It is not advisable to produce an item due to high production costs compared to its value.
This situation is known as allocative inefficiency, where the costs outweigh the benefits to society.
For instance, if the cost of producing gold eyeglass frames is more than what customers are willing to pay for them due to their high production costs, it would not make economic sense to produce them.
In such cases, producers would opt to reduce production or not produce the item at all to avoid incurring losses.
My sister is 77 years older than i am. the sum of our ages is 3535. find our ages.
what is the distance between (-6,4) and (-8,6)
Final answer:
The distance between the points (-6,4) and (-8,6) is found using the Pythagorean Theorem, resulting in a distance of approximately 2.83 units.
Explanation:
The question asks for the distance between two points, (-6,4) and (-8,6), which can be found using the Pythagorean Theorem in a coordinate plane. The formula for finding the distance (d) between any two points (x₁,y₁) and (x₂,y₂) is given by d = √[(x₂ - x₁)² + (y₂ - y₁)²].
Thus, substituting the given points into the formula, we get: d = √[(-8 + 6)² + (6 - 4)²] = √[(-2)²+ (2)²] = √[4 + 4] = √[8].
Therefore, the distance between the points (-6,4) and (-8,6) is √8, which is approximately 2.83 units.
Use the table and diagram to answer this question.
(I attached the picture)
Andrew has 48 country CDs and 72 rock CDs. He wants to arrange them on shelves so that the two types of CDs are separate, but he wants the largest number of CDs on a shelf as possible. How many CDs should he put on each shelf?
Sam is a painter. He has 2 1/4 gallons of paint, and it takes 3/4 of a gallon to paint a room. How many rooms can he paint?
A.1
B.2
C.3
D.4
Solve for x. 45(15x+20)−7x=56(12x−24)+6
The value of x is 559.5.
An algebraic equation can be defined as mathematical statement in which two expressions are set equal to each other.
To solve the equation [tex]\(45(15x+20)7x=56(12x*24)+6\)[/tex], follow these steps:
First, distribute the multiplication on both sides of the equation:
[tex]\(45 \cdot 15x + 45 \cdot 20 - 7x = 56 \cdot 12x - 56 \cdot 24 + 6\)[/tex]
[tex]\(675x + 900 - 7x = 672x - 1344 + 6\)[/tex]
Next, combine like terms on both sides:
[tex]\(668x + 900 = 672x - 1338\)[/tex]
Now, move all terms involving [tex]\(x\)[/tex] to one side and constants to the other side:
[tex]\(668x - 672x = -1338 - 900\)[/tex]
[tex]\(-4x = -2238\)[/tex]
To find [tex]\(x\)[/tex], divide both sides by [tex]\(-4\)[/tex]:
[tex]\(x = \frac{-2238}{-4}\)[/tex]
[tex]\(x = 559.5\)[/tex]
So, the value of x is 559.5.
A video store charges $5 per movie, and the fifth movie is free. How much do you actually pay per movie?
The amount paid per movie is $4.
What is an expression?An expression is a way of writing a statement with more than two variables or numbers with operations such as addition, subtraction, multiplication, and division.
Example: 2 + 3x + 4y = 7 is an expression.
We have,
Charge per movie = $5
The fifth movie charge = $0
Now,
The charge for 5 movies.
= 5 x 4 + 0
= 20
This means,
5 movies cost $20
The cost of one movie.
= 20/5
= $4
Thus,
The cost per movie is $4.
Learn more about expressions here:
https://brainly.com/question/3118662
#SPJ2
What is the density of a 7000 gram brick that is 4 inches x 5 inches x 3 inches?
Evaluate the function for x = –4c if c = –2.
f(x) = -3^2 - 4x
A.
–160
B.
–256
C.
–224
D.
160
what is the x an what is the slope of angle lmn
since line MO bisects, that means both angles are the same
6x-22 = 2x +34
6x = 2x +56
4x=56
x = 56/4 = 14
x=14
6(14)-22 = 62
2(14)+34 = 62
62+62 = 124
angle LMN = 124 degrees
Use your calculator to find an interval of length 0.01 that contains a root. (enter your answer using interval notation.)
1. What is the remainder when x^2+4 is divided by x-2?
2. Evaluate f(-1) using substitution: f(x)=2x^3-3x^2-18x-8
3. The point (1,0) lies on the graph of p(x)=x^4-2x^3-x+2
True or false
4. If x-1 is a factor of p(x)=x^3-7x^2+15x-9, which of the following represents the complete factorization for p(x)?
A. (x-3)(x+4)(x+1)
B. (x-3)(x-3)(x-1)
C. (x-3)(x+3)(x-1)
D. (x-3)(x+3)(x+1)
Answer:
1) 8
2) 5
3) False
4) Option B
Step-by-step explanation:
1) We have to find the remainder when we divide (x² + 4) by (x - 2)
To get the remainder we will put x = 2 in (x² + 4)
= (2)² + 4
= 8
2). We have to evaluate f(-1) using substitution in f(x) = 2x³ - 3x² - 18x - 8
f(-1) = 2(-1)³ - 3(-1)²- 18(-1) - 8
= 2(-1) - 3 + 18 -8
= -2 - 3 + 18 - 8
= 5
3) The point (1, 0) lies on the graph of p(x) = [tex]x^{4}-2x^{3}-x+2[/tex]
If this point lies on the graph then p(1) should be equal to zero.
p(1) = 1³ - 7(1)² + 7(1) - 9
= 1 - 7 + 7 - 9
= -8 ≠ 0
Therefore, It's false.
4). (x - 1) is a factor of p(x) = x³ - 7x² + 15x - 9
Now we will factorize it further when (x - 1) is a zero factor.
By Synthetic division
1 | 1 - 7 15 -9
1 -6 9
-----------------------------
1 -6 9 0
Now we have got the expression as (x - 1)(x²- 6x + 9)
Or (x -1)(x² - 6x + 9) = (x - 1)(x - 3)(x - 3)
Therefore, Option B. is the answer.
Question 3 jane takes a survey of 100 random students at her school about their eye color. the results are shown in the chart below. based on the outcome of the survey, how many students can she expect to have green eyes if there are 20 students in her class
Answer:
Chart please
Step-by-step explanation:
A right triangle has a hypotenuse of 50 feet and a leg of 14 feet. Which is the length of the other leg? 24 feet 30 feet 42 feet 48 feet
Answer:
The length of the other leg is 48 feet
Step-by-step explanation:
To find the length of the other leg, we will simply follow the steps below;
We will use the Pythagoras theorem formula to solve;
Write down the Pythagoras theorem formula
opposite² + adjacent² = hypotenuse²
Let the value of the other leg be x
From the question given;
hypotenuse = 50, a leg, say the opposite = 14
Lets substitute into our formula;
opposite² + adjacent² = hypotenuse²
14² + x² = 50²
196 + x² = 2500
subtract 196 from both-side of the equation
196 - 196 + x² = 2500 - 196
x² = 2304
Take the square root of both-side of the equation
√x² = √2304
x = 48 feet
The length of the other leg is 48 feet
Find the constants m and b in the linear function f(x) = mx + b so that f(4) = 1 and the straight line represented by f has slope -14
Martin had 7 pounds of grapes left, and he gave away 25 of them. Explain how to use compatible numbers to estimate the amount of grapes he gave away.
Answer:
Sample response:
2
5
is close to
1
2
, and it is easy to find
1
2
of 7 mentally. Half of 7 is 3.5, so Martin gave away about 3.5 pounds.
Step-by-step explanation:
-,-
Jesse and her brothers nick and owen are saving money over the summer each week, jesse saves twice as much as owen. Owen saves $5 more than nick. At the end of four weeks, the three of them have saved a total of $220. How much money does each person save per week?
Jesse saves $112.50 per week, Nick saves $51.25 per week, and Owen saves $56.25 per week.
Explanation:
To find out how much money each person saves per week, we need to set up a system of equations. Let's start by assigning variables to the amounts saved by each person. Let 'J' represent the amount saved by Jesse, 'N' represent the amount saved by Nick, and 'O' represent the amount saved by Owen.
2O = J (Jesse saves twice as much as Owen)
N + 5 = O (Owen saves $5 more than Nick)
J + N + O = 220 (The total amount saved by all three is $220)
Now, we can substitute the values in the equations to find the amounts saved by each person.
From the first equation, J = 2O. Substituting this value in the third equation gives us: 2O + N + O = 220. Simplifying, we get 3O + N = 220.
From the second equation, N + 5 = O. Rearranging, we get N = O - 5. Substituting this value in the third equation gives us: 3O + (O - 5) = 220. Simplifying, we get 4O = 225. Solving for O, we find that Owen saves $56.25 per week.
Substituting this value in the second equation, we find that Nick saves $51.25 per week. Finally, substituting the values in the first equation, we find that Jesse saves $112.50 per week.
Learn more about Savings here:https://brainly.com/question/33031228
#SPJ12
An airplane travels at 950 km/h. how long does it take to travel 1.00km? in hours
Find the measure of each complementary angles with measure 4x and 5x - 18 degrees
in the problem 4 times 12 equals 48 which numbers are the factors
Find the percent of decrease. 140 to 84.
Use the chain rule to find dz/dt calculator
The chain rule allows you to find the derivative of a function that is a composition of other functions. With an example, we calculated dz/dt with z = y^3 and y = 2t+1. While calculators can help, understanding the process is key.
Explanation:The chain rule in calculus is a theorem that allows you to find the derivative of a composite function. If a variable z depends on the variable y, which itself depends on another variable t, then z, is a function of t. The chain rule could be mathematically expressed as dz/dt = (dz/dy) × (dy/dt).
For instance, if z = y^3 and y = 2t+1, we can calculate dz/dt by first finding the derivatives dz/dy and dy/dt, which are 3y² and 2, respectively. We then substitute y = 2t+1 into dz/dy to get dz/dy = 3(2t+1)². Therefore, using the chain rule, dz/dt = 3(2t+1)² × 2.
While your request mentions a calculator, knowing these steps should enable you to perform the operation using most scientific calculators. However, understanding the process is very important before relying on technology.
Learn more about Chain Rule here:https://brainly.com/question/34884272
#SPJ6
The final expression for [tex]\frac{dz}{dt}[/tex] incorporates the partial derivatives and the derivatives of x and y with respect to t.
Given the function z = xy⁷ - x²y, where x = t² + 1 and y = t² - 1, we are to find [tex]\frac{dz}{dt}[/tex].
To do this, we apply the chain rule for derivatives:[tex]\frac{dz}{dt}[/tex] = ([tex]\frac{dz}{dx}[/tex]) × ([tex]\frac{dx}{dt}[/tex]) + ([tex]\frac{dz}{dy}[/tex]) × ([tex]\frac{dy}{dt}[/tex]).
First, we calculate [tex]\frac{dx}{dt}[/tex] and [tex]\frac{dy}{dt}[/tex].Then, we find the partial derivatives [tex]\frac{dz}{dx}[/tex] and [tex]\frac{dz}{dy}[/tex].Finally, we combine these results to find dz/dt using the chain rule.Let's find [tex]\frac{dx}{dt}[/tex] and [tex]\frac{dy}{dt}[/tex]:
⇒ [tex]\frac{dx}{dt}[/tex] = d(t² + 1) ÷ dt = 2t
⇒ [tex]\frac{dy}{dt}[/tex] = d(t² - 1) ÷ dt = 2t
Next, we compute the partial derivatives of z with respect to x and y:⇒ [tex]\frac{dz}{dx}[/tex] = y⁷ - 2xy
⇒ [tex]\frac{dz}{dy}[/tex] = 7xy⁶ - x²
Now, we substitute x and y into these partial derivatives:x = t² + 1, y = t² - 1
⇒ [tex]\frac{dz}{dx}[/tex] = (t² - 1)⁷ - 2(t² + 1)(t² - 1)
⇒ [tex]\frac{dz}{dy}[/tex] = 7(t² + 1)(t² - 1)⁶ - (t² + 1)²
Finally, we combine these to find [tex]\frac{dz}{dt}[/tex]:
⇒ [tex]\frac{dz}{dt}[/tex] = ([tex]\frac{dz}{dx}[/tex]) × ([tex]\frac{dx}{dt}[/tex]) + ([tex]\frac{dz}{dy}[/tex]) × ([tex]\frac{dy}{dt}[/tex]).
Substituting everything into this formula:
⇒ [tex]\frac{dz}{dt}[/tex] = [(t² - 1)⁷ - 2(t² + 1)(t² - 1)] × 2t + [7(t² + 1)(t² - 1)⁶ - (t² + 1)²] × 2t
Complete question:
Use the Chain Rule to find [tex]\frac{dz}{dt}[/tex].
z = xy⁷ - x²y, x= t² + 1, y = t² - 1
Find the number of degrees in an angle which is 42 degrees less than its complement
The required angle can be found by solving the equation as 24°.
How to solve a linear equation?A linear equation can be solved by equating the LHS and RHS of the equation following some basic rules such as by adding or subtracting the same numbers on both sides and similarly, doing division and multiplication with the same numbers.
Suppose the measure of required angle be x.
Then, its complement can be written as 90 - x.
As per the question, the following equation can be formed as,
x + 42 = 90 - x
⇒ 2x = 48
⇒ x = 24
Hence, the measure of the required angle is 24°.
To know more about linear equation click on,
https://brainly.com/question/11897796
#SPJ5
Twice the quantity of a number plus two is greater than the number plus five.
Final answer:
The question from the student is a mathematics problem on solving inequalities. We are asked to solve 'Twice the quantity of a number plus two is greater than the number plus five', which simplifies to n > 3, where 'n' is any number greater than three.
Explanation:
The student's question involves solving an inequality which is a concept in mathematics. The inequality is stating that 'Twice the quantity of a number plus two is greater than the number plus five.' This can be mathematically expressed as 2n + 2 > n + 5, where 'n' represents the number in question.
To solve this inequality, we would follow these steps:
Subtract 'n' from both sides of the inequality: 2n + 2 - n > n + 5 - n which simplifies to n + 2 > 5.
Next, subtract 2 from both sides: n + 2 - 2 > 5 - 2 which simplifies to n > 3.
This means any number greater than 3 satisfies the given inequality.
Transitivity of numbers with respect to comparison operators (<, >, =) is a fundamental principle in solving such inequalities. This principle allows us to state that if a number is greater than three, sequentially, it is also greater than two (2), one (1), and zero (0).
Malcom uses a marker to draw a straight line on a piece of paper. The line is 2/3 ft long. He wants to divide the line into sections that are each 1/9 ft long. How many sections will the line be divided into? please help ill mark brainliest
Answer:
6 sections.
Step-by-step explanation:
Malcom uses a marker to draw a straight line on a piece of paper.
The line is [tex]\frac{2}{3}[/tex] feet long.
He wants to divide the line into sections of [tex]\frac{1}{9}[/tex] feet long.
The number of sections would be = [tex]\frac{\frac{2}{3}}{\frac{1}{9} }[/tex]
= [tex]\frac{2}{3}[/tex] × [tex]\frac{9}{1}[/tex]
= [tex]\frac{18}{3}[/tex]
= 6 sections
There would be 6 sections.
How do you write 11/ 4 as a percentage?
Rick is on a bicycle trip. Every 444 days he bikes 230 \text{ km}230 km230, space, k, m.If Rick keeps this same pace for 161616 days, how many kilometers will he bike?
To calculate the total kilometers Rick will bike in 16 days, we find his daily distance by dividing 230 km by 4, which results in 57.5 km/day, and then multiply by 16 to get 920 km.
The subject of this question is Mathematics, and it seems appropriate for a Middle School student. To find out how many kilometers Rick will bike in 16 days, we need to start by calculating the number of kilometers he bikes per day. Rick bikes 230 km every 4 days, so we divide 230 km by 4 to get the daily distance:
230 km / 4 days = 57.5 km/day.
Now, to find the total distance Rick will bike in 16 days, we multiply the daily distance by the total number of days:
57.5 km/day times 16 days = 920 km.
So, Rick will bike 920 kilometers if he keeps the same pace for 16 days.
Two boats on opposite banks of a river start moving towards each other. They first pass each other 1400 meters from one bank. They each continue to the opposite bank, immediately turn around and start back to the other bank. When they pass each other a second time, they are 600 meters from the other bank. We assume that each boat travels at a constant speed all along the journey. Find the width of the river?
S1 = speed of boat 1
t1 = time to do 1400 meters (boat 1)
S1*t1 = 1400
S2 = speed of boat 2
1400 + S2*t1 = X
t2 = time to do X + 600 (boat 2)
S1*t2 = X + 600
S2*t2 = 2X - 600
S1 = 1400/t1
S2 = (X-1400)/t1
T = t2/t1
1400*T = X + 600
X*T - 1400*T = 2X - 600
X = 3600 meters
River is 3600 meters wide
The frequency distribution shows the lengths, in inches, of available baseball bat at a batting cage. what is the mean of the frequency distribution? Baseball bat length| 27 28 31 33 34 F| 2 5 3 1 4
Find the value of p that makes the linear graph y=p-3x pass through the point where the lines 4x-y=6 and 2x-5y=12