A stone is dropped from the roof of a building; 2.00s after that, a second stone is thrown straight down with an initial speed of 25.0m/s, and the two stones land at the same time. how long did it take the first stone to reach the ground? how high is the building? what are the speeds of the two stones just before they hit the ground?
Final answer:
The first stone takes 2.00 seconds to reach the ground. The height of the building can be calculated using h = (1/2)gt^2. The speed of the first stone just before it hits the ground is given by v = gt.
Explanation:
Question:
A stone is dropped from the roof of a building; 2.00s after that, a second stone is thrown straight down with an initial speed of 25.0m/s, and the two stones land at the same time. How long did it take the first stone to reach the ground? How high is the building? What are the speeds of the two stones just before they hit the ground?
Answer:
For the first stone to reach the ground at the same time as the second stone, it must take 2.00 seconds. This is because both stones land at the same time, and the second stone was thrown after 2.00 seconds. The height of the building can be calculated using the equation h = (1/2)gt^2, where g is the acceleration due to gravity (9.8 m/s^2) and t is the time (2.00 seconds). The speed of the first stone just before it hits the ground is calculated using the equation v = gt, where g is the acceleration due to gravity (9.8 m/s^2) and t is the time (2.00 seconds). The speed of the second stone just before it hits the ground is given as 25.0 m/s.
Of the rock's original uranium-235 remains. how old is the rock
A gas made up of atoms escapes through a pinhole 0.155 times as fast as h2 gas. write the chemical formula of the gas.
Using Graham's law and the given effusion rate, we can calculate the unknown gas's molar mass, which suggests the gas could be CH4 (methane).
Explanation:The question pertains to the concept of gas effusion and Graham's law, which relates the rates of effusion of gases to their molar masses. Given that a gas escapes through a pinhole 0.155 times as fast as hydrogen gas (H2), and using the fact that hydrogen gas effuses four times as rapidly as oxygen gas (O2), one can use Graham's law to determine the molar mass of the unknown gas. Graham's law states that the rate of effusion of a gas (rate A) is inversely proportional to the square root of its molar mass (molar mass A).
Graham's law formula: rate of effusion of gas A / rate of effusion of gas B = sqrt(molar mass of gas B / molar mass of gas A).
By knowing the rate of effusion of hydrogen and the fact that the unknown gas effuses at 0.155 times the rate of hydrogen, we can use the formula to calculate the molar mass of the unknown gas. Let's assume the molar mass of hydrogen (H2) is 2 g/mol. By substituting the values into the formula, we can solve for the molar mass of the unknown gas.
Calculation: 1^(2) / 0.155^(2) = 2 g/mol / x g/mol, where x is the molar mass of the unknown gas.
Solving for x gives us the estimated molar mass.
The final step is to look for a gas with a molar mass that closely matches our calculation. The gas could well be CH4 (methane), which has a molar mass of approximately 16 g/mol.
Propane (C3 H8 (g), Hf = –103.8 kJ/mol) reacts with oxygen to produce carbon dioxide (CO2 , Hf = –393.5 kJ/mol ) and water (H2 O, Hf = –241.82 kJ/mol) according to the equation below. What is the enthalpy of combustion (per mole) of C3 H8 (g)? Use . –2,044.0 kJ/mol –531.5 kJ/mol 531.5 kJ/mol 2,044.0 kJ/mol
Given:
Enthalpy of formation data
Hf(C3H8) = -103.8 KJ/Mol
Hf(CO2) = -393.5 kJ/mol
Hf (H2O) = -241.82 kJ/mol
To determine:
Enthalpy of combustion of C3H8
Explanation:
The combustion reaction is:
C3H8 + 5O2 → 3CO2 + 4H2O
ΔHcombustion = ∑nHf(products) - ∑nHf(reactants)
ΔHc = [3(Hf CO2) + 4(Hf H2O)] - [Hf(C3H8) + 5Hf(O2)]
= [3(-393.5) + 4(-241.82)] -[-103.8 + 5(0)] = -2044 kJ/mol
Ans: (a) -2044 kJ/mol
Answer:
A) –2,044.0
Explanation
Its right on edge
Calculate the number of moles of magnesium, chlorine, and oxygen atoms in 4.50 moles of magnesium perchlorate, mg(clo4)2. express the number of moles of mg, cl, and o atoms numerically, separated by commas.
Is apple pie an element a compound a solution or a heterogeneous mixture?
There is a golden rule of solubility, polar solute dissolve in polar solvent and non polar solute dissolve in non polar solvent. Therefore, apple pie is a heterogeneous mixture.
What is solution?Solutions are a homogeneous mixture of two or more substances. A solution is a homogeneous mixture of solvent and solute molecules. Solvent is a substance that is in large amount in solution. solute is the substance which is in small amount in a solution. There are two types of mixture that is homogeneous and heterogeneous. Solution is a homogeneous solution.
Example: If we take sugar solution then the amount of sugar is small that is solute whereas water is in large quantity which is solvent. It is not necessary that water will be always solvent or liquid will be solvent, solid and gas can be the solvent too. Apple pie is a heterogeneous mixture.
Therefore, apple pie is a heterogeneous mixture.
To know more about solution, here:
https://brainly.com/question/13812915
#SPJ5
Co(s) is placed into a solution containing Au+(aq). A redox reaction occurs, the products of which are Co3+(aq) and Au(s), what is the balanced redox equation?
Part c how long does it take to raise the temperature of the air in a good-sized living room (3.00m×5.00m×8.00m) by 10.0∘c? note that the specific heat of air is 1006 j/(kg⋅∘c) and the density of air is 1.20kg/m3.
To find out how long it takes to heat a room, calculate the mass of air using room volume and air density, then use the heat equation with the specific heat of air. The missing piece is the heater's power, which is essential for calculating the exact time.
Explanation:To calculate how long it takes to raise the temperature of the air in a good-sized living room (3.00m×5.00m×8.00m) by 10.0°C, given that the specific heat of air is 1006 J/(kg·°C) and the density of air is 1.20kg/m3, we firstly need to calculate the volume of the room. The volume is obtained by multiplying the room's dimensions (V = length × width × height), which is 120 m3. Using the density of air, we find the mass of the air in the room (m = density × volume), resulting in 144 kg of air. Next, we apply the formula for heat (Q = mcΔT) to determine the amount of energy required to heat the air, where ΔT is the temperature change. With the given specific heat capacity (c) and the desired temperature increase (ΔT = 10°C), we find Q. Unfortunately, without the power (wattage) of the heating device, we can't directly calculate the time (t) required for the temperature increase. However, the initial steps show how to prepare for such a calculation once the heating power is known.
What information can be gained from running a gas chromatogram?
when carbon undergoes sp2 hybridization it forms
When a carbon atom undergoes sp2 hybridization, it forms molecules with a trigonal planar shape, such as in ethene where it forms a double bond.
Explanation:In Chemistry, when a carbon atom undergoes sp2 hybridization, it results in the formation of molecules with trigonal planar geometry. Here, one s atomic orbital combines with two p atomic orbitals to form the sp2 hybrid orbitals. These hybrid orbitals arrange themselves in a plane at an angle of 120 degrees to each other, forming a trigonal planar shape.
For instance, in ethene, each carbon atom is sp2 hybridized. The sp2 orbitals and one p orbital are singly occupied. The hybrid orbitals overlap to form sigma (σ) bonds, while the p orbitals on each carbon atom overlap side by side (above and below the plane of the molecule) to form a pi (π) bond, leading to the formation of a C=C double bond.
The molecule's final geometric arrangement is a direct result of the number of electrons in the atom's outermost p orbital, the repulsion between these electrons, and the formation of stable bonds.
Learn more about sp2 Hybridization here:https://brainly.com/question/35557169
#SPJ3
a. calculate the mass percent of NaHCO3 based on the manufacturer's list of ingredients: 325mg aspirin, 1000 mg citric acid, 1916 mg NaHc03 .
The mass percent of NaHCO₃ in the mixture is approximately 59.11%.
To calculate the mass percent of NaHCO₃ in the mixture, we use the formula:
Mass percent of NaHCO₃ = [tex]\frac{Mass of NaHCO_3}{Total mass of the mixture} \times 100[/tex]
Given the masses of the ingredients:
- Aspirin: 325 mg
- Citric acid: 1000 mg
- NaHCO₃: 1916 mg
First, we convert these masses to grams to make the calculation easier, since the standard unit for mass in chemistry is grams:
325 mg = 0.325 g
1000 mg = 1.000 g
1916 mg = 1.916 g
Now, we calculate the total mass of the mixture:
Total mass = 0.325 g + 1.000 g + 1.916 g
Total mass = 3.241 g
Next, we calculate the mass percent of NaHCO₃:
Mass percent of NaHCO₃ = [tex]\left( \frac{1.916 \text{ g}}{3.241 \text{ g}} \right) \times 100[/tex]
Now, we perform the division and multiply by 100 to find the mass percent:
Mass percent of NaHCO₃ = [tex]\left( \frac{1.916}{3.241} \right) \times 100[/tex]
Mass percent of NaHCO₃ = 0.5911 x 100
Mass percent of NaHCO₃ = 59.11%
PLEASE HELP ASAP!!..WILL GIVE BRAINLIEST AND FIVE STARS!
Which characteristic of life is demonstrated when human skin heals after it has been cut?
A.
acquiring energy
B.
reproducing
C.
maintaining structure
D.
camouflage
Compare green and red light from the visible spectrum. which has: the longer wavelength? the greater frequency? the greater energy?
How many grams of copper (II) chloride dihydrate would be requires to react completely with 1.20 g of aluminum
11.37g of copper (II) chloride dihydrate would be required to react completely with 1.20 g of aluminum.
What is the balanced molecular equation?A balanced molecular equation consists of an equal number of atoms of each element on the both reactant and product sides.
The reaction between copper (II) chloride dihydrate and aluminum has a balanced molecular equation as:
3CuCl₂.2H₂O + 2Al → 2AlCl₃ + 3Cu + 6H₂O
From the above equation, we can say that the 3 moles of copper (II) chloride dihydrate reacts with 2 moles of Al.
Given, the mass of aluminum = 1.20g
The number of moles of aluminum = Mass/molar mass
Number of moles of Al = 1.20/26.98 = 0.0455 mol
If 2 moles of aluminum react with copper (II) chloride dihydrate = 3 mol
0.0445 mol of Al will react with copper (II) chloride dihydrate
= (3/2) × 0.0445 = 0.0667 mol
The molecular mass of the copper (II) chloride dihydrate = 170.48g/mol
The mass of 0.667 mol of copper (II) chloride dihydrate will be:
= 0.0667 × 170.48
= 11.37 g
Therefore, the 1.20 grams of aluminum will react with 11.37 grams of copper (II) chloride dihydrate completely.
Learn more about the balanced molecular equations, here:
https://brainly.com/question/14017818
#SPJ2
What is the electronic geometry of sbr4? enter the electronic geometry of the molecule?
The valence electron configuration of sulfur S = 3s²3p⁴
Valence electron configuration of Br = 4s²4p⁵
In SBr4, the central Sulfur (S) atom forms 4 covalent bonds with the 4 bromine (Br) atoms. In addition it has 1 lone pair of electrons.
Since the electron geometry not only considers the bond pairs but the lone pairs as well, in the case of SBr4 this would be trigonal bipyramidal.
(Molecular geometry would only consider the 4 covalent bonds which would lend it a distorted tetrahedral structure)
The electronic geometry of SBr4, which stands for sulfur tetrabromide, is trigonal bipyramidal.
In determining the electronic geometry of a molecule, we consider the arrangement of all the electron domains around the central atom. In the case of SBr4, sulfur (S) is the central atom, and it is bonded to four bromine (Br) atoms.
To determine the electronic geometry, we use the valence shell electron pair repulsion (VSEPR) theory. According to VSEPR, the electron domains, which include both bonding and non-bonding electron pairs, repel each other and tend to position themselves as far apart as possible to minimize repulsion.
Know more electronic geometry:
https://brainly.com/question/6329970
#SPJ6
How many moles of methane are produced when 36.6 moles of carbon dioxide gas react with excess hydrogen gas?
Answer:
[tex]36.6molCH_4[/tex]
Explanation:
Hello,
The carried out chemical reaction is:
[tex]CO_2+4H_2-->CH_4+2H_2O[/tex]
With the given moles of carbon dioxide, one computes the required moles of methane by applying the following stoichiometric relationship based on the undergoing chemical reaction.
[tex]36.6molesCO_2*\frac{1molCH_4}{1molCO_2}=36.6molCH_4[/tex]
Best regards
Final answer:
In a theoretical or indirect conversion process not detailed in the examples, where carbon dioxide reacts with hydrogen to produce methane, 36.6 moles of carbon dioxide would produce 36.6 moles of methane, assuming a simple 1:1 stoichiometry for CO₂ to CH₄.
Explanation:
The question pertains to the reaction of carbon dioxide gas with hydrogen gas to produce methane. According to the information provided, one mole of methane molecules reacts with two moles of oxygen molecules to yield one mole of carbon dioxide molecules and two moles of water molecules. However, the direct reaction converting carbon dioxide to methane in the presence of hydrogen is not directly provided in the examples.
Given the stoichiometry mentioned, a direct conversion from carbon dioxide to methane isn't specified. Instead, the given reactions suggest the combustion of methane or its reaction with water, leading to the formation of carbon dioxide rather than its conversion back to methane.
Given this, it's assumed that the question implies a theoretical reverse process or a different reaction pathway (such as a methanation process that is not detailed in the examples given), which could convert carbon dioxide back to methane using hydrogen.
Typically, in a methanation reaction, carbon dioxide (CO₂) reacts with hydrogen (H₂) to produce methane (CH₄) and water. If we assume a simple stoichiometry of 1:1 for CO₂ to CH₄ in a direct or catalyzed process, then 36.6 moles of carbon dioxide would theoretically produce 36.6 moles of methane under conditions allowing for complete conversion.
A compound is found to contain 38.65 % carbon, 16.25 % hydrogen, and 45.09 % nitrogen by mass. what is the empirical formula for this compound?
By assuming a 100g sample based on percentage by mass, we find the number of moles for each element (Carbon, Hydrogen, Nitrogen) and then express these amounts in the smallest possible ratio. The empirical formula of the compound is thus C5H7N.
Explanation:Given the percentages by mass, we can assume a 100 gram sample of the compound. Therefore, we have 38.65 grams of Carbon (C), 16.25 grams of Hydrogen (H), and 45.09 grams of Nitrogen (N). We can convert these masses to moles by dividing by the atomic masses of C, H and N, which are approximately 12.01 g/mol, 1.01 g/mol and 14.01 g/mol respectively. This yields approximately 3.22 moles of Carbon, 16.09 moles of Hydrogen and 3.22 moles of Nitrogen.
In order to determine the empirical formula, we need to express these mole amounts in the lowest possible ratio. It can be seen that all of them can be divided by the smallest amount, which is 3.22. This would equal to 1 for Carbon and Nitrogen and 5 for Hydrogen. Therefore, the empirical formula of this compound is C1H5N1 or simply C5H7N.
Learn more about Empirical Formula here:https://brainly.com/question/32125056
#SPJ12
The general reaction of carboxylic acid derivatives is __________.
The general reaction of carboxylic acid derivatives is nucleophilic acyl substitution, in which a nucleophile reacts with the electrophilic carbonyl carbon leading to a substitution of the group attached to it.
Explanation:The general reaction of carboxylic acid derivatives is nucleophilic acyl substitution. In this reaction, the carbonyl carbon of carboxylic acid derivatives is typically electrophilic. Nucleophiles can react with it, leading to the substitution of the group attached to the carbonyl carbon. Let's consider an ester as a simple example of carboxylic acid derivatives. A reaction involving an alcohol, for instance, methanol, will result in the substitution of the original alcohol group with a methanol group.
Learn more about Nucleophilic Acyl Substitution here:https://brainly.com/question/33908356
#SPJ2
The general reaction of carboxylic acid derivatives is nucleophilic acyl substitution .
This reaction involves the replacement of the leaving group on the carboxylic acid derivative with a nucleophile. The leaving group is typically a halogen, an alkoxy group, or an amino group. The nucleophile can be any species with a lone pair of electrons, such as an alcohol, an amine, or a water molecule.
The mechanism of nucleophilic acyl substitution is as follows:
1. The nucleophile attacks the carbonyl carbon of the carboxylic acid derivative.
2. The leaving group departs, forming a tetrahedral intermediate.
3. The intermediate collapses, forming the new acyl product and the leaving group.
The rate of nucleophilic acyl substitution depends on a number of factors, including the nature of the nucleophile, the nature of the leaving group, and the presence of any catalysts.
In general, more reactive nucleophiles and leaving groups will lead to faster reactions.
Here are some examples of nucleophilic acyl substitution reactions:
Esterification: The reaction of a carboxylic acid and an alcohol to form an ester.
Amide formation: The reaction of a carboxylic acid and an amine to form an amide.
Hydrolysis: The reaction of a carboxylic acid derivative with water to form a carboxylic acid and the corresponding leaving group.
Nucleophilic acyl substitution reactions are very important in organic chemistry. They are used to synthesize a wide variety of products, including pharmaceuticals, pesticides, and food additives.
To know more about carboxylic acid
https://brainly.com/question/35907854
#SPJ12
The ostwald process is used commercially to produce nitric acid, which is, in turn, used in many modern chemical processes. in the first step of the ostwald process, ammonia is reacted with oxygen gas to produce nitric oxide and water. what is the maximum mass of h2o that can be produced by combining 51.3 g of each reactant?
Calculate how many Calories would be found in a breakfast consisting of the following: two eggs two pieces of toast buttered with one tablespoon of butter one 9 oz glass of orange juice
The breakfast consists of two eggs, two pieces of toast with one tablespoon of butter, and a 9 oz glass of orange juice, totaling 510 Calories.
Each item contributes a different amount of Calories, summed together for the final total.
To determine the total Calories in the breakfast, we need to sum the Calories from each component.
Two eggs: One large egg has approximately 70 Calories, so two eggs contribute 140 Calories.Two pieces of toast: One slice of white bread has about 80 Calories, so two slices provide 160 Calories.Butter: One tablespoon of butter adds around 100 Calories.Glass of orange juice: A 9 oz glass (about 270 ml) has approximately 110 Calories.Adding these up: 140 + 160 + 100 + 110 = 510 Calories.
Summary
The breakfast consisting of two eggs, two pieces of toast with one tablespoon of butter, and a 9 oz glass of orange juice contains a total of 510 Calories.
Correct question is: Calculate how many Calories would be found in a breakfast consisting of the following:
two eggs two pieces of toast buttered with one tablespoon of butter one 9 oz glass of orange juiceWhat type of bonding occurs in a sample of pure chromium, cr? in other words, how is one chromium atom held to another chromium atom?
Chromium is a metal in nature. So when one chromium is bonded to another chromium, there is a weak intermolecular forces which helds them together which we call as “metallic bonding”.
Metallic bonding is the intermolecular force of attraction which exist between valence electrons and the metal atoms. It is considered as the sharing of various detached electrons between many positive ions, whereby the electrons serve as a "glue" which gives the substance a definite structure.
At which of the following temperatures is the chance of molecules aligning just right for a chemical change the highest?
50 °F
40 °F
30 °F
20 °F
50 °F would give a possible chance of the molecules aligning just right for a chemical change because the higher the temperature, the more excited, or active the molecules will become. When there is more activity, there is more collision, which results in heat from the friction, and they will have a higher chance for chemical change because of the frequent run-ins of these molecules.
Hope this helps! If it's right or wrong, please let me know :)
Which of the substances are largely ionic nonpolar covalent polar covalent?
What dissolved species are present in a solution of NaClO4?
Assuming that the solution is simply an aqueous solution so that it is purely made of NaClO4 (the solute) and water (the solvent), then I believe the dissolved species would only be the ions of NaClO4, these are:
Na+
ClO4 -
Of the molecules below, the bond in __________ is the most polar. hbr hi hcl hf
An understanding of periodic trends is important because the trends 1. can be used to convert non-useful elements to useful ones. 2. allow compounds to be broken into their elements. 3. relate to properties of elements and how they may react. 4. allow prediction of electron configurations and bond orders.
How are muscles and bones related?
Calculate the enthalpy change for the reaction:
2 H2O2(l) → 2 H2O(l) + O2(g)
using enthalpies of formation:
ΔH∘f(H2O2)=−187.8 kJ/mol
ΔH∘f(H2O)=−295.8 kJ/mol
Answer:
-196.0 kJ
Explanation:
which liquid materials have strong odor and weak odor?
Odor refers to the fragrance caused by one or more volatilized chemical compounds. It can be strong or weak.
Strong odor have: Sodium Hypochlorite, Muriatic Acid, Sulphuric Acid, Ammunlom Sulfide. Butyl ,Butyric Acid, Pyridine
Weak Odors have Spray Glue, Dry Erase Markers, Paint cleaners. Water.
What is the white solid that forms when methyl salicylate is added to sodium hydroxide?
When methyl salicylate is added to sodium hydroxide, sodium salicylate is produced. This white solid result is due to an acid-base reaction involving the neutralization of methyl salicylate (an ester) by the base, sodium hydroxide.
Explanation:The white solid that forms when methyl salicylate is added to sodium hydroxide is sodium salicylate. This reaction is an example of an acid-base reaction, specifically the neutralization of an ester with a base. Methyl salicylate is an ester of salicylic acid and methanol. In this reaction, the sodium hydroxide acts as a base to deprotonate the methyl salicylate, forming sodium salicylate and methanol. The sodium salicylate is observed as a white solid following the reaction.
When methyl salicylate is added to sodium hydroxide, a white solid called methyl salicylate sodium salt is formed.
Learn more about Chemical Reaction here:https://brainly.com/question/34137415
#SPJ11