Which quantity is proportional to 15⁄3?

Answers

Answer 1
Porportional to 15/3 is 5/1 which would then equal 5
Answer 2

The answer is 5 because 15/3=5



Related Questions

Solve the Pythagorean Theorem for the variable a.
c²=a²+b²

Answers

you need the values of A, B, and C to solve the problem

a = sqrt (c-b)
Subtract the b value
Take the square root

Althea traveled 280 miles at a speed of 70 miles/hour. How much time did she take to cover this distance?

Answers

D = rt; r = t/d; t = d/r

t = d/r
t = 280/70
t = 4 hours

Can someone walk me through the steps in solving this question

Answers

so, we know that, in 1oz of baked potato, there are 48.3 calories, ok..how many calories in 3 and 1/3 oz then?

now, bear in mind, we first convert the mixed fraction to "improper", and then use that,

[tex]\bf \begin{array}{ccll} \stackrel{\stackrel{baked}{potato}}{oz}&calories\\ \text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\ 1&48.3\\ 3\frac{1}{3}&p \end{array}\implies \cfrac{1}{3\frac{1}{3}}=\cfrac{48.3}{p}\implies \cfrac{\frac{1}{1}}{\frac{3\cdot 3+1}{3}}=\cfrac{48.3}{p}[/tex]

[tex]\bf \cfrac{\frac{1}{1}}{\frac{10}{3}}=\cfrac{48.3}{p}\implies \cfrac{1}{1}\cdot \cfrac{3}{10}=\cfrac{48.3}{p}\implies \cfrac{3}{10}=\cfrac{48.3}{p} \\\\\\ 3p=483\implies p=\cfrac{483}{3}\implies \boxed{p=\stackrel{calories}{161}}[/tex]

now, we know that in 1oz of chicken gas 24.6 calories, so, how many calories then in 5 and 1/4 oz?

 [tex]\bf \begin{array}{ccll} \stackrel{chicken}{oz}&calories\\ \text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\ 1&24.6\\ 5\frac{1}{4}&c \end{array}\implies \cfrac{1}{5\frac{1}{4}}=\cfrac{24.6}{c}\implies \cfrac{\frac{1}{1}}{\frac{5\cdot 4+1}{4}}=\cfrac{24.6}{c}[/tex]

[tex]\bf \cfrac{\frac{1}{1}}{\frac{21}{4}}=\cfrac{24.6}{c}\implies \cfrac{1}{1}\cdot \cfrac{4}{21}=\cfrac{24.6}{c}\implies \cfrac{4}{21}=\cfrac{24.6}{c} \\\\\\ 4c=516.6\implies c=\cfrac{516.6}{4}\implies \boxed{c=\stackrel{calories}{129.15}}[/tex]

so, how many calories in that meal?  well, p + c.

Consider the solid s described below. the base of s is the region enclosed by the parabola y = 5 - 5x2 and the x-axis. cross-sections perpendicular to the x-axis are isosceles triangles with height equal to the base. find the volume v of this solid.

Answers

Final answer:

To find the volume of the solid described, we can use the formula for the volume of a cylinder and integrate the cross-sectional area. The cross-sectional area is the base of the solid, and in this case, it is given by (25 - 50x^2 + 25x^4).

Explanation:

The solid described in the question has a base in the shape of the region enclosed by the parabola y = 5 - 5x^2 and the x-axis. The cross-sections perpendicular to the x-axis are isosceles triangles with a height equal to the base.

To find the volume of the solid, we can use the formula for the volume of a cylinder. The cross-sectional area of each triangle is the base times the height, and the height of the triangle is also the base. So, the cross-sectional area is A = (5 - 5x^2)(5 - 5x^2) = (25 - 50x^2 + 25x^4).

The volume of the solid is then given by integrating the cross-sectional area from the x-values that define the base of the solid. So, V = ∫(25 - 50x^2 + 25x^4)dx.

Find the probability that the person is frequently or occasionally involved in charity work.

Answers

Given the table below which shows the result of a survey that asked 2,881 people whether they are involved in any type of charity work.

[tex]\begin{tabular} {|c|c|c|c|c|c|} &Frequently&Occassionally&Not at all&Total\\[1ex] Male&227&454&798&1,479\\ Female &205&450&747&1,402\\ Total&432&904&1,545&2,881 \end{tabular}[/tex]

Part A:

If a person is chosen at random, the probability that the person is frequently or occassinally involved in charity work is given by

[tex]P(being \ frequently \ involved \ or \ being \ occassionally \ involved)\\ \\= \frac{432}{2881} + \frac{904}{2881} = \frac{1336}{2881}=\bold{0.464}[/tex]



Part B:

If a person is chosen at random, the probability that the person is female or not involved in charity work at all is given by

[tex]P(being \ female \ or \ not \ being \ involved)\\ \\= \frac{1402}{2881} + \frac{1545}{2881}-\frac{747}{2881} = \frac{2200}{2881}=\bold{0.764}[/tex]



Part C:

If a person is chosen at random, the probability that the person is male or frequently involved in charity work is given by

[tex]P(being \ male \ or \ being \ frequently \ involved)\\ \\= \frac{1479}{2881} + \frac{432}{2881}-\frac{227}{2881} = \frac{1684}{2881}=\bold{0.585}[/tex]



Part D:

If a person is chosen at random, the probability that the person is female or not frequently involved in charity work is given by

[tex]P(being \ female \ or \ not \ being \ frequently \ involved)\\ \\= \frac{1402}{2881} + \frac{904}{2881} + \frac{1545}{2881}-\frac{450}{2881}-\frac{747}{2881} = \frac{2654}{2881}=\bold{0.921}[/tex]



Part E:

The events "being female" and "being frequently involved in charity work" are not mutually exclusive because being a female does not prevent a person from being frequently involved in charity work.

Indeed from the table, there are 205 females who are frequently involved in charity work.

Therefore, the answer to the question is "No, because 205 females are frequently involved charity work".

(a) The probability is [tex]\[\boxed{0.464}\][/tex]. (b) The probability is [tex]\[\boxed{0.763}\][/tex]. (c) The probability is [tex]\[\boxed{0.585}\][/tex]. (d) The probability is [tex]\[\boxed{0.921}\][/tex]. (e) No, because 205 females are frequently involved in charity work. The option (A) is correct.

To address the given questions based on the provided table, let's go through each question step-by-step:

(a) Find the probability that the person is frequently or occasionally involved in charity work.

First, we need the total number of people who are frequently or occasionally involved in charity work. This is the sum of people in the "Frequently" and "Occasionally" columns.

[tex]\[\text{Total frequently or occasionally involved} = 432 + 904 = 1336\][/tex]

Now, we divide this by the total number of people surveyed:

[tex]\[P(\text{frequently or occasionally involved}) = \frac{1336}{2881} \approx 0.464\][/tex]

So, the probability is [tex]\[\boxed{0.464}\][/tex].

(b) Find the probability that the person is female or not involved in charity work at all.

To solve this, we need to find the number of females and those not involved in charity work at all.

[tex]\[\text{Total females} = 1402\][/tex]

[tex]\[\text{Total not involved at all} = 1545\][/tex]

We need to subtract the overlap (females not involved in charity work) to avoid double-counting. From the table, the number of females not involved at all is 747.

[tex]P(\text{female or not involved at all}) = \frac{\text{Total females} + \text{Total not involved at all} - \text{Females not involved}}{\text{Total}}[/tex]

[tex]= \frac{1402 + 1545 - 747}{2881} = \frac{2200}{2881} \approx 0.763[/tex]

So, the probability is [tex]\[\boxed{0.763}\][/tex].

(c) Find the probability that the person is male or frequently involved in charity work.

[tex]\[\text{Total males} = 1479\][/tex]

[tex]\[\text{Total frequently involved} = 432\][/tex]

We need to subtract the overlap (males frequently involved) to avoid double-counting. From the table, the number of males frequently involved is 227.

[tex]P(\text{male or frequently involved}) = \frac{\text{Total males} + \text{Total frequently involved} - \text{Males frequently involved}}{\text{Total}}[/tex]

[tex]= \frac{1479 + 432 - 227}{2881} = \frac{1684}{2881} \approx 0.585[/tex]

So, the probability is [tex]\[\boxed{0.585}\][/tex].

(d) Find the probability that the person is female or not frequently involved in charity work.

[tex]\[\text{Total females} = 1402\][/tex]

[tex]\[\text{Total not frequently involved} = 2881 - 432 = 2449\][/tex]

We need to subtract the overlap (females not frequently involved) to avoid double-counting. From the table, the number of females not frequently involved is 1197 (450 + 747).

[tex]P(\text{female or not frequently involved})=\frac{1402 + 2449 - 1197}{2881} = \frac{2654}{2881} \approx 0.921[/tex]

So, the probability is [tex]\[\boxed{0.921}\][/tex].

(e) Are the events "being female" and "being frequently involved in charity work" mutually exclusive?

Two events are mutually exclusive if they cannot occur at the same time.

From the table, 205 females are frequently involved in charity work.

Since there are females who are frequently involved in charity work, the events "being female" and "being frequently involved in charity work" are not mutually exclusive.

So, the answer is A. No, because 205 females are frequently involved in charity work.

The complete question is:

The table below shows the results of a survey that asked 2881 people whether they are involved in any type of charity work. A per selected at random from the sample. Complete parts (a) through (e).

(a) Find the probability that the person is frequently or occasionally involved in charity work.

P(being frequently involved or being occasionally involved) - (Round to the nearest thousandth as needed.)

(b) Find the probability that the person is female or not involved in charity work at all.

P(being female or not being involved) (Round to the nearest thousandth as needed.)

(c) Find the probability that the person is male or frequently involved in charity work.

P(being male or being frequently involved) (Round to the nearest thousandth as needed.)

P(being male or being frequently involved) - (Round to the nearest thousandth as needed.)

(d) Find the probability that the person is female or not frequently involved in charity work.

P(being female or not being frequently involved) = (Round to the nearest thousandth as needed.)

(e) Are the events "being female" and "being frequently involved in charity work" mutually exclusive? Explain.

A. No, because 205 females are frequently involved in charity work.

B. Yes, because no females are frequently involved in charity work.

C. Yes, because 205 females are frequently involved in charity work.

D. No, because no females are frequently involved in charity work.

A cyclist rides his bike at a rate of 21 miles per hour. What is this rate in miles per minute? How many miles will the cyclist travel in 2 minutes? Do not round your answers.

Answers

5 days ago, hope this still helps though! 

Alright 21 miles per hour. We know that there are 60 minutes in an hour. So this is basically saying 21 miles per 60 minutes. To find the rate for miles per minute, you divide 21 by 60 which is 0.35. 

In one minute the cyclist rides 0.35 miles
In two minutes the cyclist rides 0.7 miles

Look at the triangle what is the value of sin X ?

Answers

the sin of an angle is the opposite ÷ hypotenuse

The side opposite angle x is 5cm, and the hypotenuse is 13 cm. 
So, the sin (x) = 5 ÷13 

a law firm charges $100 per hour plus a $300 origination fee for its services find a function notation

Answers

F(t)= $100 x h + 300 A reasonable domain is (1,2,3) and the range is ($400,$500,$600)

The required function notations for the total law firm charges is expressed as f(t) = 100t + 300

Given the following

Law firm charges = $100 per hour

The amount of charge for "t" hours will be 100t hours

Also, the original fee = $300

In other to get the total charge using function notation;

f(t) = Law firm charges for "t" hours + Original fee

f(t) = 100t + 300

The required function notations for the total law firm charges is expressed as f(t) = 100t + 300

Learn more here: https://brainly.com/question/11207409

The formula for any arithmetic sequence is a n = a 1 + d(n - 1), where a n represents the value of the nth term, a 1 represents the value of the first term, d represents the common difference, and n represents the term number. What is the formula for the arithmetic sequence -7, -3, 1, 5, ...?
Plz help

Answers

 -7, -3, 1, 5, .....    from -7 to -3, is +4, from -3 to 1, is +4.

so, is really just adding 4 to get the next term's value, thus the "common difference" is 4, and notice, the first term is -7.

[tex]\bf n^{th}\textit{ term of an arithmetic sequence}\\\\ a_n=a_1+(n-1)d\qquad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ d=\textit{common difference}\\ ----------\\ a_1=-7\\ d=4 \end{cases} \\\\\\ a_n=-7+(n-1)4[/tex]

HELP WILL GIVE HIGHEST RATING!!!
36 POINTS TO CORRECT ANSWER Cindy has 26 nickels. She is getting rolls of nickels from the bank. She has enough money to get up to 10 rolls of nickels and each roll contains 40 nickels. The bank will not give partial rolls. The function that models the number of nickels Cindy will have after leaving the bank is f(r)=40r+26, where r is the number of rolls of nickels she gets. What is the practical domain of the function?

Answers

the practical domain would be the number of rolls she can get which is between 0 and 10

Answer:

The answer is all integers from 1 to 10, inclusive

Bye~~

Find the point in the first octant where the tangent plane to x2+116y2+14z2=1 is parallel to the plane x+y+z=10

Answers

2x+3=yx bc it makes the most sence

0.00000002 in scientific notation

Answers

Your answer is: 2⋅10^−8

Please mark Brainliest!
2*10^-8


I'm pretty sure that's right           

The distance of planet Mercury from the Sun is approximately 5.8 ⋅ 107 kilometers, and the distance of planet Venus from the Sun is 1.1 ⋅ 108 kilometers. About how many more kilometers is the distance of Venus from the Sun than the distance of Mercury from the Sun? (1 point)
Select one:
a. 5.2 ⋅ 107 kilometers
b. 4.7 ⋅ 108 kilometers
c. 5.2 ⋅ 108 kilometers
d. 5.7 ⋅ 109 kilometers

Answers

a  5.2.107 kilometers

Answer:

a) 5.2 *10^7 km

Step-by-step explanation:

If we could describe our Solar System, in order of appearance nearer the Sun, it would be like this:

Sun --- Mercury --- Venus --- Earth

Sun --------------------- Venus

1.1 * 10^8 km

Sun -------Mercury

5.8 * 10^7 Km

To find out how many more kilometers is the distance of Venus from the Sun than the distance of Mercury from the Sun, all we have to do is simply subtract the distance Sun ---Venus minus Sun ---Mercury

So,

1.1 * 10^8 - 5.8 * 10^7 =

Adjusting the first distance to the same power

110*10^7- 5.8*10^7 =

Subtracting the factors

5.2 * 10^7

       

Choose all the doubles facts that can help you solve 8+7

Answers

the answer is 15 
if you do 8+7=15
i think it help

Answer: 7 + 7 = 14

8 + 8 = 16

Step-by-step explanation: doubles facts are simply additions where a number is added to it self. The strategy sums up two consecutive numbers when they are next to each other to give their result as given by the question above (8 + 7). We simply add the smaller number together then add one (double-plus-one) OR add the larger number together then subtract one (double-minus-one)

All doubles that can be used in solving 8 + 7 are:

A) 8 + 7 = 7 + (7 + 1) = (7 + 7) + 1 = 14 + 1 = 15 [double-plus-one]

B) 8 + 7 = (8 + 8) - 1 = 16 - 1 = 15 [double-minus-one]

The doubles fact makes use of the associative property of addition —changing the grouping of addends does not change the sum.

Solve for x.

x−1/4=38



Enter your simplified answer in the box.

Answers

Simplified answer is 5/8. This is how it has been solved:

1. x - 1/4 = 3/8;
2. x = 1/4 + 3/8;
3. x = 2/8 + 3/8;
4. x = 5/8;

Hope everything is clear.

A girl is now one-third as old as her mother. In three years, she will be two-fifths as old as her mother will be. What are their present ages?

A girl is 9; mom is 27
B girl is 18; mom is 54
C girl is 25; mom is 75

Answers

I really want to say A, I mean all of these would fit for the one third of their ages but the two-fifths is kinda tricky. But I am sticking with A.
Answer:

Option: A is the correct answer.

        A girl is 9; mom is 27

Step-by-step explanation:

A girl is now one-third as old as her mother.

i.e. if x is the present age of girl.

and y is the present age of her mother.

Then,

[tex]x=\dfrac{1}{3}y[/tex]

i.e.

[tex]y=3x-----------(1)[/tex]

In three years, she will be two-fifths as old as her mother will be.

This means after three years.

The age of girl will be: x+3

and the age of her mother will be: y+3

This means that:

[tex](x+3)=\dfrac{2}{5}\times (y+3)[/tex]

[tex]5(x+3)=2(y+3)\\\\i.e.\\\\5x+15=2y+6[/tex]

i.e.

[tex]5x+15=2\times 3x+6[/tex]

( since on using equation (1) )

i.e.

[tex]5x+15=6x+6\\\\i.e.\\\\6x-5x=15-6\\\\i.e.\\\\x=9[/tex]

and the value of y from equation (1) is:

[tex]y=27[/tex]

A store sells toaster ovenstoaster ovens for ​$4646 ​each, retail price. The wholesale cost to stock the ovensovens is $ 28$28 each. The fixed cost associated with acquiring the ovensovens​, storing them in​ inventory, using shelf​ space, and advertising the ovensovens for sale is ​$25002500. a. Write a function for the total cost of stocking the ovensovens for sale. b. Write a function for the total revenue received from selling the ovensovens. c. Write a system of equations and determine the number of ovensovens that must be sold to break even.

Answers

Selling price = $46 per toaster

Stocking cost = $28 per toaster
Fixed cost = $2500

a) Let the number of toasters be 'x'
    The total cost of stocking for sale = 28x + 2500

b) Let the number of toasters be 'x'
    Total revenue received from selling the toasters = 46x

c) Break-even is when the cost of production is equal to profit made
    So, we can set up the break-even equation as:
    Production cost = Revenue cost
    28x + 2500 = 46x
    2500 = 46x - 28x
    2500 = 18x
    x = 138.9 ⇒ Rounded to 139 ovens

what are the coordinates of a p;point on the unit circle if the angle formed by the positive x axis and the radius is 60 degrees

Answers

The diagram attached shows the graph described. Remember that the radius of the Unit Circle is 1. The In the corner of the diagram, we have the special right triangle 30-60-90 degrees, and its unit length ratios. 

Using the ratios, we know that the side opposite the 30° angle (the x-axis) will be 1/2 the hypotenuse 1, which is 1/2. This means our x-coordinate is 1/2.

We also see that the side opposite the 60° angle will be the other leg, times √2. This means it will be (1/2) * √2 = √(2)/2. This is the y-coordinate.

Therefore, the coordinates of the point on the unit circle are (1/2, √(2)/2)

what is the approximate value of the square root of 8

Answers

2.828427 for your information

Answer:

2.828427

Step-by-step explanation:

I looked it up

A sample of 12 measurements has a mean of 8.5 and a sample of 20 measurements has a mean of 7.5. Find the mean of all 32 measurements.

Answers

multiply 8.5 by 12, multiply 7.5 by 20, add them together to get 252, then divide that by 32 to get 7.875. 7.875 is the mean of all 32 measurements

Deon is riding his bicycle. He rides for 7 hours at a speed of 22.4 kilometers per hour. For how many kilometers does he ride

Answers

By hypothesis, Deon is riding at a speed of 22.4 kilometers per hour. So each hour, he completes 22.4 km.

If he rides for 7 hours, he completes 22.4 * 7 = 156.8 km

So in 7 hours, he rides 156.8 kilometers.

Hope this helps! :)

Which coin have a diameter with a 5 in a hundredths place

Answers

in inches it would be a quarter and a penny

a jar of jelly beans that weigh 4.25 ounces costs 2.89. what is the cost of one ounce of jelly

Answers

You have: 
Cost in dollars --> $2.89 
Total ounces --> 4.25 

But you want to know the per unit cost for *1* ounce. 

You have the right method. You want cost ($) per ounce so put the price over the amount in ounces. 
2.89 / 4.25 = x / 1 

If you notice, since the denominator is 1, this is simply: 
x = 2.89 / 4.25 

So the unit cost is just $2.89 divided by the number of ounces (4.25). 

Plug that into your calculator and you get: 
0.68 

That's in dollars. So if you want it in cents, move the decimal point 2 places to the right. 

Answer: 
$0.68 per ounce 
or 
68 cents per ounce

The Leukemia and Lymphoma Society sponsors a 5k race to raise money. It receives $55 per race entry and $10,000 in donations, but it must spend $15 per race entry to cover the cost of the race.

Write and solve an inequality to determine the number of race entries the charity needs to raise at least $55,000.

Answers

p=people subtract 10,000 already raised from 55,000 profit/p = 40 40p=45000 p=1125 1125 entries

Find the probability of a couple having a baby boy when their fourth child is​ born, given that the first three children were all boys. assume boys and girls are equally likely. is the result the same as the probability of getting sall boys among four ​children

Answers

The probability of having a baby boy on the fourth child, given that the first three children were all boys, is 0.5. This result is not the same as the probability of getting all boys among four children, which is 0.0625. The conditional probability accounts for the information about the first three births.

To solve this probability problem, let's break it down step by step.

Probability of Having a Boy on the Fourth Child:

Assuming boys and girls are equally likely, the probability of having a boy or a girl is 1/2 or 0.5. When considering each child's gender independently, the probability of having a boy on the fourth child is 0.5, regardless of the genders of the previous children.

However, the question specifies that the first three children were all boys. This information is crucial for the conditional probability calculation.

Conditional Probability:

The probability of having a boy on the fourth child given that the first three children were all boys is denoted as [tex]\( P(B_4 | B_1, B_2, B_3) \)[/tex].

Since the events are assumed to be independent (the gender of one child does not affect the gender of another), the conditional probability is the same as the probability of having a boy on any single birth: 0.5.

Comparison with Getting All Boys:

The probability of getting all boys among four children [tex](\( P(B_1 \cap B_2 \cap B_3 \cap B_4) \))[/tex] is the product of the probabilities of having a boy for each birth.

[tex]\[ P(B_1 \cap B_2 \cap B_3 \cap B_4) = P(B_1) \times P(B_2) \times P(B_3) \times P(B_4) \][/tex]

Given that [tex]\( P(B_4) = 0.5 \)[/tex] and the previous births are all boys, [tex]\( P(B_1 \cap B_2 \cap B_3 \cap B_4) = (0.5)^4 = 0.0625 \)[/tex].

The question probable may be:

Find the probability of a couple having a baby boy when their fourth child is born, given that the first three children were all boys. Assume boys and girls are equally likely. Is the result the same as the probability of getting all boys among four children?

Read the following statement: Line segment CD is congruent to line segment XY.

Which of the following is an equivalent statement?

-CD overbar is similar to XY overbar

- CD overbar is congruent to XY overbar

-CD overbar equals XY overbar

-CD overbar is an element of XY overbar

SOMEONE PLEASE HELP I HAVE A TEST IN 5 MIN!!

Answers

CD overbar is congruent to XY overbar

The statement which is equivalent to line segment CD is congruent to line segment XY is CD overbar is congruent to XY overbar.

What is a line?

A line is made up of an infinite no. of points it can extend in both directions indefinitely.

We know a line has two subsets they are a ray and a line segment.

A ray is a type of line that has one initial point and the other end can extend indefinitely and a line segment is a type of line which has two endpoints.

Given a line, segment CD is congruent to line segment XY.

∴ [tex]\overline{CD}[/tex] ≅ [tex]\overline{XY}[/tex].

learn more about line segment here :

https://brainly.com/question/25727583

#SPJ2

a cell phone company charges a monthly fee of $0.25 for each text. message the monthly fee is $30.00 and you owe $59.50. how many text messages did you have

Answers

now, the cell company charges a monthly usually for network access and routing to the device, this company charges 30 bucks monthly for it.

after that, you pay for the txt messages you use, the more you use, the more you pay, in this case is 25 cents for each.

so if you use say hmm 100 txt messages, then you owe for a month 30 + 0.25(100)

and if you use "x" txt messages, then  you owe 30 + 0.25x.

[tex]\bf \stackrel{cost}{y}=\stackrel{monthly~fee}{30}+\stackrel{txt~charges}{0.25x}\implies 59.50=30+0.25x \\\\\\ 29.5=0.25x\implies \cfrac{29.5}{0.25}=x\implies 118=x[/tex]

What is the minimum number of degrees that a hexagram can be rotated so that it is carried onto itself?

Answers

The minimum number of degrees that a hexagram can be rotated so that it is carried onto itself is 60 degrees.
60 degresss is the answer

Find the saving plan balance after 4 years with an apr of 7% and monthly payments of 100

Answers

APR=7%, monthly interest rate, i=7%/12=0.07/12
Monthly payment, A=100
After 4 years, n=4*12 = 48 months,
the balance F is therefore
F = A((1+i)^n-1)/i
=100((1+0.07/12)^48-1)/(0.07/12)
=5520.92

Answer: the balance after 4 years at APR=7% with monthly payment of $100 is $5520.92 to the nearest cent.

Find then selling price per liter of a mixture made from 70 L of cranberry juice which cost $1.20 per liter and 130 L of apple juice which cost $0.80 per liter

Answers

[tex]\bf \begin{array}{lccclll} &\stackrel{liters}{amount}&\stackrel{\$/liter}{price}&\stackrel{total}{cost}\\ &------&------&------\\ Cranberry&70&1.20&84\\ Apple&130&0.80&104\\ ------&------&------&------\\ mixture&200&&188 \end{array}\\\\ -------------------------------\\\\ \cfrac{\stackrel{\$}{188}}{\stackrel{liters}{200}}\implies \cfrac{47}{50}\approx 0.94\frac{\$}{liter}[/tex]
Other Questions
Which of the following was not one of the advantages the British had at the beginning of the American Revolution? If ( f g)(x) = x2 - 6x + 8 and g(x) = x - 3, what is f(x)? Divide.3 5/9 -2 2/3Enter your answer as a mixed number, in simplified form, in the box. HELP ME PLS!!The function graphed shows the total cost for a taxi cab ride for x miles.Select from the drop-down menus to correctly identify the taxi cab ride information provided by the graph. The slope is5, 3, 2.5, 0.2The slope represents 1)the total cost of the taxi ride2)the total number of miles traveled3)the cost per miles traveled4)the initial cost of the ride Philip did not want to destroy greece, he wanted to _____ ____________. Dean needs 6060 inches of wood to build a rectangular picture frame. The length ll of the frame is twice its width ww. Three of these equations give the correct value for ww. Which equation does NOT? Source credibility is based on how well the speaker presents the source, not the source's credentials. What were the provisions of the constitution of 1791? Social media connects people. Is that a compound, complex or a simple sentence? Solve the inequality below and then graph the solution set.1_ w + 3 < -64 (1) I have a limited interest in people whose main topic of conversation is themselves and who never show any interest in what is happening to me. (2) _____ group I avoid is people who never allow facts to interfere with their opinions. a. Another b. Also c. One d. Then Which of the following is example of direct observation During the _____ stage, freud believed that children shift away from sexual interests until the hormones of puberty arise. Pamela _______ ropa tradicional en el centrist comercial . A. VendoB. Vendemos C. Vende D. Venden 2 0.5n=3n+16Help find the experimental probability of rolling a 4 How do you write this number in standard form 15,000+7000+400+9 In the 1820s, the United States was concerned about European ambitions in the Americas because they feared that Europe wanted to Which two religious groups have fought in South Asia?a)Hindus and Muslimsb)Muslims and Jewsc)Jews and Christiansd)Buddhists and Jewse)Christians and Buddhists Choose the question that is formed correctly in Spanish. Steam Workshop Downloader