A 13-oz iced tea at a certain restaurant has 78 calories. How many calories are there in a 21-oz iced tea?
The calories in a 21-oz iced tea that is originally 78 calories in a 13-oz serving, multiply the calories per ounce by the new serving size for a total of 126 calories.
The 13-oz iced tea contains 78 calories. To find the calories in a 21-oz iced tea:
Calculate the calories per ounce: 78 calories ÷ 13 oz = 6 calories/oz
Multiply the calories per ounce by the 21-oz serving size: 6 calories/oz × 21 oz = 126 calories in a 21-oz iced tea
If Lenox has 40 shirts
All tickets for a concert are the same price. the ticket agency adds a fixed fee to every order. a person who orders 5 tickets pays $93. a person who orders 3 tickets pays $57. write an equation relating the total cost to the number of tickets purchased
To write an equation relating the total cost to the number of tickets purchased with a fixed fee, set up a system of equations using the given information and solve for the variables.
Explanation:To write an equation relating the total cost to the number of tickets purchased, we need to determine the cost of one ticket and the fixed fee added by the ticket agency. Let's assign the ticket price as x and the fixed fee as y. Based on the given information, we can set up two equations:
5x + y = 93
3x + y = 57
Now, we can solve this system of equations to find the values of x and y and write the final equation relating the total cost to the number of tickets purchased.
Learn more about Equation relating cost and number of tickets purchased here:https://brainly.com/question/32790022
#SPJ2
The perimeter of a rectangle is 36 meters. The length is 2 meters more than three times the width find the length of the rectangle
The length of the rectangle with a perimeter of 36 meters and a length that is 2 meters more than three times the width is 14 meters.
The perimeter of a rectangle is twice the sum of its length and width. According to the question, the perimeter of the rectangle is 36 meters, and the length (L) is 2 meters more than three times the width (W). We can express this relationship as follows: L = 3W + 2.
The formula for the perimeter (P) of a rectangle is P = 2L + 2W.
Using the given perimeter of 36 meters, we can set up the equation as 2(3W + 2) + 2W = 36.
Simplifying this equation, we find that 8W + 4 = 36, and thus W = 4 meters.
Substituting the value of W back into the equation for L gives us L = 3(4) + 2, which means the length of the rectangle is 14 meters.
You are a farmer and want to spend under $35,000 on farm equipment. You need a hay bailer that costs $6,250 and several plowing disks cost $2,500 each. Write an inequality that models how many plowing disks could be purchased within your budget. What is the maximum number of plowing disks you can buy?
An furniture salesperson sells a couch for $1,560. She receives a 2.75% commission on the sale of the couch.
How much did she earn on the sale?
Round your answer to the nearest cent.
Answer: Amount she earn on the sale is $42.9.
Step-by-step explanation:
Since we have given that
A furniture salesperson sells a couch for $1560.
Percentage of commission she receive on the sale of the couch = 2.75%
So, Amount she earn on the sale is given by
[tex]2.75\%\ of\ 1560\\\\=\frac{2.75}{100}\times 1560\\\\=0.0275\times 1560\\\\=\$42.9[/tex]
Hence, amount she earn on the sale is $42.9.
The mathematics department of a college has 12 male professors, 7female professors, 13 male teaching assistants, and 12 female teaching assistants. If a person is selected at random from the group, find the probability that the selected person is a professor or a male.
write the complex number -12+16i in trigonometric form r(cos theta+i sin theta), with theta in the interval
An instructor gives an exam with fourteen questions. Students are allowed to choose any ten to answer. a. How many different choices of ten questions are there?
b. Suppose six questions require proof and eight do not.
(i) How many groups of ten questions contain four that require proof and six that do not?
(ii) How many groups of ten questions contain at least one that requires proof?
(iii) How many groups of ten questions contain at most three that require proof?
c. Suppose the exam instructions specify that at most one of questions 1 and 2 may be included among the ten. How many different choices of ten questions are there? d. Suppose the exam instructions specify that either both questions 1 and 2 are to be included among the ten or neither is to be included. How many different choices of ten questions are there?
There are 1001 different choices of 10 questions.
d. Since the student can choose any 10 questions out of the 14, the number of different choices of 10 questions is given by the combination formula, which is C(14,10). Using the formula for combinations, we have:
C(14,10) = 14! / (10!(14-10)!)
= 14! / (10!4!)
= (14*13*12*11) / (4*3*2*1) = 1001
Therefore, there are 1001 different choices of 10 questions.
Learn more about Combinations here:https://brainly.com/question/30646507
#SPJ11
find the least LCM of 28 and 98 to the 2nd power
Please help ASAP
How much money does Barbara Mack owe at the end of 4 years if 6% interest is compounded continuously on her $2000 debt? Use the formula A=P e^rt to solve.
The amount of money owed is $ ? Round to the nearest cent as needed.
Barbara Mack owes approximately $2543.78 at the end of 4 years with 6% interest compounded continuously.
To find the total amount Barbara Mack owes after 4 years with a 6% continuously compounded interest rate, we use the formula:
A = P[tex]e^{rt}[/tex]
with P = $2000,
r = 0.06, and
t = 4
A = 2000 x [tex]e^{0.06 * 4}[/tex].
When we calculate e(0.06*4), we'll get a certain number that you then multiply by 2000 to find the total amount owed.
A= 2000 x [tex]2.71828 ^{0.24}[/tex]
A= 2543.78 ( approx)
So, Barbara Mack owes approximately $2543.78 at the end of 4 years with 6% interest compounded continuously.
Please help with accounting. Use the following information to complete the partial worksheet for Bill’s Company. Record the appropriate adjusting entries using the data below and extend the balances over to the adjusted trial balance columns. Merchandise inventory—ending $10 Store supplies on hand 3 Depreciation on store equipment 2 Accrued salaries 1
To complete the partial worksheet for Bill's Company, you need to record the appropriate adjusting entries using the given data. Once the adjustments are recorded, you can transfer the balances to the adjusted trial balance column.
Explanation:To complete the partial worksheet for Bill's Company, we need to record the appropriate adjusting entries using the given data. Let's go step by step:
Record the ending merchandise inventory of $10 in the Adjustments column as a debit to the Merchandise Inventory account and a credit to the Adjustments account.Record the store supplies on hand of $3 in the Adjustments column as a debit to the Store Supplies account and a credit to the Adjustments account.Record the depreciation on store equipment of $2 in the Adjustments column as a debit to the Depreciation Expense account and a credit to the Accumulated Depreciation account.Record the accrued salaries of $1 in the Adjustments column as a debit to the Salaries Expense account and a credit to the Salaries Payable account.Transfer the balances from the Adjustments column to the Adjusted Trial Balance column.Once you complete these steps, you will have the adjusted trial balance with the appropriate balances extended from the adjustments.
17 is what percent of 340
Answer:
5%
Step-by-step explanation:
to work out what percent 17 is out of 340 we can formulate an equation
so 340(x%)=17
when we solve for x we get 5
Ava's game piece is on 36. She wants to capture a chip that is on 72. Can she do it with these change cards?if so, how? If not,explain why not. -10 +30 -1 +1-2
Final answer:
Ava can capture the chip on square 72 by using the +30 change card once to reach 66, and then the +1 change card six times to reach the final value of 72.
Explanation:
Ava's game piece is on square number 36, and she wants to capture a chip on square number 72. By using the change cards, Ava needs to adjust her position from 36 to 72 with the change cards provided. The change cards are: -10, +30, -1, +1, and -2. To determine if Ava can capture the chip, we need to see if we can use the cards to add up to a net change of +36 (since 72 - 36 = 36).
By analyzing the cards, we can use the +30 card once, which would take Ava's position from 36 to 66. Next, she can use the +1 card six times to go from 66 to 72. Ava does not need to utilize the -10, -1, or -2 cards as they would move her backwards. Therefore, Ava can indeed capture the chip using the change cards provided.
The steps Ava should follow are:
Use the +1 card six times to move from 66 to 72.
Which of the following statements concerning the standard normal curve is/are true (if any)?
a) The area under the standard normal curve to the left of -3 is zero.
b) The area under the standard normal curve between any two z-scores is greater than zero.
c) The area under the standard normal curve between two z-scores will be negative if both z-scores are negative.
d) The area under the standard normal curve to the left of any z-score is less than 1.
A. a, b
B. b, d
C. a, c
D. a
Please help ASAP
Find how long it take $600 to double if it is invested at 7% interest compounded monthly.
Hey guys, I need help with this word problem. I don't just want the answer. I would like the steps please!
The average annual cinema admission price y (in dollars) from 2003 through 2012 is given by y=0.28x+5.92. In this equation, x represents the number of years after 2003.
a. Complete the table.
x: 2, 5, 8
y:
b. Find the year in which the average cinema admission price was approximately $7.88. (Hint:Find x when y=7.88 and round to the nearest whole number.)
c. Use the given equation to predict when the cinema admission price might be $10.04. (Use the hint for part b.)
Final answer:
By applying the given linear equation, we can calculate the average cinema admission price for specific years, find out in which year the price was approximately $7.88, and predict when it might reach $10.04.
Explanation:
The question involves solving a linear equation to complete a table, find a specific year based on the ticket price, and predict when the ticket price will reach a certain amount. To complete these steps, we apply the equation y=0.28x+5.92, where x represents the number of years after 2003, and y gives the price in dollars.
For a, plug in the values of x (2, 5, 8) into the equation to find y.
For b, set y=7.88 and solve for x (years after 2003) by rearranging the equation.
For c, with a target price of $10.04, use the equation again to solve for x.
When x=2, y=6.48.
When x=5, y=7.32.
When x=8, y=8.16.
For a ticket price of $7.88, solve for x: x = (7.88 - 5.92) / 0.28 = 7 years after 2003, which is 2010.
To predict when the ticket price reaches $10.04, solve for x: x = (10.04 - 5.92) / 0.28 = 14.71, rounding to 15 years after 2003, which is 2018.
Walt's monthly salary is $6,962.What would be his equivalent semimonthly salary?
A machine starts dumping sand at the rate of 20 m3/min, forming a pile in the shape of a cone. The height of the pile is always twice the length of the base diameter.After 5 minutes, how fast is the area of the base increasing?
The ratio of boys to girls at a movie is 4 font size decreased by 4 : 7. If there are 21 girls, how many boys are at the movie?
A ladder is leaning against a building so that the distance from the ground to the top of the ladder is 2 feet less than the length of the ladder. Find the length of the ladder if the distance from the bottom of the ladder to the building is 6 feet.
To find the length of the ladder, we can use the property of right triangles. The length of the ladder is 10 feet.
Explanation:To find the length of the ladder, we can use the property of right triangles. Let's assume the length of the ladder is 'L'.
According to the given information, the distance from the ground to the top of the ladder is 2 feet less than the length of the ladder. So, the height of the triangle formed by the ladder, the building, and the ground is L - 2.
The distance from the bottom of the ladder to the building is given as 6 feet. Using the Pythagorean theorem, we can set up the following equation: (L-2)^2 + 6^2 = L^2
Simplifying the equation, we get L^2 - 4L + 4 + 36 = L^2, which simplifies further to 40 = 4L. Dividing both sides by 4, we get L = 10.
Therefore, the length of the ladder is 10 feet.
add 3 feet 6 inches 8 feet 2 inches 4 inches 2 feet 5 inches
The Extreme Rock Climbing Club planned a climbing expedition. The total cost was $1400, which was to be divided equally among the members going. Prior to the trip, 3 members decided not to go. If the cost per person increased by $105, how many people went on the expedition?
Answer:
5 people
Step-by-step explanation:
Let
x = number of peopley = cost per personThe total cost was $1400, which was to be divided equally among the members going. Then,
y = 1400 / x [1]
Prior to the trip, 3 members decided not to go. The cost per person increased by $105.
y + 105 = 1400 / (x - 3)
(y + 105) . (x - 3) = 1400 [2]
We replace [1] in [2],
(1400/x + 105) . (x - 3) = 1400
1400 - 4200/x + 105x -315 = 1400
- 4200/x + 105x = 315
(- 4200 + 105x²)/x = 315
- 4200 + 105x² = 315 x
105x² - 315x - 4200 = 0
When we solve this quadratic equation using the quadratic formula, we get x₁ = 8 and x₂ = -5. Only the positive x has sense.
The people that went to the expedition was x - 3 = 8 - 3 = 5.
(a) A color printer prints 15 pages in 5 minutes. How many pages does it print per minute?
(b) It takes 34 pounds of seed to completely plant a 6-acre field. How many acres can be planted per pound of seed?
If necessary, round your answers to the nearest hundredth.
Michelle wants to save $150 for a trip to the Six Flags amusement park. if she saves $12 each week, how many weeks will it take her to save enough money
It will take her 13 weeks to save enough money for a trip to the Six Flags amusement park
Further explanationComparison is an effort to compare two or more objects in terms of shape or size, or number
Proportional Comparisons / Directly proportional are comparisons of two or more numbers where one number increases, the other numbers also increase at the same rate
Can be formulated
[tex]\displaystyle \frac {x1} {y1} = \frac {x2} {y2}[/tex]
so that if:
x = 2
then
[tex]\displaystyle y ={ \frac {y} {x} \times \: 2}[/tex]
While the reversal value comparison / inversely proportional is the comparison of two or more numbers where one number increases, the other number decreases in value
or when one value decreases at the same rate that the other increases
Can be formulated
[tex]\displaystyle \frac {x1} {y2} = \frac {x2} {y1}[/tex]
so that if:
x = 2
then
[tex]\displaystyle y = \frac {x} {y} \times \: 2[/tex]
KnownMichelle wants to save $150
she saves $12 each week
Askedthe number of weeks needed to save money
Answerevery weeks , she save $12 or we can make equation 1:
1 weeks = $12
the amount of money needed to travel to the six flags amusement park
= $150
we can make equation 2
? weeks = $150
Because this includes Proportional Comparisons / Directly proportional,
from two equation above , we can make comparison :
[tex]\displaystyle \frac{1\:weeks}{\$12} =\frac{x\:weeks}{\$150}[/tex]
[tex]\displaystyle x\:weeks=\frac{\$150\times1\:weeks}{\$12}[/tex]
[tex]\large{\boxed{x\:weeks= 12.5}}[/tex]
or we round up to :
[tex]\large{\boxed{\bold{13\:weeks}}}[/tex]
Learn more
1,092 flowers are arranged into 26 vases
https://brainly.com/question/2713244
dividing 878 by 31
https://brainly.com/question/839496
round trips
https://brainly.com/question/10739583
Keywords: save money,a trip to park, Proportional Comparisons / Directly proportional
What is 3478 divide by 9
[8 3 2]
What are the dimensions of the matrix?
____ * ____ * = multiplication
Answr if only know with solution..or no brainliest answer to u
solution -9-8(1+4h)= -17
write 26/20 as a percent
If 10 cars are sold to a rental company, what is the probability that at most 3 cars have at least one surface flaw?
Given a Poisson distribution with 0.05 flaws/sq ft and 10 sq ft panels, each car has a 60.65% chance of no flaws.
The probability of at least 1 car with flaws is 99.35%.
Considering only 1 car with flaws, the final probability of at most 1 car with flaws is 90.2%.
Probability of at most 1 car with flaws: 90.2%
Here's how to calculate the probability that at most 1 car out of 10 has any surface flaws, given the Poisson distribution parameters:
1. Define parameters:
Mean flaws per square foot (λ) = 0.05
Area of plastic panel per car (A) = 10 square feet
Number of cars (N) = 10
2. Calculate probability of no flaws:
Probability of no flaws in one car (P(X=0)) = e^(-λA) = e^(-0.0510) ≈ 0.6065
3. Calculate probability of 1 car with flaws (complementary probability):
Probability of at least 1 car with flaws (1 - P(no flaws in all cars))
P(X ≥ 1) = 1 - (P(X=0))^N = 1 - (0.6065)^10 ≈ 0.9935
Probability of exactly 1 car with flaws (P(X=1)) = N * P(X=0) * (1-P(X=0))^N-1
≈ 10 * 0.6065 * (1 - 0.6065)^9 ≈ 0.3869
4. Final probability:
Probability of at most 1 car with flaws (P(X ≤ 1)) = P(X=0) + P(X=1) ≈ 0.6065 + 0.3869 ≈ 0.9934
The probability that at most 1 car out of 10 has any surface flaws is approximately 90.2%.
Therefore, Given a Poisson distribution with 0.05 flaws/sq ft and 10 sq ft panels, each car has a 60.65% chance of no flaws.
The probability of at least 1 car with flaws is 99.35%.
Considering only 1 car with flaws, the final probability of at most 1 car with flaws is 90.2%.
The probable question may be: The number of surface flaws in plastic panels used in the interior of automobile has a Poisson distribution with a man of 0.05 flaws per square foot of plastic panel. Assume an automobile interior contains 10 square feet of plastic panel. If 10 cars are sold to a rental company, what is the probability that at most 1 car has any surface flaws?
a. The probability of no surface flaws in an auto's interior is approximately 0.7408.
b. The probability of none of the 10 cars having any surface flaws is approximately 0.0498.
c. The probability of at most 1 car having any surface flaws is approximately 0.9631.
a. Probability of no surface flaws:
Calculate the lambda parameter: The lambda parameter for the Poisson distribution represents the expected number of flaws, which is calculated as the mean flaws per square foot multiplied by the total area.
In this case, [tex]\lambda[/tex] = 0.03 flaws/sq ft * 10 sq ft = 0.3 flaws.
Use the Poisson probability formula: The probability of no flaws (x = 0) in a Poisson distribution is given by [tex]e^{(-\lambda)[/tex].
Plugging in lambda = 0.3, we get
P(x = 0) = [tex]e^{(-0.3)[/tex] ≈ 0.7408.
b. Probability of none of the 10 cars having flaws:
Treat each car as an independent event: Since the flaws are random and independent for each car, we can treat each car as a separate event with the same probability of no flaws (0.7408) calculated in part (a).
Calculate the combined probability: To get the probability of none of the 10 cars having flaws, we simply multiply the individual probabilities.
P(no flaws in all 10 cars) = [tex](0.7408)^{10[/tex] ≈ 0.0498.
c. Probability of at most 1 car having flaws:
Calculate probabilities for 0 and 1 flaws: We need the probabilities of 0 flaws (already calculated in part (a)) and 1 flaw (x = 1) to determine the probability of at most 1 flaw.
Probability of 1 flaw: Using the Poisson formula again,
P(x = 1) = [tex]\lambda[/tex] * [tex]e^{(-\lambda)[/tex] = 0.3 * [tex]e^{(-0.3)[/tex] ≈ 0.2222.
Probability of at most 1 flaw: This includes both scenarios with 0 and 1 flaws. P(at most 1 flaw) = P(0 flaws) + P(1 flaw) = 0.7408 + 0.2222 ≈ 0.9631.
Question:-
The number of surface flaws in plastic panels used in the interior of automobiles has a Poisson distribution with a mean of 0.03 flaws per square foot of plastic panel. Assume an automobile interior contains 10 square feet of plastic panel.
a. What is the probability that there are no surface flaws in an auto's interior?
b. If 10 cars are sold to a rental company, what is the probability that none of the 10 cars has any surface flaws?
c. If 10 cars are sold to a rental company, what is the probability that at most 1 car has any surface flaws? Round your answers to four decimal places (e.g. 98.7654).