Write a balanced nuclear equation for the beta decay of carbon-11.

Answers

Answer 1
Final answer:

The balanced nuclear equation for the beta decay of carbon-11 is ⁶₁₁C → ⁶₁₂N + ⁰⁻₁e, which indicates carbon-11 transforming into nitrogen-11 and emitting a beta particle (electron).

Explanation:

The beta decay of carbon-11 is a type of radioactive decay where a beta particle (an electron) is emitted from an atomic nucleus. Writing a balanced nuclear equation for this process involves showing the original nucleus, the emitted beta particle, and the resulting daughter nucleus. In beta decay, a neutron in the nucleus is transformed into a proton and an electron. The electron is ejected from the nucleus as the beta particle, and the atomic number of the nucleus increases by one while the mass number remains the same.

The balanced nuclear equation for the beta decay of carbon-11 is:

⁶₁₁C → ⁶₁₂N + ⁰⁻₁e

Here, carbon-11 (⁶₁₁C), with 6 protons and 5 neutrons, decays to nitrogen-11 (⁶₁₂N), which has 7 protons and 4 neutrons, by emitting a beta particle (⁰⁻₁e, also represented as β-). This process increases the atomic number by one, from carbon (6) to nitrogen (7), while the mass number remains 11.

Answer 2

Final answer:

The balanced nuclear equation for the beta decay of carbon-11 is 11C → 11B + β + γ. The daughter isotope in this decay is boron-11 (11B).

Explanation:

The balanced nuclear equation for the beta decay of carbon-11 is:

11C → 11B + β + γ

The daughter isotope in this decay is boron-11 (11B).


Related Questions

Which configuration of a phospholipid would you expect to see in the presence of water?

Answers

The configurations that you would expect a phospholipid to see in the presence of water would be double-layered aggregations. The fatty acid tails of the phospholipid would face inside since it is the hydrophobic part, of the molecule. And, the phosphate part would be the one facing outward, interacting with water molecules since it is the hydrophilic part, water-loving. Hydrophobic means it hates water or it repels water molecules while hydrophilic means it attracts water molecule. This configuration is also known as the phospholipid bilayer where two layers of phospholipid molecules are adjecent to each other forming a double layer.

when the pressure that a gas exerts on a sealed container changes from blank torr to 900 torr the temperature changes from 300 k to 450 k

Answers

It's 600 torr, just use Gay-Lussac's law P1/T1=P2/T2

Answer:

Initial pressure = 600 torr

Explanation:

Given:

Initial pressure, P1 = 900 torr

Initial Temperature, T1 = 300 K

Final temperature, T2 = 450 K

To determine:

Final pressure of  gas, P2

Explanation:

Based on the ideal gas equation

[tex]PV = nRT\\[/tex]

where n = moles of gas

R = gas constant, T = temperature

At constant volume (V), the above equation becomes:

P/T = constant

This is Gay-Lussac's law

[tex]\frac{P1}{T1} =\frac{P2}{T2} \\\\P1=\frac{P2}{T2} *T1=\frac{900\ torr}{450\ K} *300\ K=600\ torr[/tex]

What number of atoms of phosphorus are present in 1.00g of each of the compounds in exercise 48?

Answers

Answer:

Explanation:

The compounds in exercise 48 are:

a) P4O6,

b) Ca3 (PO4)2, and

c) Na2 H PO4

So, proceed with the calculus for each compound.

a) Molecular formula: P4O6

Molar mass: 4 * 31 g/mol + 6* 16g/mol = 220 g/mol

Number of moles in 1.00 grams of compound = mass in grams / molar mass =

= 1.00 g / 220 g/mol = 0.004545 mol

0.004545 mol of P4O6 contains 4 * 0.004545 =  0.01818moles of atoms of P.

=> 0.01818 moles * 6.022 * 10^23 atoms / mol = 1.095 * 10^ 22 atoms of P.

Answer: 1.095 * 10^22 atoms of P.

b) Ca3 (PO4)2

molar mass = 3 * 40.1 g/mol + 2 * 31.0 g/mol + 8 * 16 g/mol = 310.3 g/mol

number of moles in 1.00 g of Ca3 (PO4)2 = 1.00 g / 310.3 g/mol = 0.00322 mol

0.00322 mol of compound * 2 mol P / mol of compound = 0.00644 mol P

0.00644 mol P * 6.022 * 10^23 atom / mol = 3.878 * 10 ^ 21 atoms P

Answer: 3.878 * 10^21 atoms P

c) Na2 H PO4

molar mass = 2 * 23.0 g/mol + 1 g/mol + 31.0 g/mol + 4 * 16g/mol = 142.0 g/mol

number of moles = 1.00 g / 142.0 g/mol = 0.0070 moles Na2HPO4

=> 0.0070 moles P

=> 0.0070 * 6.022 * 10^23 = 4.215 * 10^21 atoms of P

Answer: 4.215 * 10^21 atoms P

Final answer:

To determine the number of atoms of phosphorus in a compound, you need to use the molar mass and Avogadro's number. Convert the mass of the compound to moles and then multiply by Avogadro's number to get the number of atoms.

Explanation:

The number of atoms of phosphorus present in a compound can be determined using the molar mass and Avogadro's number. We need to convert the mass of the compound to moles using its molar mass, and then multiply by Avogadro's number to get the number of atoms.

For example, if we have 1.00g of phosphorus pentoxide (P2O5), we can calculate the number of atoms of phosphorus by:

Calculating the moles of P2O5 using its molar mass (141.94 g/mol) Converting the moles of P2O5 to moles of phosphorus using the ratio in the balanced equation (2 moles of P per 1 mole of P2O5) Multiplying the moles of phosphorus by Avogadro's number (6.022 x 1023 atoms/mol)

The result will be the number of atoms of phosphorus in 1.00g of P2O5.

Aluminum reacts with chlorine gas to form aluminum chloride. 2al(s)+3cl2(g)→2alcl3(s) what minimum volume of chlorine gas (at 298 k and 225 mmhg) is required to completely react with 7.85 g of aluminum

Answers

The balanced chemical reaction is expressed as:

2Al(s)+3Cl2(g)→2AlCl3(s)

To determine the volume of chlorine gas needed given the mass of aluminum metal to be used, we need to calculate for the moles of chlorine needed and use a relation that relates moles and volume by assuming the gas to be an ideal gas. We use the equation PV =nRT. We calculate as follows:

7.85 g Al ( 1 mol / 26.98 g ) ( 3 mol Cl2 / 2 mol Al ) = 0.43643 mol Cl2

PV = nRT
V = nRT / P
V = 0.43643 (0.08205) (298) / (225/760)
V = 36.04 L chlorine gas

The minimum volume needed would be 36.04 L.
Final answer:

To find the minimum volume of chlorine gas required to react with 7.85 g of aluminum, we convert the mass of aluminum to moles, find the necessary moles of chlorine gas using the balanced equation, and then apply the ideal gas law to find the volume.

Explanation:

The question is asking about the volume of chlorine gas required to completely react with a given amount of aluminum. We know from the balanced equation that 2 moles of aluminum (Al) react with 3 moles of chlorine gas (Cl) to form 2 moles of aluminum chloride (AlCl₃). First, we've to convert the mass of aluminum to moles by dividing the mass 7.85g by the molar mass of aluminum (26.98 g/mol), giving approximately 0.291 mol.

From the equation, we know the mole ratio of Al to Cl2 is 2 to 3. Therefore, 0.291 moles of Al will require 0.437 mol of Cl₂. Next, we apply the ideal gas law (PV=nRT) to find the volume. Here, P=225 mmHg (which is 0.296 atmospheres), R=0.0821(atm L)/(mol K), T=298 K and n=0.437 mol.

Finally, solving for V in PV=nRT gives us V = nRT/P, approximating 11.08 L as the minimum volume of chlorine gas required to react.

Learn more about Chemical Reactions here:

https://brainly.com/question/34137415

#SPJ3

In the reaction 2 c o2 → 2 co, how many moles of carbon are needed to produce 66.0 g of carbon monoxide

Answers

The solution would be like this for this specific problem:

Given:

66.0 g of carbon monoxide

reaction 2 C + O2 → 2 CO

 

mol e= mass / molar mass 
mole of 2CO = 66.0g / (12.011  15.999)g / mol 
mole of 2CO = 2.36 (CO and C has a 1:1 mole ratio) 

mole of 2CO = 2.36 -> mole of 1 CO = 2.36 / 2 = 1.18 

We got 2 moles of C, thus 1.18 x 2 = 2.36

So, we 2.36 moles of carbon are needed to produce 66.0 g of carbon monoxide in the reaction 2 C + O2 → 2 CO.   To add, Carbon nonmetallic and tetravalent, thus, making four electrons available to form covalent chemical bonds. 

In the given reaction moles of carbon are needed to produce 66.0 g of carbon monoxide is 2.35 moles.

How we calculate moles?

Moles of any substance will be calculated as:

n = W/M, where

W = given mass

M = molar mass

Given chemical reaction is:

2C + O₂ → 2CO

Moles of 66g of CO = 66g / 28g/mol = 2.35 mol

2 moles of CO = produced by 2 moles of carbon

2.35 moles of CO = produced by 2.35 moles of carbon

Hence, required moles of carbon are 2.35 moles.

To know more about moles, visit the below link:

https://brainly.com/question/15374113

Aluminium chloride dissolved in Water =? When you dissolve aluminium chloride in water, what is the balanced chemical equation? NOTE: Not a chemical reaction, just dissolving.

Answers

Dissolution and dissociation of aluminum chloride:

AlCl₃(s) → Al³⁺(aq) + 3Cl⁻(aq)


The cation of aluminum is hydrolyzed:

Al³⁺ + 2H₂O ⇄ AlOH²⁺ + H₃O⁺
AlOH²⁺ +2H₂O ⇄ Al(OH)₂⁺ + H₃O⁺
Al(OH)₂⁺ + 2H₂O ⇄ Al(OH)₃ + H₃O⁺

How many milliliters of a 0.266 m lino3 solution are required to make 150.0 ml of 0.075 m lino3 solution?

Answers

We need an equation that would relate the concentration of the original solution to that of the desired solution. To solve this we use the equation expressed as follows, 

M1V1 = M2V2

where M1 is the concentration of the stock solution, V1 is the volume of the stock solution, M2 is the concentration of the new solution and V2 is its volume.

M1V1 = M2V2

0.266 M x V1 = 0.075 M x 150 mL

V1 = 42.29 mL


Therefore, we need about 42.29 mL of the 0.266 M of lithium nitrate solution to make 150.0 mL of the 0.075 M lithium nitrate solution.

[tex]\boxed{{\text{42}}{\text{.3 mL}}}[/tex] of a 0.266 M [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution is required to make 150 mL of a 0.075 M [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

Further Explanation:

The concentration is the proportion of substance in the mixture. The most commonly used concentration terms are as follows:

1. Molarity (M)

2. Molality (m)

3. Mole fraction (X)

4. Parts per million (ppm)

5. Mass percent ((w/w) %)

6. Volume percent ((v/v) %)

Molarity is a concentration term that is defined as the number of moles of solute dissolved in one litre of the solution. It is denoted by M and its unit is mol/L.

The molarity equation is given by the following expression:

[tex]{{\text{M}}_{\text{1}}}{{\text{V}}_{\text{1}}} = {{\text{M}}_{\text{2}}}{{\text{V}}_{\text{2}}}[/tex]                      …… (1)

Here,

[tex]{{\text{M}}_{\text{1}}}[/tex] is the molarity of the initial [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

[tex]{{\text{V}}_{_{\text{1}}}}[/tex] is the volume of the initial [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

[tex]{{\text{M}}_{\text{2}}}[/tex] is the molarity of the new [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

[tex]{{\text{V}}_{_{\text{2}}}}[/tex] is the volume of the new [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

Rearrange equation (1) to calculate [tex]{{\text{V}}_{\text{1}}}[/tex].

[tex]{{\text{V}}_{\text{1}}}=\frac{{{{\text{M}}_{\text{2}}}{{\text{V}}_{\text{2}}}}}{{{{\text{M}}_{\text{1}}}}}[/tex]                    …… (2)

The value of [tex]{{\text{M}}_{\text{1}}}[/tex] is 0.266 M.

The value of [tex]{{\text{M}}_{\text{2}}}[/tex] is 0.075 M.

The value of [tex]{{\text{V}}_{_{\text{2}}}}[/tex] is 150 mL.

Substitute these values in equation (2).

[tex]\begin{aligned}{{\text{V}}_{\text{1}}}&=\frac{{\left({{\text{0}}{\text{.075 M}}} \right)\left( {{\text{150 mL}}} \right)}}{{{\text{0}}{\text{.266 M}}}}\\&=42.29{\text{ mL}}\\&\approx 42.{\text{3 mL}}\\\end{aligned}[/tex]

Learn more:

1. What is the concentration of alcohol in terms of molarity? https://brainly.com/question/9013318

2. What is the molarity of the stock solution of luminol? https://brainly.com/question/2814870

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Concentration terms

Keywords: molarity, LiNO3, 42.3 mL, molarity equation, volume, M1, M2, V1, V2, 150 mL, 0.075 M, 0.266 M, concentration, concentration terms.

Copper is which type of solid? molecular solid ionic solid covalent atomic solid metallic atomic solid

Answers

It's metallic atomic solid as it is a kind of metal .

Copper is a metallic atomic solid , the atoms are arranged in a regular pattern, with the valence electrons being free to move throughout the structure.Thus, the correct option is metallic atomic solid.

Copper is an example of a metal, and metals typically exhibit metallic bonding, where the valence electrons form a "sea" of delocalized electrons, creating strong bonds between the metal atoms. This allows for the high electrical and thermal conductivity that metals are known for.

Metallic solids are compounds that are entirely comprised of metal atoms that are held together by metallic bonds.Metallic bonding is a type of intramolecular force of attraction that occurs between a lattice of positive ions and a "sea" of delocalized electrons.

Thus, the correct option is metallic atomic solid.

Learn more about metallic atomic solid,here:

https://brainly.com/question/28620902

#SPJ6

The balanced equation for the reaction occurring when iron(iii) oxide, a solid, is reduced with pure carbon to produce carbon dioxide and molten iron is

Answers

2Fe2O3+3C ---> 3CO2+4Fe

Answer: The balanced chemical equation is written below.

Explanation:

A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on the product side. These equations follow law of conservation of mass.

The chemical equation for the reaction of iron (III) oxide with carbon follows:

[tex]2Fe_2O_3(s)+3C(s)\rightarrow 3CO_2(g)+4Fe(l)[/tex]

By Stoichiometry of the reaction:

2 moles of solid iron (III) oxide reacts with 3 moles of pure carbon to produce 3 moles of carbon dioxide gas and 4 moles of molten iron

Hence, the balanced chemical equation is written above.

Jane bought some raisins to keep in her purse as a snack what is one reason raisins dont need refrigeration

Answers

Raisins are dried up grapes. The drying process worked on preserving raisins. Most of the water contained in them was removed during the drying process. This dry environment is not suitable for bacteria to breed in and, thus, raisins won't go rancid. 

Answer: The drying process worked to preserve them

Explanation: apex

Convert 112°C to Kelvin.

Answers

112°C is 385.15 Kelvin

Answer:

112 °C = 385 K

Explanation:

The relation between Kelvin and Celsius degrees is

0°C = 273.15 K

To convert the temperature from Celsius to Kelvin we must add 273.15:

112 °C + 273.15 = 385.15 K

With the correct significant figures the answer would be 385 K

What is the ph of a solution containing 0.12 mol/l of nh4cl and 0.03 mol/l of naoh (pka of is 9.25)?

Answers

The Henderson-Hasselbalch equation fails to provide accurate pH readings for excessively diluted buffer solutions because it ignores the self-dissociation that occurs in water. The pH of the solution is 8.65.

The Henderson-Hasselbalch equation establishes a connection between an acid's pKa (acid dissociation constant) and pH in aqueous solutions. When the concentration of the acid and its conjugate base, or the base and the corresponding conjugate acid, are known, the pH of a buffer solution can be determined with the use of this equation.

The expression used to calculate pOH is:

pOH = pKb + log  [Conjugate acid]/ [Weak base]

pKa + pKb = 14

pKb = 14 - pKa

pKb = 14 - 9.25

pKb = 4.75

pOH = 4.75 + log 0.12 / 0.03

pOH = 5.35

pH = 14 - pOH

pH = 14 - 5.35

pH = 8.65

To know more about pH, visit;

https://brainly.com/question/27945512

#SPJ12

Using the table below, what is the change in enthalpy for the following reaction? 3CO (g) + 2Fe2O3 (s) Imported Asset Fe(s) + 3CO2 (g)

Answers

To solve this problem, we should recall that the change in enthalpy is calculated by subtracting the total enthalpy of the reactants from the total enthalpy of the products:

ΔH = Total H of products – Total H of reactants

You did not insert the table in this problem, therefore I will find other sources to find for the enthalpies of each compound.

ΔHf CO2 (g) = -393.5 kJ/mol

ΔHf CO (g) = -110.5 kJ/mol

ΔHf Fe2O3 (s) = -822.1 kJ/mol

ΔHf Fe(s) = 0.0 kJ/mol

Since the given enthalpies are still in kJ/mol, we have to multiply that with the number of moles in the formula. Therefore solving for ΔH:

ΔH = [3 mol ( − 393.5 kJ/mol) + 1 mol (0.0 kJ/mol)] − [3 mol ( − 110.5 kJ/mol) + 2 mol ( − 822.1 kJ/mol)]

ΔH = 795.2 kJ

Consider the potassium permanganate reaction again.

2KMnO4 + 16HCl → 2KCl + 2MnCl2 + 8H2O + 5Cl2

How many moles of water are produced when 3.45 moles of KMnO4 react? Give your answer to the nearest 0.1 moles.

I know the answer is 13.8 moles but I dont know how to find this. Please explain.

Answers

Hey there !

Mole ratio :

2 KMnO4 + 16 HCl → 2 KCl + 2 MnCl2 + 8 H2O + 5 Cl2

2 moles KMnO4 ----------------- 8 moles H2O
3.45 moles KMnO4 ------------- (moles H2O )

Moles H2O = 3.45 * 8 / 2

Moles H2O = 27.6 / 2

 = 13.8 moles of H2O

The option that was given is wrong , You're right.

Answer:

Moles of H2O produced = 13.8

Explanation:

Given:

Moles of KMnO4 reacted = 3.45

To determine:

moles of H2O produced

Explanation:

Given reaction:

2KMnO4 + 16HCl →2KCl + 2MnCl2 + 8H2O + 5Cl2

Based on the reaction stoichiometry:

2 moles of KMnO4 produces 8 moles of H2O

Therefore, moles of H2O produced when 3.45 moles of KMnO4 react is:

[tex]= \frac{3.45\ moles\ KMnO4 * 8\ moles\ H2O}{2\ moles\ KMnO4} = 13.8[/tex]

If 1.20 moles of an ideal gas occupy a volume of 18.2 l at a pressure of 1.80 atm, what is the temperature of the gas, in degrees celsius?

Answers

We can calculate for temperature by assuming the equation for ideal gas law:

P V = n R T

Where,

P = pressure = 1.80 atm

V = volume = 18.2 L

n = number of moles = 1.20 moles

R = gas constant = 0.08205746 L atm / mol K

Substituting to the given equation:

T = P V / n R

T = (1.8 atm * 18.2 L) / (1.2 moles * 0.08205746 L atm / mol K)

T = 332.70 K

We can convert K unit to ˚C unit by subtracting 273.15 to Kelvin, therefore

T = 59.55 ˚C

which one of the following ia a characteristic of a metal?

Answers

Assuming your options are changes the color of litmus paper to red, conducts heat readily, reacts with bases to produce salts, and becomes negative when combined with other elements, the correct answer is conducts heat readily.
This is because the electrons in the metal are allowed to float the space freely, and they are not stuck together like in some solids - this is the reason why they can carry kinetic energy throughout the metal, which is of course related to heat as well. The other options do not refer to metals at all. 

An undergraduate weighed out 20grams of sodium hydroxide pellets. If Na =23, O = 16 andH = 1, What is the mole of this sodium hydroxide.

Answers

Final answer:

To determine the number of moles of NaOH from 20 grams, calculate the substance's molar mass (39.997 g/mol) and divide the given mass by the molar mass, resulting in 0.5001 moles of NaOH.

Explanation:

The question asks about calculating the moles of sodium hydroxide (NaOH) from its mass in grams. To find moles, one has to use the molar mass of the substance.

First, calculate the molar mass of NaOH:
Na (1 x 22.990 g/mol) + O (1 x 15.999 g/mol) + H (1 x 1.008 g/mol) = 39.997 g/mol.

Next, use this molar mass to find the number of moles:
Given: 20.0 g NaOH,
Desired: moles NaOH
Since 1 mole of NaOH weighs 39.997 g, then:
moles of NaOH = mass (20 g) ÷ molar mass (39.997 g/mol) = 0.5001 moles.

Why is it important to stir the solution in the flask as you add titrant from the buret?

Answers

The main reason for this instruction is to speed up the rate of diffusion. Neutralization reactions are determined by the end point. In theory, an endpoint can be determined from a slope in a graph. However, the slope is very steep, such that a slight change in addition of titrant, it would exceed the endpoint. Therefore, you have to stir the solution so that you can see the immediate reaction with every tiny drop that is added. There might be cases where the color is not significant because it still hasn't diffused in the solution very well.

A(n) ________ chemical reaction releases energy, whereas a(n) ________ reaction requires an input of energy.

Answers

There are two types of chemical reaction based on the direction of heat or energy. 

If the energy or heat is absorbed by the system of reactants in order to form the specific products then, the reaction is called endothermic. 

However, if the energy is released by the reactants in the process of producing the products then, the reaction is exothermic.

Hence, for this item, the first blank should be filled with exothermic and the second blank should be filled with endothermic. 

There are sometimes given chemical reactions that do not involve the transfer of heat from the system or from the system. 

Answer:

Exothermic chemical reaction

Endothermic chemical reaction

An Exothermic chemical reaction releases energy, whereas an Endothermic chemical reaction requires an input of energy.

An Exothermic chemical reaction involves the release of heat(thermal energy) in a system to the surroundings. The enthalpy(heat) change which is ΔH decreases in this type of reaction

An Endothermic chemical reaction involves the absorption or input of heat in the form of thermal energy by the system from the surroundings. The enthalpy(heat) change which is ΔH increases in this type of reaction.  

Read more on https://brainly.com/question/4548577

Green plants use light from the sun to drive photosynthesis. photosynthesis is a chemical reaction in which water and carbon dioxide chemically react to form the simple sugar glucose and oxygen gas.what mass of water is consumed by the reaction of carbon dioxide

Answers

The equation that represents the process of photosynthesis is: 


6CO2+12H2O+light->C6H12O6+6O2+6H2O


Photosynthesis is the process in plants to make their food. This involves the use carbon dioxide to react with water and make sugar or glucose as the main product and oxygen as a by-product. Since we are not given the mass of CO2 in this problem, we assume that we have 1 g of CO2 available. We calculate as follows:


1 g CO2 ( 1 mol CO2 / 44.01 g CO2 ) ( 12 mol H2O / 6 mol CO2 ) ( 18.02 g / 1 mol ) = 0.82 g of H2O is needed


However, if the amount given of CO2 is not one gram, then you can simply change the starting value in the calculation and solve for the mass of water needed.


Final answer:

Photosynthesis involves converting carbon dioxide and water into glucose and oxygen with sunlight. The balanced chemical equation indicates a 6:1 mole ratio of water to glucose. The mass of water consumed would be six times the molecular weight of water times the moles of glucose formed.

Explanation:

Photosynthesis is a fundamental biological process in which green plants use sunlight to convert carbon dioxide (CO₂) and water (H₂O) into glucose (C₆H₁₂O₆) and oxygen (O₂). The balanced chemical equation for photosynthesis is:

6CO₂ + 6H₂O + sunlight → C₆H₁₂O₆ + 6O₂

The question asks about the mass of water consumed in the reaction with carbon dioxide to form glucose during photosynthesis. To determine this, you need to know the mole ratio between water and glucose from the balanced equation, which is 6:1, meaning six molecules of water are needed to produce one molecule of glucose. To find the specific mass of water used, you would multiply the molecular weight of water (18.01528 g/mol) by the number of moles of water consumed (which is typically six times the moles of glucose formed).

If 1.20 moles of an ideal gas occupy a volume of 18.2 L at a pressure of 1.80 atm, what is the temperature of the gas, in degrees Celsius?
-125°C
59.5°C
273°C
32°C

Answers

The equation that we will use to solve this problem is :
PV = nRT where:
P is the pressure of gas = 1.8 atm
V is the volume of gas = 18.2 liters
n is the number of moles of gas = 1.2 moles
R is the gas constant =  0.0821
T is the temperature required (calculated in kelvin)

Using these values to substitute in the equation, we find that:
(1.8)(18.2) = (1.2)(0.0821)(T)
T = 332.5 degree kelvin

The last step is to convert the degree kelvin into degree celcius:
T = 332.5 - 273 = 59.5 degree celcius

The electron stable state configuration in atoms is best seen in the ______ configuration.

inert gas
full d shell
full f shell
full s shell

Answers

The electron stable state configuration in atoms is best seen in the inert gas configuration.
Inert gas are the most stable since they have their valence electron shell saturated with electrons (the valence shell has the maximum number of electrons it can hold). They need neither donate nor accept electrons.

Which is expected to have the largest dispersion forces? which is expected to have the largest dispersion forces? c12h26 be cl2 c3h8 f2?

Answers

The one I would expect to have the largest dispersion forces would be the largest and heaviest molecule. This is evidenced by the fact that that molecule is a liquid at room temperature while all the others are gases.

C3H8 = This is propane and a gas at room temperature

F2 = Also a gas at room temperature

BeCl2 = This is a solid and forms an extended lattice in the form of Be-Cl-Be bridges therefore dispersion forces are not important

Therefore the answer to this is C12H26 which is a wax and a liquid at room temperature.

Answer:

C12H26

Final answer:

Among the substances listed (C12H26, Be, Cl2, C3H8, F2), the largest dispersion forces are expected in C12H26 due to its larger molecular size and weight. Dispersion forces are temporary shifts in electron density causing attraction between molecules and are much stronger in larger and heavier molecules.  Smaller molecules like Cl₂ and F₂ have weaker dispersion forces.

Explanation:

The substance expected to have the largest dispersion forces from the ones mentioned (C12H26, Be, Cl2, C3H8, F2) is C12H26 due to its large size and molecular weight. Dispersion forces, also known as London dispersion forces, are temporary shifts in electron density in non-polar molecules that result in attraction between molecules. This is typically stronger in larger and heavier molecules. As C12H26 is a larger, heavier, and more complex molecule than the others listed, it has more electrons, hence more shifting of electron density and stronger resultant dispersion forces.

For other compounds like Cl₂ and F₂, they are gases at room temperature, meaning that their dispersion forces are weaker. This is because dispersion forces influence the boiling and melting points of substances. Larger dispersion forces lead to higher melting and boiling points, which is also why C12H26, a component of diesel and other heavy oils, is a liquid at room temperature.

Learn more about Dispersion Forces here:

https://brainly.com/question/31306859

#SPJ11

What volume of 0.0200 m calcium hydroxide?

Answers

The molarity is the number of moles of solute dissolved in one liter of solvent. It is calculated using the formula M = n/V. To find the volume we have to specify the number of moles dissolved to get the required molarity concentration which is 0.200 m. 

Calcium hydroxide may be used in the process of titration with acids to get a neutral solution and determine the unknown concentration of the acid. In such case we use the following formula;
M1V1 = M2V2
M1 is the molarity of CaOH
V1 is the volume of CaOH
M2 is the molarity of the acid
V2 is the volume of the acid

A 1.50-g sample of hydrated copper(ii) sulfatewas heated carefully until it had changed completely to anhydrous copper(ii) sulfate () with a mass of 0.957 g. determine the value of x. [this number is called the number of waters of hydration of copper(ii) sulfate. it specifies the number of water molecules per formula unit of in the hydrated crystal.]

Answers

CuSO₄·xH₂O → CuSO₄ + xH₂O

M(CuSO₄)=159.61 g/mol
M(H₂O)=18.02 g/mol
m(CuSO₄·xH₂O)=1.50 g
m(CuSO₄)=0.957 g

m(CuSO₄·xH₂O)/M(CuSO₄·xH₂O)=m(CuSO₄)/M(CuSO₄)

M(CuSO₄·xH₂O)=M(CuSO₄)+xM(H₂O)

m(CuSO₄·xH₂O)/{M(CuSO₄)+xM(H₂O)}=m(CuSO₄)/M(CuSO₄)

M(CuSO₄)+xM(H₂O)=m(CuSO₄·xH₂O)M(CuSO₄)/m(CuSO₄)

xM(H₂O)=m(CuSO₄·xH₂O)M(CuSO₄)/m(CuSO₄)-M(CuSO₄)

x=M(CuSO₄)/M(H₂O){m(CuSO₄·xH₂O)/m(CuSO₄)-1}

x=159.61/18.02*{1.50/0.957-1}=5.0

x=5

CuSO₄·5H₂O

Consider KOH and the following information. Hsol = –58 kJ/mol Hhydr of = –336 kJ/mol Hhydr of = –532.7 kJ/mol What is the Hlat rounded to the correct number of significant figures? Use Hsol = –Hlat + Hhydr.
A. –927 kJ/mol
B. –926.7 kJ/mol
C. –811 kJ/mol
D. –810.7 kJ/mol

Answers

The total Hhydr is:

Hhydr = – 336 kJ/mol + – 532.7 kJ/mol

Hhydr = - 868.7 kJ/mol

Therefore using the formula Hsol = –Hlat + Hhydr we can get Hlat.

– 58 kJ/mol = – Hlat + - 868.7 kJ/mol

- Hlat = 810.7 kJ/mol

Hlat = - 810.7 kJ/mol

ANSWER: 

D. –810.7 kJ/mol

Answer:D

Explanation:

Helium has a density of 1.79×10^-4 g/mL at standard temperature and pressure. A balloon has a volume of 6.3 liters. Calculate the mass of helium that it would take to fill the balloon. Be sure to follow significant figure rules when calculating the answer.

A. 35,000g
B. 1.1×10^-3 g
C. 2.8×10^-5 g
D. 1.1g

Answers

6,3 L = 6300 mL
..................
1,79×10^-4g -------- 1 mL
Xg --------------------- 6300 mL
X = 0,000179×6300
X = 1,1277g ≈ 1,1g

:•)

Write a balanced equation for the oxidation-reduction reaction that occurs when hydrogen peroxide reacts with ferrous ion

Answers

H₂O₂ + 2FeSO₄ + H₂SO₄ → Fe₂(SO₄)₃ + 2H₂O

H₂O₂ + 2H⁺ + 2e⁻ → 2H₂O  k=1
Fe²⁺ → Fe³⁺ + e⁻                 k=2

H₂O₂ + 2H⁺ + 2Fe²⁺ → 2H₂O + 2Fe³⁺


The balanced equation for the reaction of hydrogen peroxide with ferrous ions to produce ferric ions and water in an acidic solution is H2O2(aq) + 2H+(aq) + 2Fe2+(aq) → 2H2O(l) + 2Fe3+(aq).

The balanced equation for the oxidation-reduction reaction that occurs when hydrogen peroxide reacts with the ferrous ion (Fe2+) in an acidic solution to produce ferric ion (Fe3+) and water is:

H2O2(aq) + 2H+(aq) + 2Fe2+(aq) → 2H2O(l) + 2Fe3+(aq)

This reaction showcases the oxidizing property of hydrogen peroxide. The ferrous ion (Fe2+) is oxidized to the ferric ion (Fe3+), while the hydrogen peroxide (H2O2) is reduced to water (H2O).

Sheila's measured glucose level one hour after a sugary drink varies according to the normal distribution with μμ = 120 mg/dl and σσ = 20 mg/dl. what is the level l such that there is probability only 0.15 that the mean glucose level of 5 test results falls above l?

Answers

Since the sample size is below 30, in this case we use the t statistic. The formula for t score is:

t = (x – u) / (σ / sqrt n)

where,

x = the level l = unknown

u = sample mean = 120 mg / dl

σ = standard deviation = 20 mg / dl

n = sample size or number of results = 5

Using the standard distribution tables for t, we can find the value of t given the probability (P = 0.15) and degrees of freedom (DOF).

t  = 1.036

Going back to the formula for t score:

1.036 = (x – 120) / (20 / sqrt 5)

x = 129.27 mg / dl = l

Final answer:

To find the glucose level such that the probability of the mean of 5 tests being above it is 0.15, we calculate the reduced standard deviation for the mean of the tests, find the corresponding z-score for a cumulative probability of 0.85, and apply the formula for the mean's distribution. The level l is found to be 129.267 mg/dl.

Explanation:

The question asks for the level l such that there is only a 0.15 probability that the mean glucose level of 5 test results falls above l, given that Sheila's glucose level after a sugary drink follows a normal distribution with a mean (μ) of 120 mg/dl and a standard deviation (σ) of 20 mg/dl.

To solve for l, we first need to recognize that the distribution of the mean of several test results (in this case, 5) will also be normally distributed, with the same mean but with a reduced standard deviation that is equal to the original standard deviation divided by the square root of the number of tests (σ/√n). For 5 tests, the new standard deviation (σnew) is 20/√5 = 8.9443 mg/dl.

The next step involves determining the z-score that corresponds to a probability of 0.85 (since 1 - 0.15 = 0.85) in the standard normal distribution. Consulting a z-table or using statistical software, we find that the z-score corresponding to 0.85 is approximately 1.036. Using the formula l = μ + z σnew, we calculate:

l = 120 + (1.036)(8.9443) = 120 + 9.267 = 129.267 mg/dl.

Therefore, the level l such that there is a probability of only 0.15 that the mean glucose level of 5 test results falls above l is 129.267 mg/dl.

Research the amount of carbon dioxide generally found in the air and in breath. which has more carbon dioxide? what are some of the other sources of carbon dioxide in air?

Answers

In atmosphere there is 0.04 % of co2 in the air
In breath we breath out about 2 to 3 pounds of  co2 which is greater than the amount of co2 found in air \
The sources of co2 are
respiration 
combustion of organic fuels or compounds

Answer:

1- Carbon dioxide in our breath comes from the carbon in our food.

2- All plants need carbon dioxide to survive.

3- About .04 percent of the atmosphere's air is carbon dioxide and  4.4       percent of our breath is carbon dioxide we breathe out more carbon          dioxide than we breathe in.

4- Some effects might include combustion with other gasses and it could also potentially kill all life.

Explanation:

Other Questions
A sociologist who studied face-to-face interactions in the classroom between teachers and students would be emphasizing which sociological perspective What is the estimate of 2616 Police dramas on television fail to accurately portray the day-to-day duties of a law enforcement officer. A)true B)false what was the transcendentalists' general attitude toward child labor? When someone is redirecting a project what does it mean? Can someone factor this problem for me? what are the characteristics and phases of the moon A skier is trying to decide whether whether or not to buy a season ski pass. A daily pass cost 67. A season ski pass costs 350. The skier would have to rent skis with either pass for 25 per day. How many days would the skier have to go skiing in order to make the season pass cost the same as the daily pass option.Write an expression using words to represent the cost of a daily pass. Write the algebraic expression. Write an expression using words to represent the cost of a season pass. Write the algebraic expressionHow can you compare the cost of a daily pass with the cost of a season pass algebraically? The work done in pushing a tv set a distance of 2 m with an average force of 20 n is i could really use some help on this one 1/2(b+14)=b+142 In July 1996 Florida implemented a blank law which contained curfew provisions which restricted teenage driving at night The price of an item selling at 150% of its $63 value is what Can someone please explain me this A steel cylinder with a moveable piston on top is filled with helium (He) gas. The force that the piston exerts on the gas is constant, but the volume inside the cylinder doubles, pushing the piston up.Which of the following answers correctly states the cause for the change described in the scenario?The temperature increased.The density of the helium atoms decreased.The pressure decreased.The helium atoms increased in size. In the general theory of employment , interest, and money, john maynard keynes argued that to eliminate depression governments should spend what? Use the graph below to answer the following question:graph of parabola going through negative 4, 4, negative 1, 5, and 1, negative 1What is the average rate of change from x = 4 to x = 1? 3 1 0 1 Determine if the graph is symmetric about the x-axis, the y-axis, or the origin. r = -5 - 5 cos what is the area of a triangle that has a base of 8 yd and height of 3 yd Which of the following is most likely to result in personal harm or injury during physical activity Which of the following is a method used to prevent soil depletion?a-Adding fertilizers b-Planting grasses on slopesc-dune fences Steam Workshop Downloader