-3

and the radius of the circle is 2, so

r=2

Plug it all back into the equation:

(x – h)² + (y – k)² = r²

(x – (2))² + (y – (-3))² = (2)²

(x – 2)² + (y + 3)² = 4

Other Questions
Who is ernes hekel? General characteristics of civilization include all of the following except If Marty doesn't drink caffeinated sodas daily, he experiences severe headaches. Marty is most clearly showing signs ofA.) a hypnagogic stateB.) toleranceC.) dissociationD.) physical dependenceE.) psychological dependence Scientists have discovered and analyzed a huge number of fossils that represent a wide variety of species. What type of evidence for evolution is provided by the fossil record? Which statements best describe differences in the style of the two works? Prior to working at a VITA/TCE site, ALL VITA/TCE volunteers (greeters, client facilitators, tax preparers, quality reviewers, etc.) must:a.Annually pass the Volunteer Standards of Conduct (VSC) certification test with a score of80% or higher.b.Sign and date the Form 13615, Volunteer Standards of Conduct Agreement, agreeing to comply with the VSC by upholding the highest ethical standards.c.Pass the Advanced tax law certification.d.All of the abovee.A and B According to Bandura's model of observational learning, which of the following characteristics of television depictions of violent behavior makes the violent behavior more likely to be imitated?A) Violent behavior is performed by a high-status individual or model.B) The aggressive person is punished for his or her violent behavior.C) The violent programs show the long-term negative consequences of violence, such as the months of painful rehabilitation following a gunshot wound.D) The victim of the aggressive behavior is the main character of the program. A woman who is a carrier for hemophilia marries a hemophiliac man. What will be their childrens possible phenotypes? While on a business trip to Summerfield, Vera treated her co-workers to a meal that cost$12. Vera knew that when the bill came, she would need to pay Summerfield sales tax of11.75% and would want to leave a 15% tip on the original $12. Including tax and tip, howmuch did Vera's meal cost? The mean income per person in the United States is $50,000, and the distribution of incomes follows a normal distribution. A random sample of 10 residents of Wilmington, Delaware, had a mean of $60,000 with a standard deviation of $10,000. At the 0.05 level of significance, is that enough evidence to conclude that residents of Wilmington, Delaware, have more income than the national average?a. State the null hypothesis and the alternate hypothesis.b. State the decision rule for 0.05 significance level.Reject H0 if t > ____c. Compute the value of the test statistic.d. Is there enough evidence to substantiate that residents of Wilmington, Delaware, have more income than the national average at the 0.05 significance level? A function is shown f=(x)=x^2+ 2X-3 show the X intercepts and maximum or minimum of the function lonic compounds form between elements thatare metals and elements that are____ Bart is asked by his psychotherapist to close his eyes. After a few minutes of relaxing, the therapist asks Bart to discuss whatever comes to mind and to continue without censoring any of the ideas or thoughts he experiences. Bart is experiencing the therapeutic technique of __________. a. active confrontation b. transference c. free associationd. systematic desensitization _______________ is the process by which cells from healthy bone become attached and grow around a dental implant. After studying about recycling, members of Miguelsbiology class investigated the effect of variousrecycled products on plant growth. Miguels labgroup compared the effect of different aged grasscompost on bean plants. Because decomposition isnecessary for release of nutrients, the grouphypothesized that older grass compost would producetaller bean plants. Four flats containing the samespecies of bean plants (25 plants/flat) were grown for5 days. The plants were then fertilized with compostas follows: (a) Flat A: 450 grams of two-month-oldcompost; (b) Flat B: 450 grams of four-month-oldcompost; (c) Flat C: 450 grams of six-month-oldcompost; (d) Flat D: 0 grams of compost. The flatsof beans were planted in the same type of soil. Theplants received the same amount of sunlight andwater each day. At the end of 30 days, the grouprecorded the height of the plants in centimeters. What is the flaw in this experiment? Before entering an intersection, the safest searching process is to search ________. Solve the system by substitution.2.5x-3y=-133.25x-y=-14 what were the differences between industrialization in the united states and in russia which process is part of the carbon cycle? A) evaporation B) transpiration C) photosynthesis C) fixation Guest ages at a ski mountain resort typically have a right-skewed distribution. Assume the standard deviation () of age is 14.5 years. From a random sample of 40 guests the sample mean is 36.4 years. Calculate a 99 percent confidence interval for , the true mean age of guests. Steam Workshop Downloader