Which pay is equivalent to 16 $ per hour A) 48 for 3 hours B)120 for 12 hours C) 60 for 5 hours D) 96 for 9 hours

Answers

Answer 1

Answer:

The answer is A. 48 divided by 3 equals 16. Therefore, if you earn $48 for 3 hours, then you are earning $16 per hour.

Step-by-step explanation:

Answer 2

Hey there!

The correct answer is A. $48 for 3 hours

I figured this out by multiplying 16 by 3 which equals 48

Hope this helps you!

God bless ❤️

xXxGolferGirlxXx


Related Questions

If a bag contains 12 apples , 4 bananas , and 8 oranges , what part to whole ratio bananas to all fruit

Answers

Answer:

4 : 24 or 1 : 6

Step-by-step explanation:

There are 4 bananas and 24 fruits so we just make that a ratio of 4 : 24.

We can then simplify that ratio to 1 : 6.

Answer:

the answer is 1:3

i did the test

Step-by-step explanation:

Match the function with its graph.

Answers

Answer:

The answer is 1D , 2A , 3C , 4B ⇒ answer (c)

Step-by-step explanation:

* Lets talk about the transformation

- If the function f(x) reflected across the x-axis, then the new

 function g(x) = - f(x)

- If the function f(x) translated horizontally to the right  

 by h units, then the new function g(x) = f(x - h)

- If the function f(x) translated horizontally to the left  

 by h units, then the new function g(x) = f(x + h)

* Lets explain each function

∵ y = tan(x)

∵ y = -tan(x - π/2)

# (x - π/2) means the graph translated horizontally to

  the right π/2 units

# -tan(x - π/2) means the graph reflected across the x-axis

∴ The graph is (D)

* 1) y = -tan(x - π/2) ⇒ (D)

∵ y = tan(x + π/2)

# (x + π/2) means the graph translated horizontally to

  the left π/2 units

∴ The graph is (A)

* 2) y = -tan(x - π/2) ⇒ (A)

∵ y = -cot(x - π/2)

# (x - π/2) means the graph translated horizontally to

  the right π/2 units

# -cot(x - π/2) means the graph reflected across the x-axis

∴ The graph is (C)

* 3) y = -cot(x - π/2) ⇒ (C)

∵ y = cot(x + π/2)

# (x + π/2) means the graph translated horizontally to

  the left π/2 units

∴ The graph is (B)

* 4) y = -tan(x - π/2) ⇒ (B)

∴ The answer is 1D , 2A , 3C , 4B answer (c)

If a working was originally $25 and it is on sale for $18 what is the percent of discount

Answers

First we must subtract 25 in 18 because we are doing percentages.

So we do [tex]25 - 18  = 7[/tex]

So we get 7.

Now we need to do [tex]7/25 * 100% = 28%[/tex]

We would get a total of 18% of on the discount.

A company offers you a job with an annual salary of $70 000 for the first year and a 5% raise every year after. Approximately how much money in total would you earn in 5 years of working there?

$386794

$87500

$89340

$367500

Answers

Answer:

$386794

Step-by-step explanation:

To be able to find how much we get in 5 years, we need to base it off the initial salary value.

So in the first year we get.

$70,000

To get how much we get in the 2nd year we add the extra 5%.

2nd year salary = (1.05)70000

2nd year salary = 73500

Now we continue to do that until the 5th year

3rd year = (1.05)73500

3rd year = 77175

4th year = (1.05) + 77175

4th year = 81033.75

5th year = (1.05) + 81033.75

5th year = 85085.44

Now we add them all up to get the total.

70000 + 73500 + 77175 + 81033.75 + 85085.44 = $386794.19 or $386794

A zoo had 12 large aquariums with fish. The number of fish in each aquarium is shown 37, 58, 62,36,42,71,56,58,69,66,47,68 what is the range in the number of fish

Answers

Answer:

35

Step-by-step explanation:

First, we will define range.

The difference between the highest and lowest values in a data is called range. To find the range, first the highest and lowest values are found from data, then the lowest value is subtracted from the highest value.  

In the above data,

Highest Value=71  

Lowest Value=36  

Range=Highest value-lowest value  

=71-36  

=35  

The range in the number of fish across the 12 large aquariums is 35, calculated by subtracting the minimum number of fish, 36, from the maximum number, 71.

The question asks us to calculate the range in the number of fish across 12 large aquariums at a zoo. To find the range, we need to identify the largest and smallest numbers in the given data set and then subtract the smallest from the largest.

Here is the list of the numbers of fish in each aquarium: 37, 58, 62, 36, 42, 71, 56, 58, 69, 66, 47, 68.

First, we find the maximum and minimum values:

Maximum (the largest number of fish in an aquarium): 71

Minimum (the smallest number of fish in an aquarium): 36

Next, we calculate the range by subtracting the minimum value from the maximum value:

Range = Maximum - Minimum

Range = 71 - 36

Range = 35

Therefore, the range in the number of fish across the 12 aquariums is 35.

A 190-pound man and a 130-pound woman went to Burger King for lunch. The man had a BK Big Fish sandwich (750 Cal), medium french fries (400 Cal), and a large Coke (225 Cal). The woman had a basic hamburger (370 Cal), medium french fries (400 Cal), and a diet Coke (0 Cal). After lunch, they start shoveling snow and burn calories at a rate of 420 Cal/h for the woman and 610 Cal/h for the man. Determine how long each one of them needs to shovel snow to burn off the lunch calories. The metabolizable energy contents of different foods are as given in the problem statement. Shoveling snow burns calories at a rate of 420 Cal/h for the woman and 610 Cal/h for the man.

Answers

Answer:

2.25 hours for the man and 1.83 hours for the woman.

Step-by-step explanation:

We first find the number of calories consumed by both the man and the woman.

The man's calories are:

750+400+225 = 1375

The woman's calories are:

370+400+0 = 770

The man burns 610 calories per hour.  This means to find the number of hours, we divide the number of calories by the rate burned per hour:

1375/610 = 2.25 hours

The woman burns 770 calories per hour.  This means to find the number of hours, we divide the number of calories by the rate burned per hour:

770/420 = 1.83 hours

A 190-pound man needs to shovel snow for approximately 2.25 hours, and a 130-pound woman needs to shovel for approximately 1.83 hours to burn off the calories from their Burger King meal.

The question involves calculating the time it takes for a 190-pound man and a 130-pound woman to burn off the calories consumed from a meal at Burger King through the physical activity of shoveling snow. The man consumed a total of 1375 Calories (750 Cal for BK Big Fish sandwich, 400 Cal for medium french fries, and 225 Cal for a large Coke). The woman consumed a total of 770 Calories (370 Cal for a basic hamburger, 400 Cal for medium french fries, and 0 Cal for a diet Coke).

To find out how long each person needs to shovel snow to burn off the lunch calories, we divide the total number of calories consumed by the rate at which they burn calories while shoveling snow.

For the man: 1375 Calories / 610 Cal/h = approximately 2.25 hours.

For the woman: 770 Calories / 420 Cal/h = approximately 1.83 hours.

I need help with question 9

Answers

let's not forget that a function and its inverse have a domain <-> range relationship, namely, if the original function has a point of say (3 , 7 ), then its inverse function will have a point of (7 , 3 ), the same pair just flipped sideways.

[tex]\bf (g\circ f^{-1})(x)\implies g(~~~f^{-1}(x)~~~) \\\\\\ (g\circ f^{-1})(2)\implies g(~~~f^{-1}(2)~~~) \\\\[-0.35em] ~\dotfill\\\\ \textit{so let's firstly find out what is }f^{-1}(2)[/tex]

we don't have an f⁻¹(x), darn!! but but but, we do have an f(x) on the left-hand-side graph, and it has a pair where y = 2, namely ([ ] , 2), so then, f⁻¹(x) will have the same pair but sideways, let's inspect f(x).

hmmmmmm when y = 2, x = 0, notice the y-intercept on the graph, ( 0, 2 ).

so then, that means that f⁻¹(x) has a pair sideways of that, namely ( 2, 0), or f⁻¹(2) = 0.

so then, g(  f⁻¹(2)  ), is really the same as looking for g(  0  ), well then, what is "y" when x = 0 on g(x)?  let's inspect the right-hand-side graph.

hmmmmmmmmmmm  notice, the point is at ( 0 , 2 ), namely when x = 0, y = 2.

[tex]\bf (g\circ f^{-1})(2)\implies g(~~~f^{-1}(2)~~~)\implies g(0)\implies 2[/tex]

Madison enjoys the game of golf. He knows that he will one-putt a green 15% of the time, two-putt 20% of the time, three-putt 35% of the time, and four-putt 30% of the time. Find the expected value for the number of putts Madison will need on any given green. Make sure to write down the entire equation that you used to solve this problem.

Answers

Answer:

2.8 putts in average on any given green

Step-by-step explanation:

To calculate how many putts Madison will need on any given green, we need to calculate the weighted average of his putts.

We use a global sample of 100 puts and factor in the fact he had a one-putt performance 15% of the time, two-putts 20% of the time and so on.

So, the calculation goes like this:

[tex]\frac{1 * 15 + 2 * 20 + 3 * 35 + 4 * 30}{100}  = \frac{280}{100}  = 2.8[/tex]

So, he'll need an average of 2.8 putts in average on any given green.

Which makes sense since 65% of the time, he needs 3 putts or more on the green.

Final answer:

The expected number of putts Madison will need for any given green is 2.85. This is calculated by multiplying each possible outcome by its probability and then summing these values.

Explanation:

The subject of this question is the calculation of an expected value in the context of a game of golf. The expected value is a weighted average, taking into account the probability of each event. Expected value calculations are common in probability and statistics.

In Madison's case, the expected number of putts can be calculated with the following formula:

E(X) = Σ [x * P(X = x)], where x is the outcome (number of putts) and P(X = x) is the probability of that outcome.

Applying the probabilities and outcomes given: E(X) = 1(0.15) + 2(0.20) + 3(0.35) + 4(0.30) = 2.85

So, the expected value of the number of putts Madison will need for any given green is 2.85.

Learn more about Expected Value here:

https://brainly.com/question/37190983

#SPJ3

For the geometric series given by 1+2+4+ which of the following statements is FALSE?

S600>a600

S600>S599

S1=a1

None of the other 3 statements here are false

Answers

Final answer:

The false statement among the options given is 'None of the other 3 statements here are false', because all the other three statements about the geometric series are actually true.

Explanation:

The question presents a geometric series: 1, 2, 4, ... Each term is double the previous term, which means that for this series, the common ratio (r) is 2. Now let us analyze the statements given:

S600 > a600: The sum of the first 600 terms of the series will be greater than the 600th term.

This is true, since the sum of a geometric series to n terms is given by the formula Sn = a1(1 - rn)/(1 - r) for r > 1, where Sn is the sum of the first n terms, a1 is the first term, and r is the common ratio.

Since the sum involves multiple terms and all terms are positive, it will be bigger than the last term.

S600 > S599: The sum of the first 600 terms will be greater than the sum of the first 599 terms.

This is also true, since each term added to the series is positive, so the sum will increase.

S1 = a1: The sum of the first term equals the first term itself.

This is true because the first term of the series is 1, and the sum of just one term (i.e., the first term) is the term itself.

Therefore, the false statement is 'None of the other 3 statements here are false' because actually, none of the other three statements provided are false.

Final answer:

The presented geometric series has a common ratio greater than 1, so the sum of the first 600 terms is greater than the 600th term; similarly, the sum of 600 terms is greater than the sum of 599 terms. Since all provided statements are true, the answer is that 'None of the other 3 statements here are false'.

Explanation:

The question presents a geometric series with the first term 1 and a common ratio of 2. This series is 1+2+4+8+... and so on. We are asked to identify which of the given statements is false regarding the series.

S600 > a600: This statement says that the sum of the first 600 terms is greater than the 600th term. In a geometric series where the common ratio is greater than 1, the sum of the first n terms is indeed greater than the nth term, so this statement is true.S600 > S599: This statement indicates that the sum of the first 600 terms is greater than the sum of the first 599 terms. Since each term in the series is positive, adding another term will always increase the sum, thus this statement is also true.

S1 = a1: This statement equates the sum of the first term to the first term itself. Since there's only one term involved, they are the same. Therefore, this statement is true.

By process of elimination, since the other statements are true, the correct answer would be 'None of the other 3 statements here are false'.

Find the minimum value of the function for the polygonal convex set determined by the given system of inequalities.
3x+2y≥14
-8x+3y≤10
f(x,y)=8x+8y

Answers

Answer:

Option b (4,1)

Step-by-step explanation:

The region given by the system of inequalities is shown in the graph. We must look within this region for the point that minimizes the objective function [tex]f(x, y) = 8x + 8y[/tex]

The minimum points are found in the lower vertices of the region.

These vertices are found by equating the equations of the lines::

[tex]3x+2y=14\\-5x +5y=10[/tex]

-------------------

[tex]x = 2\\y = 4[/tex]

[tex]-8x + 3y = -29\\3x + 2y = 14[/tex]

---------------------

[tex]x = 4\\y = 1[/tex]

The lower vertices are:

(4, 1) (2, 4)

Now we substitute both points in the objective function to see which of them we get the lowest value of [tex]f(x, y)[/tex]

[tex]f(4, 1) = 8(4) +8(1) = 40\\f(2, 4) = 8(2) + 8(4) = 48[/tex]

Then the value that minimizes f(x, y) is (4,1).

Option b

Randy took out a subsidized student loan of $7,000 at a 3.6% APR, compounded monthly, to pay for his last semester of college. If he will begin paying off the loan in 10 months with monthly payments lasting for 20 years, what will be the total amount that he pays in interest on the loan?

A.) 10,128.00

B.) 9,830.40

C.) 2,830.40

D.) 3,128.00

Answers

Answer: 2830.40

Step-by-step explanation:

Final answer:

By using mathematical formulas for calculating compound interest and the total payment of an installment loan, and then subtracting the original loan principal, the total interest paid on the loan is identified as $9,830.40.

Explanation:

To solve this problem, use the formula for the compound interest on a loan: A = P(1 + r/n)^(nt), where:

A is the total amount of money accumulated after n years, including interest. P is the principal amount (the initial amount of money). r is the annual interest rate (in decimal) (3.6% APR). t is the number of years the money is invested or borrowed for. n is the number of times that interest is compounded per unit t.

Since Randy is not going to start paying off his loan until 10 months later, the money will compound for 20 years and 10 months. Convert 10 months into years we get 10/12 = 0.833 years. Therefore, t = 20 + 0.833 = 20.833 years.

The loan was compounded monthly which means n = 12 and the rate is r = 3.6/100 = 0.036. Now you can substitute these values into the formula.

Next, find the total amount paid over the entire period of the loan by using the formula for the total payment of an installment loan: M = P*r*(1 + r)^n / [(1 + r)^n – 1], where M is monthly payment.

Subtract the principal from the total payment to find the total interest paid. From the given options, it appears that the answer is B.) $9,830.40

Learn more about Compound Interest here:

https://brainly.com/question/14295570

#SPJ2

HELP PLEASE!! As John walks 16 ft towards a chimney, the angle of elevation from his eye to the top of the chimney changes from 30° to 45°. Identify the height of the chimney from John's eye level to the top of the chimney rounded to the nearest foot.

Answers

Answer: 22 feet.

Step-by-step explanation:

Note that there are two right triangles in the figure attached: ACD and BCD. Where "h" is the height of the chimeney  from John's eye level to the top of the chimney.

You need to use the trigonometric identity [tex]tan\alpha=\frac{opposite}{adjacent}[/tex] for this exercise.

For the triangle BCD:

[tex]tan(45\°)=\frac{h}{x}[/tex]

Solve for h:

[tex]h=xtan(45\°)\\h=x[/tex]

For the triangle ACD:

[tex]tan(30\°)=\frac{h}{x+16}[/tex]

Substitute [tex]h=x[/tex] and solve for h:

[tex]tan(30\°)=\frac{h}{h+16}\\\\(h+16)(tan(30\°))=h\\\\0.577h+9.237=h\\\\9.237=h-0.577h\\\\9.237=0.423h\\\\h=\frac{9.237}{0.423}\\\\h=21.836ft[/tex]

Rounded to the nearest foot:

[tex]h=22ft[/tex]

In semiconductor manufacturing, wet chemical etching is often used to remove silicon from the backs of wafers prior to metalization. The etch rate is an important characteristic in this process and known to follow a normal distribution. Two different etching solutions have been compared, using two random samples of 10 wafers for each solution. Assume the variances are equal. The etch rates are as follows (in mils per minute): Solution 1 Solution 2 9.7 10.6 10.5 10.3 9.4 10.3 10.6 10.2 9.3 10.0 10.7 10.7 9.6 10.3 10.4 10.4 10.2 10.1 10.5 10.3 Calculate sample means of solution 1 and solution 2

Answers

Answer:

Sample mean for solution 1:  19.27; sample mean for solution 2:  10.32

Step-by-step explanation:

To find the sample mean, find the sum of the data values and divide by the sample size.

For solution 1, the sum is given by:

9.7+10.5+9.4+10.6+9.3+10.7+9.6+10.4+10.2+10.5 = 192.7

The sample size is 10; this gives us

192.7/10 = 19.27

For solution 2, the sum is given by:

10.6+10.3+10.3+10.2+10.0+10.7+10.3+10.4+10.1+10.3 = 103.2

The sample size is 10, this gives us

103.2/10 = 10.32

Final answer:

The sample mean for Solution 1 is 10.05 mils per minute, while the sample mean for Solution 2 is 10.32 mils per minute. These figures represent the average etch rates of each solution in the semiconductor manufacturing process. So here the sample mean should be calculated.

Explanation:

To calculate the sample means of Solution 1 and Solution 2, we first sum up the etch rates of each solution, and then divide by the number of samples in each solution.

For Solution 1, the etch rates sum up to 100.5 mils per minute. Dividing this by 10 (number of samples), we get a sample mean of 10.05 mils per minute.

For Solution 2, the etch rates sum up to 103.2 mils per minute. Dividing this by 10 (number of samples), we get a sample mean of 10.32 mils per minute.

So, the sample means for Solution 1 and Solution 2 are 10.05 and 10.32 mils per minute respectively. These means are useful to compare the average efficiency of these two solutions as a part of normal distribution analysis in the semiconductor manufacturing process.

Learn more about Sample Mean Calculation here:

https://brainly.com/question/30187155

#SPJ3

Look at the line plot, explain how you found the mean, median, and range. Compare the two line plots, is there an overlap and what degree of overlap? What is the Mean?What is the Median? *What is the Range. What is the degree of overlap.

Answers

We kinda need the graph

What is the distance between the 2 points? Round to the nearest tenths place.

Answers

Check the picture below.

Answer:

[tex]10.8 units[/tex]

Step-by-step explanation:

To find the answer, we need to use the distance formula.

[tex]d=\sqrt{(x-x)^2 +(y-y)^2}[/tex]

Let us look at our points. We have:

[tex](-2, 5)[/tex] and [tex](-6, -5)[/tex]

Now, let's identify our x's and y's:

x₁ = -2

y₁ = 5

x₂ = -6

y₂ = -5

Plug it in to the distance formula and simplify:

[tex]d=\sqrt{(-6+2)^2+(-5-5)^2}[/tex]

[tex]d=\sqrt{(-4)^2+(-10)^2}\\d=\sqrt{16 +100} \\d=\sqrt{116}\\[/tex]

[tex]d=2\sqrt{29}[/tex] OR [tex]10.77032961...[/tex]

The isosceles trapezoid ABDE is part of an isosceles triangle ACE. Find the measure of the vertex angle of ACE. (See attachment)


A. 130 degrees

B. 60 degrees

C. 65 degrees

D. 50 degrees


I really need an explanation along with the answer, thank you!!

Answers

Answer:

We know that [tex]\triangle ACE[/tex] is isosceles, that means [tex]\angle A \cong \angle E[/tex], by definition.

Also, [tex]\angle BDC \cong \angle DBC[/tex], because [tex]BD \parallel AE[/tex].

Then, we have [tex]115\° + \angle BDC = 180\°[/tex], by sumpplementary angles.

[tex]\angle BDC = 180 -115 = 65\° = \angle DBC[/tex]

Which means,

[tex]\angle C= 180 - 65 - 65[/tex], by definition.

[tex]\angle C= 50[/tex]

Then,

[tex]\angle A + \angle E + 50 = 180\\2\angle A = 180 - 50\\\angle A= \frac{130}{2}=65 = \angle E[/tex]

Therefore, the measures of vertex angles are 65 for the base angles of triangle and 50 for the different angle.

The temperature of a chemical solution is originally 21, degree, C. A chemist heats the solution at a constant rate, and the temperature of the solution is 75, degree, C after 12 minutes of heating.

Answers

Assuming the question is "at what rate did the chemist heat the solution," the answer is the chemist heated the solution at +4.5 degrees Celsius per minute.

75-21=54

54/12=4.5

The Dittany family's vegetable garden is shaped like a scalene triangle. Two of the sides measure 6 feet and 10 feet. Which could be the length of the third side, in feet?

Question 2 options:

18

16

9

6

Answers

Answer:

The length of the third side could be 9 ft

Step-by-step explanation:

we know that

The Triangle Inequality Theorem states that the sum of any 2 sides of a triangle must be greater than the measure of the third side

so

In this problem

Let

c-----> the length of the third side, in feet

Applying the Triangle Inequality Theorem

1) [tex]6+10>c[/tex] -------> [tex]c<16\ ft[/tex]

2) [tex]c+6>10[/tex] -----> [tex]c>4\ ft[/tex]

so

The length of the third side must be greater than 4 ft and less than 16 ft

Remember that

The scalene triangle has three different sides

therefore

The length of the third side could be 9 ft

Change from General Conic Form to Standard Form: 137+64y=-y^2-x^2-24x



Answers

Answer:

(x + 12)² + (y + 32)² = 1031  

Step-by-step explanation:

137 + 64y = -y² - x² - 24x

Arrange the terms in descending powers of x and y.

x² + 24x  + y² + 64y = -137

Complete the squares  for x and y

(x² + 24x  + 144) + (y² + 64y + 1024) = -137 + 144 + 1024

Write the equation as the  squares of binomials of x and y

(x + 12)² + (y + 32)² = 1031

This is the equation of a circle with centre at (-12, -32) and radius r = √1031.

A right rectangle prism is 6 cm by 14 cm by 5 cm what is the surface area of the right prism

Answers

Answer:

[tex]\large\boxed{S.A.=368\ cm^2}[/tex]

Step-by-step explanation:

The formula of a surface area of a rectagular prism:

[tex]S.A.=2(lw+lh+wh)[/tex]

l - length

w - width

h - height

We have the dimensions 6cm × 14cm × 5cm. Substitute:

[tex]S.A.=2(6\cdot14+6\cdot5+14\cdot5)=2(84+30+70)=2(184)=368\ cm^2[/tex]

The surface area of the rectangular prism is 368 cm²

To calculate the surface area of the prism, we use the formula below.

Formula:

As = 2(lw+lh+wh).............. Equation 1

Where:

As = Surface area of the prisml = Lenght of the prismh = height of the prismw = width of the prism.

From the question,

Given:

l = 6 cmw = 14 cmh = 5 cm

Substitute these values into equation 1

As = 2[(6×14)+(14×5)+(6×5)]As = 2(84+70+30)As = 2(184)As = 368 cm²

Hence, The surface area of the rectangular prism is 368 cm².

Learn more about surface area here: https://brainly.com/question/76387

What transformations of the parent function f(x) = x| should be made to graph, f(x) = - |x| + 5
Reflection over the x-axis, shift down 5 units
Reflection over the x-axis, shift up 5 units
Reflection over the y-axis, shift down 5 units
Reflection over the y-axis, shift up 5 units

Answers

Reflection over x-axis, shift down 5 units.

Answer:

Option B is correct.

Step-by-step explanation:

Given Parent Function, f(x) = |x|

Transformed function, f(x) = - |x| + 5

In transformed function, f(x) = -|x|

Represent that parents function is first reflected ove x - axis.

then in transformed function, f(x) = -|x| + 5

represent that after reflection function is shifted 5 unit in upward direction.

Therefore, Option B is correct.

Find the angle of elevation, to the nearest degree, of the sun if a 54 foot flagpole casts a shadow 74 feet long.

Answers

Answer:

If the angle is in degrees, when taking the tangent, make sure your calculator is in Degree mode.

I hope this helps.

rational exponents: product rule
simplify
v^3/4 multiply v^5/7

Answers

Answer:

  [tex]v\sqrt[28]{v^{13}}[/tex]

Step-by-step explanation:

The exponent rules that apply are ...

[tex](a^b)(a^c)=a^{b+c}\\\\a^{\frac{b}{c}}=\sqrt[c]{a^b}[/tex]

Using these rules for your product, we have ...

[tex]v^{\frac{3}{4}}\times v^{\frac{5}{7}}=v^{\frac{3}{4}+\frac{5}{7}}\\\\=v^{\frac{41}{28}}=v\cdot v^{\frac{13}{28}}=v\sqrt[28]{v^{13}}[/tex]

A scale drawing of the side view of a house is shown at the right. Find the total area (in square inches) of the side of the house in the drawing PLEASE HELP!!

Answers

Answer:

The total area of the side of the house in the drawing is [tex]1.4\ in^{2}[/tex]

Step-by-step explanation:

step 1

Convert the actual dimensions of the side view of a house to the dimensions of the drawing

The scale of the drawing is [tex]\frac{1}{20}\frac{in}{ft}[/tex]

so

[tex]20\ ft=20/20=1\ in[/tex]

[tex]24\ ft=24/20=1.2\ in[/tex]

[tex]8\ ft=8/20=0.4\ in[/tex]

The total area is equal to the area of rectangle plus the area of triangle

so

[tex]A=(1)(1.2)+\frac{1}{2}(1)(0.4)=1.4\ in^{2}[/tex]

Find the distance from point P to RQ

Answers

Final answer:

To find the distance from point P to line RQ, we first find the vectors for PQ and PR. Then we calculate the projection of PR onto PQ which gives us the vector from P to the point on line RQ nearest to P. The length of this vector gives us the shortest distance from point P to the line RQ. This explanation assumes we have coordinate data for points P, Q, and R.

Explanation:

The distance from point P to RQ can be found utilizing mathematical principles of geometry and vectors. Let's assume that we know the coordinates of points P, R, and Q. Having these information, we can follow these steps:

First, find the vector RQ which is Q - R. Let's presume this gives us the vector a. Then, calculate the vector RP which is P - R and let's assume this gives us the vector b. The projection of vector b onto vector a is given by [(b.a)/|a|²]a (where . denotes the dot product and |a| is the magnitude of a). This will give us a vector from point R to the point on the line RQ that is nearest to point P, let's call this point M. Finally, find the vector PM by subtracting the projection from vector b. The length of this vector gives us the shortest distance from point P to the line RQ.

Remember, this is the process given that you know the coordinates of the points involved. If you only have a diagram, you might need to use tools like a ruler or a protractor to measure distances and angles.

Learn more about Distance from a point to a line here:

https://brainly.com/question/7512967

#SPJ2

A square and a rhombus have the same perimeter. What about their areas? Are they the same? If not then which is bigger?

Answers

Final answer:

The area of a square is always larger than the area of a rhombus when they have the same perimeter.

Explanation:

The areas of a square and a rhombus with the same perimeter are not equal. The square will always have a larger area than the rhombus.



To understand why, let's compare the sides and angles of a square and a rhombus.




 A square has four equal sides and all angles are right angles (90 degrees).
 A rhombus has four equal sides, but its angles are not right angles. Instead, its opposite angles are equal, but they are all smaller than 90 degrees.
 Since the square has right angles and larger interior angles, it can fit more area inside compared to the rhombus with smaller angles.



Therefore, the square will always have a bigger area than the rhombus when both shapes have the same perimeter.

Learn more about Area Comparison here:

https://brainly.com/question/33845190

#SPJ12

simplify the radical expression the square root of 63x to the 15th power y to the 9th power divided by 7xy^11

Answers

Answer:

The analysis of your expresson is given in the images below.

Please see attached pictures.

a cake has a circumference of 25 1/7 what is the area of the cake .use 22/7 to approximate π round to the nearest hundredth

Answers

Answer:

A = 50.29 units²

Step-by-step explanation:

See attached photo

A school principal ordered 1,000 pencils .He gave equal number to each of 7 teachers until he had given out as many as possible . How many pencils were left?

Answers

Answer:6

Step-by-step explanation: 1,000 divided by 7 is 994 with a remainder of six. Which means the principal had six left

What is the measure of angle A?



Enter your answer as a decimal in the box. Round only your final answer to the nearest hundredth.

Answers

Answer:

20

Step-by-step explanation:

You multiply the 80 and the 18 and then you add 82

Other Questions
Gerald was able to mow 1/2 of a lawn in 12 minutes how many lawns could he mow in 2 hours Find the side of an equilateral traingle whose perimeter is 75 cm Which of the following solutions would have the lowest freezing point?A. 1.0 M NaCl B. 3.0 M NaCl C. 2.0 M NaCl D. 0.5 M NaCl Many people felt that during the industrial revolution, businesses wanted to pay workers less money to do the same work. This resulted in the ___________.A. standard of living increases B. Rise of labor unions C. Deflation Using 3.14 for p, what is the volume of a ball with a radius of 3 centimeters? Petes parents are offering to pay him a weekly allowance for doing his chores. Theyve given him two different payment options for a period of 15 weeks.Option 1: $20 every weekOption 2: A penny in the first week, and then double the amount from the previous week in each week after that. So, 1 penny in the first week, 2 pennies in the second week, 4 pennies in the third week, and so on.Which one is the better option for Pete? Explain why. Which of the following biomes receives the MOST precipitation? A)Rain Forest B)Taiga C)Savanna D)Desert Many people infected with tapeworms may be unaware of the infection due to a lack of symptoms.Please select the best answer from the choices provided.TF Which action did the marbury v. Madison make possible lorenas backpack has a mass of 20,000 grams. what is the mass of lorenas backpack in kilograms? which choice is equivalent to the expression below? heLp! how was france like the rest of europe in 1789 If an ideal monatomic gas undergoes an adiabatic expansion, in which the volume increases by a factor of 4.0, by what factor does the pressure change? a) 2.1 b) 1.7 c) 0.52 d) 0.25 e) 0.099 The f(x)=2^x and g(x)=f(x+k). If k=-5, what can be concluded about the graph of g(x). The graph of g(x) is shifted vertically :a) 5 units above the graph of f(x) b) 5 units below the graph of f(x) c) the graph is not shifted vertically from the graph of f(x) The graph of g(x) is shifted horizontally: a) 5 units to the left of the graph of f(x) b) 5 units to the right of the graph of f(x) c) the graph is not shifted horizontally from the graph of f(x)PLEASE I NEED HELPI will give brainliest Can you construct a triangle with interior angle measures of 70, 40, and 50?Can you construct a triangle with interior angle measures of 70, 40, and 50? Why was the Great Depression even more difficult for the citizens of Arkansas than any other areas of the country? What were the major effects of the inventions of the printing press The central portion of earth is called the A mantleB coreC MohoD crust Make questions for the underlined words: what quadrilaterals have diagonals that are always perpendicular to each other? Choose any that apply.squarerectangleparallelogramrhombus Steam Workshop Downloader