When potassium hypochlorite is dissolved in water, it dissociates into potassium ions and hypochlorite ions. Thus, the net ionic equation for this process is: KClO(s) -> K+(aq) + ClO-(aq).
Explanation:The net ionic equation represents the actual reaction happening in solution, excluding the spectator ions. When potassium hypochlorite (KClO) is dissolved in water, it dissociates completely into potassium ions (K+) and hypochlorite ions (ClO-).
So, the complete ionic equation is: KClO(s) -> K+(aq) + ClO-(aq).
The net ionic equation is the same as the complete ionic equation because there are no spectator ions in this case. Thus, the net ionic equation for the equilibrium that is established when potassium hypochlorite is dissolved in water is: KClO(s) -> K+(aq) + ClO-(aq)
Learn more about Net Ionic Equation here:https://brainly.com/question/35304253
#SPJ12
The net ionic equation for the equilibrium established when potassium hypochlorite dissolves in water involves only the hypochlorite ion reacting with water to form hypochlorous acid and hydroxide ion.
When potassium hypochlorite (KClO) is dissolved in water, it dissociates into potassium (K+) ions and hypochlorite (ClO-) ions.
Potassium is a spectator ion and does not participate in the equilibrium reaction that is established in the solution. Therefore, the net ionic equation for the equilibrium when potassium hypochlorite is dissolved in water only involves the hypochlorite ion and water.
The equation is as follows:
ClO-(aq) + H2O(l) ---> HClO(aq) + OH-(aq)
This equation represents the equilibrium between the hypochlorite ion and the hypochlorous acid and hydroxide ion in aqueous solution.
In determining the percent acetic acid in vinegar, the mass of each of vinegar sample is measured rather than the volume. explain.
Final answer:
When determining the percent acetic acid in vinegar, measuring the mass of vinegar is preferred over volume because mass is not affected by temperature and concentration changes. The mass can be used to calculate moles of acetic acid, which is then used to find molarity or mole fraction.
Explanation:
In the analysis of vinegar, it is often more accurate to measure the mass of the vinegar sample rather than the volume because mass is not affected by temperature or concentration variations as volume can be. When determining the percent acetic acid in vinegar, we can use the sample's mass to calculate the number of moles of acetic acid present. Let's say we have a sample where the concentration of acetic acid was previously found to be 0.839 Molarity (M). If we find that a certain volume of vinegar contains 75.6 g of acetic acid, we can use the molarity and the mass of acetic acid to determine the volume of the vinegar solution.
To calculate the mole fraction of acetic acid in the solution, the masses of both acetic acid and water in the sample are required. Using an example from LibreTexts, if 100.0 g of vinegar contains 3.78 g of acetic acid, then there are 96.2 g of water in the solution. From the masses, we determine the moles of acetic acid and water and then divide the number of moles of acetic acid by the total number of moles of substances in the sample to get the mole fraction.
4 . suppose you are setting up a reaction that requires an iodide salt and are planning to use sodium iodide. however, at the last minute you find that you are out of sodium iodide, so you must use potassium iodide instead. will you need to weigh out more, less, or the same mass of potassium iodide in order to get the same number of moles of iodide ions?
Starting with 0.250l of a buffer solution containing 0.250 m benzoic acid (c6h5cooh) and 0.20 m sodium benzoate (c6h5coona), what will the ph of the solution be after the addition of 25.0 ml of 0.100m hcl? (ka (c6h5cooh) = 6.5 x 10-5)
Answer: New pH will be 4.06 .
Explanation: The problem could easily be solved using Handerson equation. Handerson equaton is used to calculate the pH of buffer solution.
[tex]pH=pK_a+log(\frac{base}{acid})[/tex]
For the given problem, the buffer solution is a mixture of a weak acid(benzoic acid) and a salt of it, known as conjugate base(sodium benzoate).
When a strong acid is added to the buffer solution then it reacts with the base(benzoate ion) present in the buffer solution and produce a the weak acid(benzoic acid).
The reaction could be shown as:
[tex]C_6H_5COO^-(aq)+H^+(aq)\rightleftharpoons C_6H_5COOH(aq)[/tex]
First of all we calculate the initial moles of acid and base originally present in the buffer solution and for this the volume is multiplied by the molarity.
initial moles of benzoic acid = [tex]0.250L(\frac{0.250mol}{1L})[/tex]
= 0.0625 moles
initial moles of benzoate ion = [tex]0.250L(\frac{0.20mol}{1L})[/tex]
= 0.0500 moles
moles of HCl or [tex]H^+[/tex] added to the buffer = [tex]25.0mL(\frac{1L}{1000mL})(\frac{0.100mol}{1L})[/tex]
= 0.0025 moles
From the equation we have written above, HCl and benzoate ion react in 1:1 mol ratio. As HCl is limiting reactant, 0.0025 moles of it will react with exactly 0.0025 moles of benzoate ion and form 0.0025 moles of benzoic acid.
So, the moles of benzoic acid after addtion of HCl = 0.0625 + 0.0025 = 0.065 moles
moles of benzoate ion after addition of HCl = 0.0500 - 0.0025 = 0.0475 moles
Total volume of the solution = 0.250 L + 0.025 L = 0.275 L
concentration of benzoic acid = [tex]\frac{0.065mol}{0.275L}[/tex]
= 0.236M
concentration of benzoate ion = [tex]\frac{0.0475mol}{0.275L}[/tex]
= 0.173M
Pka is calcuulated from the given Ka value as:
[tex]pK_a=-logK_a[/tex]
[tex]pk_a=-log(6.5*10^-^5)[/tex]
[tex]pK_a[/tex] = 4.19
Let's plug in the values in the Handerson equation:
[tex]pH=4.19+log(\frac{0.173}{0.236})[/tex]
pH = 4.19 - 0.13
pH = 4.06
So, the pH of the solution after an addition of HCl will be 4.06 .
As temperature increases, the ______________ of marble will also increase
Final answer:
The reactivity of marble increases with temperature due to the enlargement of calcite crystals and the recrystallization of the rock. Increased temperature can lead to a faster chemical reaction rate, especially with powdered marble, which has a larger surface area exposed for reactions.
Explanation:
As temperature increases, the reactivity of marble will also increase. Marble is comprised mainly of calcite, which is altered under heat or pressure to form calcium carbonate. When marble is exposed to high temperatures, such as around 400°C, and various confining pressures, its calcite crystals tend to grow larger and the rock recrystallizes, essentially transforming the limestone base into a denser and typically white rock, often with colorful markings due to impurities.
Moreover, the reaction rate with marble in chemical processes can be influenced by temperature and the physical form of the marble. For instance, powdered marble, with its increased surface area, reacts faster than larger marble chips. The smaller the marble particles, the more surface molecules are exposed, facilitating a quicker reaction when the temperature is raised.
Thus, in contexts such as artistic sculpting or architectural use, where marble's durability and aesthetic qualities are prized, understanding the impact of temperature on its reactivity and structure is crucial.
White gold is an alloy that typically contains 60.0% by mass gold and the remainder is platinum. if 175 g of gold are available, how many grams of platinum are required to combine with the gold to form this alloy? answers
Calculate the hydroxide ion concentration for an aqueous solution that has a ph of 3.45
The hydroxide ion concentration for a solution with a pH of 3.45 can be calculated as 10^-10.55 M.
Explanation:The hydroxide ion concentration for an aqueous solution with a pH of 3.45 can be calculated using the formula [OH-] = 10-pOH. Since pH + pOH = 14, we can find that the pOH is 14 - 3.45 = 10.55. Therefore, the hydroxide ion concentration is 10-10.55 M.
Learn more about Hydroxide ion concentration here:https://brainly.com/question/4617925
#SPJ12
The hydroxide ion concentration for a solution with a pH of 3.45 is approximately 2.82 × [tex]10^{-11[/tex] M.
To calculate the hydroxide ion concentration for an aqueous solution with a pH of 3.45, we need to follow these steps:
Calculate the hydronium ion concentration [[tex]H3O^+[/tex]] using the formula: [[tex]H3O^+[/tex]] = 10-pH.Using the given pH of 3.45, calculate [[tex]H3O^+[/tex]]:The hydroxide ion concentration for the solution with a pH of 3.45 is approximately 2.82 × [tex]10^{-11[/tex] M.
A golf ball and bowling ball are moving and both have the same kinetic energy.Which one is moving faster? If they move at the same speed, which one has more kinetic energy?
When a compound containing c, h, and o is completely combusted in air, what reactant besides the hydrocarbon is involved in the reaction? express your answer as a chemical formula. identify the phase in your answer?
When a compound containing c, h, and o is completely combusted in air, the reactant besides the hydrocarbon that is involved in the reaction is, O2(g).
Hydrocarbons burn in air to form water and carbon dioxide as the only products.
Further Explanation Hydrocarbons Hydrocarbons are types of compounds that are mostly made up of hydrogen and carbon elements. However other hydrocarbons are made up of carbon, hydrogen and oxygen elements. The major types of hydrocarbons include, alkanes, alkenes, alkynes, alcohols, and alkanoic acids. Alkanes are saturated hydrocarbons while alkenes and alkynes are unsaturated hydrocarbons containing only carbon and hydrogen atoms. Alcohols and alkanoic acids contains hydrogen, oxygen and carbon atoms. Combustion of Hydrocarbons Hydrocarbons burn in air to form carbon dioxide and water as the only products.
That is;
For hydrocarbons with carbon and hydrogen
CxHy + O2(g) = CO2(g) + H2O(g)For the compound containing carbon, hydrogen and oxygen
CxHyOn + O2 = CO2(g) + H2O(l)Examples
Propane which is an alkane burns in air to form water and mineral salt.
C3H8(g) + O2(g) = CO2(g) + H2O(l)
Ethanol is a hydrocarbon in the homologous series of alcohols. It burns in air to form carbon(IV)oxide and water.
C2H5OH(l) + 3O2(g) = 2CO2(g) + 3H2O(l)
Keywords: Combustion, hydrocarbons
Learn more about: Hydrocarbons: https://brainly.com/question/9500808 Combustion of hydrocarbons: https://brainly.com/question/11857245 Major types of hydrocarbons: https://brainly.com/question/2863800
Level: High school
Subject: Chemistry
Topic: Organic chemistry
Sub-topic: Combustion of hydrocarbons
_______ are prophylactic agents used to treat bronchoconstriction.
Which of the following best explains why electroplating is a useful process in many industries?
Answer: A.
Explanation: it makes some inexpensive materials look more appealing
An electric device delivers a current of 5 a to a device. how many electrons flow through this device in 5 s? (e = 1.60 × 10-19 c)
1.5625.10²⁰ electrons are flowing through this device in 5 s
Further explanationElectric current is the amount of electric charge that flows each unit of time
Electric current can also be a ratio between voltage and resistance
Electric current occurs due to the movement of electrons due to the difference in potential or voltage (from high potential to low potential) between two points
Electrons will flow through the conducting wire that functions as a conductor
The electric current itself can be divided into direct current (DC) or alternating current (AC)
Can be formulated:
[tex]{\displaystyle I = {\frac {Q} {t}},}[/tex]
Where
I is the electric current, Ampere (A)
Q is the electric charge, coulomb (C)
t is time, seconds (s)
An electric device delivers a current of 5 A within 5 s, so the charge is:
Q = I x t
Q = 5 x 5
Q = 25 C
Because 1 electron (e) has a charge of 1.60 × 10⁻¹⁹ C, so the total number of electrons flowing:
= 25 C: 1.60 × 10⁻¹⁹ C
= 15.625.10¹⁹
= 1.5625.10²⁰ e
Learn moreelectric field
https://brainly.com/question/2080732
magnetism
https://brainly.com/question/10809295
2.0x10 ^ 20 electrons to pass through a point
https://brainly.com/question/334342
Keywords: electric current, electric charge, electrons, coulombs, amperes, seconds
I need help please The question it's on the picture
How many molecules of carbon dioxide are in 243.6 g of carbon dioxide?
The number of molecules of carbon dioxide present in 243.6 g of carbon dioxide is 3.33 × 10²⁴ molecules
From the question,
We are to determine the number of molecules of carbon dioxide that are in 243.6g of carbon dioxide
First, we will determine the number of moles of carbon dioxide present
Using the formula,
[tex]Number\ of\ moles\ = \frac{Mass}{Molar\ mass}[/tex]
Molar mass of carbon dioxide = 44.01 g/mol
Number of moles of carbon dioxide = [tex]\frac{243.6}{44.01}[/tex]
Number of moles of carbon dioxide = 5.5351 moles
Now, for the number of molecules,
Using the formula,
Number of molecules = Number of moles × Avogadro's constant
Number of molecules = 5.5351 × 6.022 × 10²³
Number of molecules of carbon dioxide = 3.33 × 10²⁴ molecules
Hence, the number of molecules of carbon dioxide present in 243.6 g of carbon dioxide is 3.33 × 10²⁴ molecules
Learn more on calculating number of molecules here: https://brainly.com/question/14464650
What are two things that characterize the practice of science
A certain reaction with an activation energy of 205 kj/mol was run at 485 k and again at 505 k . what is the ratio of f at the higher temperature to f at the lower temperature?
Final answer:
The ratio of the frequency of effective collisions for a reaction at higher to lower temperature can be found using the Arrhenius equation, which illustrates that the reaction rate increases with temperature due to more molecules having sufficient energy to overcome the activation energy barrier.
Explanation:
The question revolves around the concept known as the Arrhenius equation, which describes how the rate of a chemical reaction is affected by changes in temperature and activation energy. The ratio 'f' represents the frequency of effective collisions leading to a reaction. The Arrhenius equation suggests that as temperature increases, the rate constant of the reaction also increases because a greater fraction of molecules will have the necessary energy to overcome the activation energy barrier.
To calculate the ratio of the frequency of effective collisions at two different temperatures for a reaction with an activation energy (Ea) of 205 kJ/mol, we use the Arrhenius equation:
K = Ae-(Ea/RT)
Where K is the rate constant, A is the frequency factor, Ea is the activation energy, R is the gas constant (8.314 J/mol K), and T is the temperature in kelvins. By taking the ratio of the rate constants at 505 K and 485 K (K2/K1), we can find the ratio of 'f' at the higher temperature to the lower temperature.
The analysis of the change in reaction mechanism with temperature typically shows that, as seen with a reaction with a lower activation energy of 54 kJ/mol, a temperature increase, even by 10 degrees Celsius, can significantly impact the reaction rate, often doubling it. While the exact ratio of 'f' would require computation, the concept remains that the reaction rate will increase with temperature due to the exponential factor in the Arrhenius equation.
A solid is placed in a solution. Which observation most likely indicates that a chemical reaction has occurred?
Jupiter’s moon io was discovered to have high concentrations of sulfur oxides in its atmosphere. this, in combination with research into sulfur oxides relating to pollution on earth, has led to renewed interest in sulfur oxide compounds. one compound discovered on io was the blue disulfur trioxide. write the chemical formula for this compound.
Answer:
[tex]S_2O_3[/tex]
Explanation:
Hello,
Nomenclature, is a powerful tool in chemistry to name chemical compounds to successfully distinguish among the thousands and thousands of existing molecular compounds. In rule to stipulate a chemical name y is via specifying the amount of the composing elements into the molecule, thus, the prefix di, accounts for two atoms and the prefix tri for three (this is related with the valence electrons the element has), in such a way, disulfur trioxide is represented with two sulfur atoms and three oxygen atoms, this is:
[tex]S_2O_3[/tex]
Which would be a novel molecule since the sulfur has been reported to have +2,+4 and +6 as the positive oxidation states which are possible to dovetail with oxygen as it is negative.
Kind regards.
Why do scientists need an accurate atomic model? Select one: A. The atom is the most important structure in the universe. B. It allows scientists to predict things about objects that are too small to see. C. Models allow scientists to avoid having to do real experiments. D. The atom cannot be divided into smaller particles.
Answer:
B. It allows scientists to predict things about objects that are too small to see.
Explanation:
Hello,
In science, we're always looking for the study of tinier things as long as we're interested about what the matter is made of. Several atomic models such as Bohr's, Rutherford's, Dalton's and the actual one have been proposed in order for us to understand how the protons, neutrons and electrons are assembled into the atom because they are too small to see (about 0.5 fm) thus, with that better understanding, we can research and develop novel applications for new materials based on the micromolecular behavior of the atom.
Best regards.
A pure silver ring contains 5.15×1022 silver atoms. how many moles of silver atoms does it contain? express the number of moles to two significant figures.
To find the number of moles of silver atoms in the silver ring, divide the number of particles by Avogadro's number.
Explanation:To find the number of moles of silver atoms in the silver ring, we can use Avogadro's number. Avogadro's number tells us that 1 mole of any substance contains 6.022 x 10^23 particles. In this case, we are given that the silver ring contains 5.15 x 10^22 silver atoms. We can use the following equation:
Number of moles = Number of particles / Avogadro's number
Substituting the given values, we get:
Number of moles = 5.15 x 10^22 silver atoms / (6.022 x 10^23 atoms/mol) ≈ 0.0855 mol ≈ 0.086 mol (rounded to two significant figures)
Learn more about Number of moles of silver atoms here:https://brainly.com/question/12160954
#SPJ2
32.7 grams of water vapor takes up how many liters at standard temperature and pressure (273 K and 100 kPa)?
Which pair of atoms would form a covalent bond ?
calcium (Ca) and bromine (Br)
rubidium (Rb) and sulfur (S)
cesium (Cs) and nitrogen (N)
oxygen (O) and chlorine (Cl)
oxygen (O) and chlorine (Cl)
Explanation:As the electronegativity of an element increases It is more likely to make an ionic bond. e.g. the metallic elements. On the moderate values of electronegativity, elements tend to make covalent bond.
Oxygen and chlorine will make covalent bond because the electronegativity difference between these two elements is 0,5 so there bond will be covalent in nature.
Calculate the hydroxide ion concentration in an aqueous solution that contains 3.50 Ã 10-4 m in hydronium ion
The hydroxide ion concentration in the solution is calculated to be 2.857 × 10^-11 M using the ion product of water (Kw) and the given hydronium ion concentration.
Explanation:To calculate the hydroxide ion concentration in an aqueous solution that contains 3.50 Ã 10^-4 M in hydronium ion, you can use the relationship between the hydronium ion [H3O+] and hydroxide ion [OH-] concentrations in water which is known as the ion product of water (Kw).
At 25°C the ion product of water, Kw is 1.0 × 10-14 M^2. These ions are related through the equation [H3O+][OH-]= Kw, which is the mathematical representation of the ion product of water at a particular temperature.
Substitute the given hydronium ion concentration into the equation to calculate the hydroxide ion concentration: [OH-] = Kw / [H3O+]. So, [OH-] = (1.0 × 10-14 M^2) / (3.50 × 10^-4 M) = 2.857 × 10^-11 M. So, the hydroxide ion concentration in the solution is 2.857 × 10^-11 M.
Learn more about Hydroxide Ion Concentration here:https://brainly.com/question/4617925
#SPJ11
Which are the more common types of solutions?
Solid solutions are formed only by solutes and solid solvents. In everyday life, the main examples of this type of solution are metallic alloys.
2) Liquid Solutions
Liquid solutions have liquid solvent, usually water, and solutes can be solid, liquid or gaseous.
3) Gaseous solutions
This kind of solution is formed by the only mixture of gases. Air is an example, as its approximate composition is 78% nitrogen gas, 21% oxygen gas and 1% of other gases.
Aluminum sulfide reacts with water to form aluminum hydroxide and hydrogen sulfide. identify all of the phases in your answer
After ensuring the equipment is turned off and unplugged what is the next step in cleaning large equipment by hand
A 125 ml volume of carbon tetrachloride has a mass of 192.5g. what is the density of the liquid
For the titration of 25.00 mL of 0.150 M HCl with 0.250 M NaOH, calculate:
(a) the pH when neutralization is 50% complete;
(b) the pH when 1.00 mL of NaOH is added beyond the equivalence point.
Final answer:
To calculate the pH at different points in the titration of HCl with NaOH, you need to consider the moles of reactants and products and use the Henderson-Hasselbalch equation.
Explanation:
In a titration of 25.00 mL of 0.150 M HCl with 0.250 M NaOH, the pH can be calculated at different points:
(a) When neutralization is 50% complete, we can assume that half of the HCl has reacted with NaOH. This means that the moles of HCl neutralized is half of the initial moles present. Use this information to calculate the moles of NaOH consumed and the remaining HCl. From there, you can use the Henderson-Hasselbalch equation to calculate the pH.
(b) When 1.00 mL of NaOH is added beyond the equivalence point, you can assume that all of the HCl has been neutralized and there is excess NaOH. Calculate the moles of NaOH consumed based on the volume added and use it to determine the concentration of NaOH remaining. Then, use the concentration of NaOH and the hydroxide ion concentration to calculate the pH.
Phosphorus has the molecular formula p4, and sulfur has the molecular formula s8. how many grams of phosphorus contain the same number of molecules as 7.88 g of sulfur?
To find the grams of phosphorus that contain the same number of molecules as 7.88 g of sulfur, use the concept of molar mass and Avogadro's number.
Explanation:To determine the grams of phosphorus that contain the same number of molecules as 7.88 g of sulfur, we need to use the concept of molar mass and Avogadro's number. First, we calculate the number of moles of sulfur by dividing its mass by its molar mass. Then, we use the molar ratio between sulfur and phosphorus from their molecular formulas to calculate the number of moles of phosphorus. Finally, we multiply the number of moles of phosphorus by its molar mass to obtain the grams of phosphorus.
Step 1: Calculate the moles of sulfur:
moles of sulfur = mass of sulfur / molar mass of sulfur
Step 2: Calculate the moles of phosphorus:
moles of phosphorus = moles of sulfur × (molar ratio of phosphorus/sulfur)
Step 3: Calculate the grams of phosphorus:
grams of phosphorus = moles of phosphorus × molar mass of phosphorus
After performing these calculations using the given values, the grams of phosphorus that contain the same number of molecules as 7.88 g of sulfur is obtained.
Learn more about Molar mass and Avogadro's number here:https://brainly.com/question/30340401
#SPJ11
A sealed container holds 0.020 moles of nitrogen (n2) gas, at a pressure of 1.5 atmospheres and a temperature of 290 k. the atomic mass of nitrogen is 14.0 g/mol. the boltzmann constant is 1.38 × 10-23 j/k and the ideal gas constant is r = 8.314 j/ mol · k = 0.0821 l · atm/mol · k. the mass density of the gas is closest to
To find the density of the nitrogen gas, we use the equation of state for ideal gases, PV=nRT and rearrange it to find Volume. We also calculate the mass of gas using the number of moles and molar mass. Finally, we get the density of nitrogen gas as 1.4 g/L.
Explanation:To find the mass density of this nitrogen gas, we will use the equation of state for ideal gases given as PV=nRT. Where:
P is the pressure (given as 1.5 atm),V is the volume which we need to find,n is the number of moles (0.020 moles of N2),R is the universal gas constant (given as 0.0821 l · atm/mol · k),T is the temperature in Kelvin (290 K).First, we rearrange the equation to solve for V (Volume): V = nRT/P. Substituting the given values, we find that volume V = (0.020 mol)(0.0821 l·atm/mol·K)(290 K) / 1.5 atm = 0.40 L.
Now, we compute the mass of the nitrogen gas. We know that the molar mass of molecular nitrogen N₂ is 28.01 g/mol, so the mass m of the gas is m = n*M = (0.020 mol)(28.01 g/mol) = 0.56 g.
Finally to get the density we take Density (ρ) = mass/volume = 0.56 g / 0.40 L = 1.4 g/L.
Learn more about Density of Gases here:https://brainly.com/question/33709774
#SPJ3
when this chemical equation is correctly balanced what is the coefficient of the nal molecule I2+Na2S2O3+Nal+Na2S4O6
Correctly balancing a chemical equation involves adding coefficients to ensure the number of atoms for each element is equal on both sides. As the given equation has a typo, a general method for balancing equations and an example with sodium and chlorine was described.
The question asks about balancing a particular chemical equation to find the coefficient of NaI. However, the given equation seems to have a typographical error and is not complete. In the context of this question, let's address a general approach on how to balance a chemical equation:
Write down the unbalanced equation.
Determine the number of atoms of each element in the reactants and products.
Adjust coefficients (not subscripts) to get the same number of atoms of each element on both sides.
Repeat steps until all elements are balanced.
Check to ensure that the total charge is the same on both sides if the equation includes ionic species.
For example, the equation for the reaction of sodium (Na) with chlorine gas (Cl2) to form sodium chloride (NaCl) is balanced by placing a '2' in front of Na and NaCl:
2 Na (s) + Cl₂ (g) → 2 NaCl (s)
In this balanced equation, we see that the number of sodium and chlorine atoms are equal on both sides, confirming that the equation is correctly balanced.