The correct answer is b. Law of Definite Composition.
Further ExplanationA) Law of Conservation of Mass
FALSE. This law describes the masses of substances before and after a reaction as constant. Atoms only rearrange in during chemical reactions. None is destroyed nor are any new atoms created. Therefore, the total mass of reactants must always be equal to the total mass of the products.
B) Law of Definite Composition
TRUE. Sometimes called the Law of Constant Composition, this law states that regardless of the source of a compound, its composition is the same. The mass percentages of the elements that make up a particular compound is constant. KCl, in the example, will always have 1 mol of potassium ions and 1 mole of chloride per mole of the potassium chloride regardless of whether it was from Chile or Poland.
C) Law of Multiple Proportion
FALSE. This law describes how an element combines with another element to form multiple compounds. The ratio at which they combine are in whole numbers.
D) Law of Conservation of Mass and Definite Composition
FALSE. The Law of Conservation of Mass pertains to what happens to masses of substances before and after a chemical reaction. This problem is about different sources of a compound and not about a specified chemical reaction.
E) Law of Conservation of Mass and Multiple Proportions
FALSE. The problem is about the mass percentage of compounds from different sources, not about the reaction of the compound nor other compounds formed by potassium and iodine.
Learn MoreBalancing Equations https://brainly.com/question/2396833Mass Percentage https://brainly.com/question/11085567Keywords: Law of Definite Proportion, Law of Constant Composition
Laws gave ideas about conservation, composition, and proportions. The same percent by mass of the potassium in the sample indicates the law of definite composition. Thus, option b is correct.
What is the law of definite composition?The law of definite composition states the constant composition of the chemical compound irrespective of the place they are. The ratio of the element in the compound does not vary because of the source and preparatory methods.
The sample of potassium chloride will have the same proportion of potassium in both Chile and Poland as it is a fixed ratio that does not depend on the source. It ensures the uniform preparation of the chemical compound.
Therefore, the sample will have the same proportion of potassium due to the law of definite composition.
Learn more about the law of definite composition here:
https://brainly.com/question/5561968
#SPJ6
A mixture can be classified as a solution, suspension, or colloid based on ____.
A. The scattering of its particles
B. The size of its particles
C. The color of its particles
D. The total number of its particles
What are isotopes? how are they different from each other?
Isotopes are atoms of the same element with different numbers of neutrons. They have similar chemical properties but differ in their mass numbers. Some isotopes are stable, while others are radioactive.
Explanation:Isotopes are atoms of the same element with the same number of protons but different number of neutrons. They have similar chemical properties but differ in their mass numbers. For example, carbon has three isotopes: carbon-12, carbon-13, and carbon-14.
The differences in the number of neutrons can affect the stability and radioactive properties of isotopes. Some isotopes are stable and remain unchanged over time, while others are radioactive and undergo decay. Radioactive isotopes are used in various applications such as carbon dating and medical imaging.
Isotopes can be represented by their symbol with the mass number as a superscript on the upper left and atomic number as a subscript on the lower left. For instance, carbon-12 is represented as ^12C.
Learn more about Isotopes here:https://brainly.com/question/27475737
#SPJ12
how have chemists helped fight leukemia?
a. chemists have created a vaccine to prevent leukemia.
b. chemists have created medicine to fight leukemia.
c. chemists study body parts that are affected by leukemia.
d. chemists take care of patients at the hospital with leukemia.
Answer:
The correct answer is option b, that is, chemists have created medicine to fight leukemia.
Explanation:
An individual who does research associated with the chemicals is known as a chemist. The chemist performs the duty to guide the individuals with regard to chemical compounds and the qualitative analysis associated with it. A chemist does a specific role of performing research associated with chemical compounds and the procedures related to it. That is, a chemist performs extensive research associated with the field of chemistry. Therefore, in the given question, the creation of medicines to fight against leukemia will be the correct answer.
Which is a correct set of values of m for one of the subshells of n = 2?
For n = 4, s, p, d, and f subshells are found in the n = 4 shell of an atom, each with different values of m. The s subshell has one orbital, the p subshell has three orbitals, the d subshell has five orbitals, and the f subshell has seven orbitals.
Explanation:For n = 4, l can have values of 0, 1, 2, and 3. Thus, s, p, d, and f subshells are found in the n = 4 shell of an atom. For l = 0 (the s subshell), m₁ can only be 0. Thus, there is only one 4s orbital. For l = 1 (p-type orbitals), m₁ can have values of −1, 0, +1, so we find three 4p orbitals. For l = 2 (d-type orbitals), m₁ can have values of -2, -1, 0, +1, +2, so we have five 4d orbitals. When l = 3 (f-type orbitals), m₁ can have values of -3, -2, -1, 0, +1, +2, +3, and we can have seven 4f orbitals. Thus, we find a total of 16 orbitals in the n = 4 shell of an atom.
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing gas behavior) occurs at a constant pressure of 30.0 atm and releases 74.4 kj of heat. before the reaction, the volume of the system was 7.20 l . after the reaction, the volume of the system was 2.00 l . calculate the total internal energy change, δe, in kilojoules. express your answer with the appropriate units.
The total change in internal energy would simply be calculated using the formula:
ΔU = -P (V2 – V1) + ΔH
where ΔU is the change in internal energy; P is constant pressure = 30 atm = 3,039,750 Pa; V2 is final volume = 2 L = 0.002 m^3; V1 is initial volume = 7.20 L = 0.0072 m^3; while ΔH is the heat = -74,400 J (heat released so negative)
Therefore:
ΔU =-3,039,750 Pa * (0.002 m^3 - 0.0072 m^3) + (- 74,400 J)
ΔU = - 58,593.3 J = - 58.6 kJ
Which quantity is equivalent to 50 kilocalories ?
Matter that has a definite volume but no definite shape is a
a. liquid.
c. gas.
b. solid.
d. plasma. ____ 2. if you move a substance from one container to another and its volume changes, the substance is a
a. solid.
c. gas.
b. liquid.
d. solution.
Name the product formed by the oxidation of d-gulose.
The oxidation of d-gulose, a form of sugar, results in the formation of a product named 2-dehydro-3-deoxy-D-gluconate-6P.
Explanation:The oxidation of d-gulose forms a product known as 2-dehydro-3-deoxy-D-gluconate-6P. This occurs along the Entner-Doudoroff metabolic pathway which primarily converts glucose into ethanol, reserving a net ATP. Oxidation is generally a process wherein a particular molecule loses electrons and increases its oxidation state. In the context of sugars like d-gulose, this usually involves the loss of hydrogen atoms or the gain of oxygen atoms.
This is a molecule that is produced when d-gulose is oxidized in a metabolic pathway called the Entner-Doudoroff pathway. The oxidation of d-gulose in this pathway converts it to 2-dehydro-3-deoxy-D-gluconate-6P and also produces one ATP.
Learn more about Oxidation of d-gulose here:https://brainly.com/question/6059900
#SPJ12
What is the volume of 19.87 mol of ammonium chloride (NH4Cl) at STP?
What is the volume of 9.783 x 1023 atoms of kr at 9.25 atm and 512k?
7.38 liters
Further explanationGiven:
N = 9.783 x 10²³ atoms of Kr p = 9.25 atmT = 512 KAvogadro's number = 6.02 x 10²³Question:
The volume of Kr (in liters)
The Process:
Step-1: moles of Kr
We use the conversion formula from the number of atoms to moles.
[tex]\boxed{ \ n = \frac{N}{6.02 \times 10^{23}} \ }[/tex]
[tex]\boxed{ \ n = \frac{9.783 \times 10^{23}}{6.02 \times 10^{23}} \ }[/tex]
Hence, we get 1.625 moles of Kr.
Step-2: the volume of Kr
We use the formula for an ideal gas:
[tex]\boxed{ \ pV = nRT \ }[/tex]
p = pressure in atmV = volume in litersn = amount of substance in molesR = ideal gas constant, i.e., 0.082 L atm/mol K.T = temperature in KelvinLet us calculate the volume.
[tex]\boxed{ \ V = \frac{nRT}{p} \ }[/tex]
[tex]\boxed{ \ V = \frac{(1.625)(0.082)(512)}{9.25} \ }[/tex]
Thus, the volume of Kr is 7.38 liters.
Learn moreTo what temperature would you need to heat the gas to double its pressure? https://brainly.com/question/1615346Determine the mass of aspirin from the number of molecules https://brainly.com/question/10567477 About the solution as a homogeneous mixture https://brainly.com/question/637791Keywords: the volume, Kr, krypton, atoms, avogadro's number, moles, atm, pressure, temperature, ideal gas law
The circles, or orbits, for electrons are called energy levels. Each level can hold only a certain number of electrons. Add electrons to each level until you can’t add any more. How many electrons can each level hold?
Answer:
n = 1 can hold a maximum of 2 electrons
n = 2 , maximum 8 electrons
n = 3, maximum 18 electrons
Explanation:
As per the principles of quantum mechanics, the number of electrons that can be added to a given energy level is deduced based on the three quantum numbers: n, l , m(l) and m(s)
'n' is the principal quantum number which defines the energy level. It can take on integer values: 0,1,2,3...
'l' is the angular momentum quantum number which defines the shape of the orbital that an electron occupies
l = 0,1,2...(n-1)
where: l = 0 corresponds to s-orbital
l = 1 corresponds to p-orbital
l = 2, corresponds to d-orbital
'm(l)' is the magnetic moment quantum number which defines the orientation of an orbital in space.
m(l) = -l, 0, +l
'm(s)' is the spin quantum number which defines the orientation of an electron is an orbital
m(s) = +1/2 or -1/2
An s, p or d-orbital can accommodate a maximum of 2, 6 and 10 electrons respectively
For energy level with n= 1
l = 0, i.e. s-orbital or 1s.
Therefore, the maximum number of electrons for a 1s orbital would be 2 resulting in an electron configuration of 1s²
For energy level with n= 2
l = 0, 1 i.e. s and p-orbitals
The maximum number of electrons would be:
[tex]2(s,orbital) + 6(p,orbital) = 8[/tex]
Electron configuration: 2s²2p⁶
For energy level with n= 3
l = 0, 1, 2 i.e. s, p and d-orbitals
The maximum number of electrons would be:
[tex]2(s,orbital) + 6(p,orbital) + 10(d,orbital)= 18[/tex]
Electron configuration: 3s²3p⁶3d¹⁰
Which is a chemical property that can be used to identify hydrogen peroxide? A. clear and colorless B. reacts when its exposed to light C. boiling point of 108 °C (226.4 °F) D. melting point of -33 °C (–27.4 °F)
Answer: Option (B) is the correct answer.
Explanation:
A property which tends to bring changes in chemical composition of a substance is known as chemical property.
For example, precipitation, reactivity, toxicity etc are chemical property.
So, when hydrogen peroxide reacts upon exposure to light then it depicts its chemical property.
On the other hand, a property that does not bring any change in chemical composition of a substance are known as physical properties.
For example, shape, size, mass, volume, density, etc of a substance are all physical properties.
Thus, we can conclude that a chemical property that can be used to identify hydrogen peroxide is that it reacts when its exposed to light.
Identify the elements in the second, third, fourth, and fifth periods that have the same number of highest-energy-level electrons as barium.
Answer:
The elements in the second, third, fourth and fifth periods that have the same number of electrons with the highest energy level that barium are beryllium (Be) magnesium (Mg), calcium (Ca ) and strontium (Sr).
Explanation:
The Electronic Configuration of the elements is the arrangement of all electrons of an element in energy levels and sub-levels (orbitals). The filling of these orbitals occurs in increasing order of energy, that is, from the orbitals of lower energy to those of higher energy.
There are 7 energy levels, numbered from 1 to 7, and in which electrons are distributed, logically in order according to their energy level. Electrons with less energy will be spinning at level 1.
Valencia electrons are the electrons found in the last electronic layer (called valence orbitals). This electrons allows to determine their location in the Periodic Table. All elements of the same group have the same number of valence electrons (This does not occur in transition metals). The valence electrons increase in number as one advances in a period. Then, at the beginning of the new period, the number decreases to one and begins to increase again.
So, in summary, those elements that belong to a group have the same number of electrons in their last or last layers, and the group number indicates the electronic configuration of their last layer, varying only the period of the element.
On the other hand, periods represent the energy levels that an atom has. That is, an element with five layers or energy levels will be in the fifth period.
Given this, the elements in the second, third, fourth and fifth periods that have the same number of electrons with the highest energy level that barium are beryllium (Be) magnesium (Mg), calcium (Ca ) and strontium (Sr). This is because they are in the same group (they have the same number of electrons in their last layer)
1. The letter "p" is the symbol 4p^3 indicates the ______.
a. spin of an electron
b. orbital shape
c. principle energy level
d. speed of an electron
2. What is the number of electrons in the outermost energy level of an oxygen atom?
a. 2
b. 4
c. 6
d. 8
3. How many unpaired electrons are in a sulfur atom (atomic number 16)?
a. 0
b. 1
c. 2
d. 3
Answer :
(1) The correct option is, (b) orbital shape.
(2) The correct option is, (d) 8
(3) The correct option is, (c) 2
Explanation :
Part 1 :
As we know that there are four quantum numbers :
Principle Quantum Numbers : It describes the size of the orbital and the energy level. It is represented by n. Where, n = 1,2,3,4....
Azimuthal Quantum Number : It describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...
Magnetic Quantum Number : It describes the orientation of the orbitals. It is represented as [tex]m_l[/tex]. The value of this quantum number ranges from [tex](-l\text{ to }+l)[/tex]. When l = 2, the value of [tex]m_l[/tex] will be -2, -1, 0, +1, +2.
Spin Quantum number : It describes the direction of electron spin. This is represented as [tex]m_s[/tex] The value of this is [tex]+\frac{1}{2}[/tex] for upward spin and [tex]-\frac{1}{2}[/tex] for downward spin.
As per question, the letter "p" is the symbol [tex]4p^3[/tex] indicates the shape of the orbital.
Hence, the correct option is (b) orbital shape.
Part 2 :
Electronic configuration : It is defined as the representation of electrons around the nucleus of an atom.
Number of electrons in an atom are determined by the electronic configuration.
The element oxygen belongs to group 16 and atomic number 8.
As per question the electronic configuration of oxygen atom will be,
[tex]1s^22s^22p^4[/tex]
The total number of electrons = [2 + 2 + 4] = 8
Hence, the correct option is (d) 8
Part 3 :
The element sulfur belongs to group 16 and atomic number 16.
As per question the electronic configuration of sulfur atom will be,
[tex]1s^22s^22p^63s^23p^4[/tex]
In 3p orbital there are 4 electrons and 'p' orbital can contain 6 electrons. So, the number of paired electrons and unpaired electrons will be 2 and 2 respectively.
Hence, the correct option is (c) 2
If an atom has 43 electrons, 50 neutrons, and 43 protons, what is it's approximate atomic mass? what is the name of this element?
A sample of calcium carbonate, caco3(s) absorbs 45.5 j of heat, upon which the temperature of the sample increases from 21.1 °c to 28.5 °c. if the specific heat of calcium carbonate is 0.82 j/g·˚c, what is the mass (in grams) of the sample?
The mass of the sample of Calcium carbonate is 0.195g
The heat capacity formula,
[tex]\rm \bold{ Q= mC\Delta T}[/tex]\
Where,
Q- Heat absorbed = 45.5 J
C- specific heat capacity of [tex]\rm \bold{ CaCO_3 = 0.82 J/g/^\cdot C }[/tex]
[tex]\rm \bold{ \Delta T}[/tex]- change in temperature = 280.5 k
m - mass = ?
Solving Equation for m
[tex]\rm \bold {m = \frac{45.5 J}{0.82\times 280.5 K } }\\\rm \bold {m = 0.195 g }[/tex]
Hence , we can conclude that the mass of sample is 0.195g.
To know more about Specific heat capacity, refer to the link:
https://brainly.com/question/11194034?referrer=searchResults
What noble gas has the same electron configuration as the oxide ion?
Answer:
neon
Explanation:
neon and oxide ion
both have configuration 1s2 2s2 2p6
What happens to the potential energy when heat flows out of a system? Why?
According the the first of thermodynamics, energy is neither created nor destroyed, energy is simply converted to other forms of energy. So in this case, heat is also a type of energy so when it flows out of the system, therefore this means that some of the initial potential energy was converted to heat and then flowed out of the system. Therefore potential energy will decrease.
Which of the following is equal to 3.5 liters?
The smallest particle of matter that retains the chemical properties of carbon is a carbon:
Identify water. weak electrolyte, weak acid nonelectrolyte strong electrolyte, strong acid weak electrolyte, strong acid strong electrolyte, weak acid
How much ATP is produced from a single glucose molecule in each chemical pathway?
After each cellular respiration cycle there are ATP molecules obtained after oxidizing each glucose molecule
Out of which 2 ATP molecules are obtained from glycolysis cycle, 2 ATP molecules from the Krebs cycle, and about 34 ATP molecules from the electron transport system.
So, in all 2 + 2 + 34 = 38 ATP molecules.
which chemical element has the shortest name?
PPPPPPPPLLLLLLLLZZZZZZZ I need an answer ASAP
What happens when a chlorine atoms gains an electron?
Select one:
a. The ion has a -1 charge
b. A chloride ion is formed
c. The ion becomes an anion
d. All of the answer choices
Cocl2 is often used in hygrometers. search the internet to determine why? how does this relate to this experiment?
The cobalt(II) chloride (CoCl2) changes color with humidity, making it useful for hygrometers. The color change property of CoCl2 and the process of measuring heat flow in a calorimeter both involve assessment of change under different environmental conditions. Utilizing these tools can answer scientific questions related to improvements in models of atmospheric carbon dioxide concentrations and temperature control.
Explanation:CoCl2, also known as Cobalt(II) Chloride, is used in hygrometers due its property to change color depending on the moisture in the environment. When it is anhydrous (dry, no water) it is blue. When it becomes hydrated in a moist environment, it turns pink.
Relating to the concept of the calorimeter from your experiments, both involve the concept of change with environmental conditions. Just as CoCl2 changes color with humidity, the calorimeter measures change in temperature under constant volume or pressure, giving insights into the heat flow during chemical reactions.
These processes allow for data collection and informed predictions in different fields of study. For instance, understanding the properties of CoCl2 can allow us to effectively measure humidity levels and create models of atmospheric conditions, effectively answering your scientific question of improving models of atmospheric carbon dioxide concentrations that control temperature. Similarly, understanding how to use a calorimeter can assist in calculating the energy produced by specific reactions, leading to beneficial applications in various industries, including food, civil engineering, and environmental studies.
Learn more about CoCl2 and Calorimetry here:https://brainly.com/question/34432277
#SPJ11
HELP ME PELASE!!! 14 points and brainliest to whoever answers it correctly first!!!
3. Study the following reaction carefully. What classification should this reaction have?
2Al + 3NiBr2------> 2AlBr3 + 3Ni
synthesis
decomposition
single replacement
double displacement
neutralization
The density of aluminum is 2.7 g/ml what is the mass of a sample that displaces 50.0 mL of water?
Write the ions present in the solution of cuso4. express your answers as chemical formulas separated by a comma. identify all of the phases in your answers.
Answer: The ions which are present in the solution of [tex]CuSO_4[/tex] are [tex]Cu^{2+}\text{ and }SO_4^{2-}[/tex], both in aqueous state.
Explanation: When [tex]CuSO_4[/tex] is dissolved in water, it forms an aqueous solution. The solution contains two ions, both in aqueous states.
Equation follows:
[tex]CuSO_4(aq.)\rightarrow Cu^{2+}(aq.)+SO_4^{2-}(aq.)[/tex]
Ions that are present in the solution of [tex]CuSO_4[/tex] are [tex]Cu^{2+}\text{ and }SO_4^{2-}[/tex]
A 14.01 g sample of n2 reacts with 3.02 g of h2 to form ammonia (nh3). if ammonia is the only product, what mass of ammonia is formed? hint: write the balance equation and use the appropriate mole ratio. it is a limiting reactant problem.
The complete balanced reaction for this is:
N2 + 3H2 --> 2NH3
First we convert the given masses into number of moles.
Molar mass of N2 = 28 g/mol
Molar mass of H2 = 2 g/mol
Therefore,
moles N2 = 14.01 / 28 = 0.5 moles
moles H2 = 3.02 / 2 = 1.51 moles
Then we find which has lower moles/coefficient ratio:
N2 = 0.5 / 1 = 0.5
H2 = 1.51 / 3 = 0.503
Since N2 has lower moles/coefficient ratio, therefore it is the limiting reactant.
So total moles of ammonia formed is:
moles NH3 = 0.5 moles N2 * (2 moles NH3 / 1 mole N2) = 1 mole NH3
The molar mass of NH3 is 17.031 g/mol, hence:
mass NH3 = 1 mole * 17.031 g/mol
mass NH3 = 17.031 grams
The mass of ammonia formed when 14.01 g of N2 reacts with 3.02 g of H2 is 16.97 g. This is determined by using the balanced chemical reaction and stoichiometry to find the limiting reactant, which is H2, and then calculating the amount of NH3 that can be produced from that reactant.
Explanation:To determine the mass of ammonia formed when 14.01 g of N2 reacts with 3.02 g of H2, we first write the balanced chemical equation: N2(g) + 3H2(g) → 2NH3(g).
In this reaction, one mole of nitrogen gas reacts with three moles of hydrogen gas to form two moles of ammonia gas. To find out which reactant is the limiting reactant, we need to convert the masses of N2 and H2 to moles using their molar masses (N2: 28.02 g/mol, H2: 2.02 g/mol).
Calculating moles of reactants:
Using stoichiometry to find the limiting reactant:
The mass of NH3 formed is calculated from the mole ratio of H2 to NH3 (3:2) and the limiting reactant (H2):
https://brainly.com/question/33417913
#SPJ3
An element with the smallest anionic (negative-ionic) radius would be found on the periodic table in
Group 3, Period 4.
Group 17, Period 2.
Group 1, Period 7.
Group 5, Period 3.
On the periodic table, the element with the smallest anionic (negative-ionic) radius would be in Group 17, Period 2.
What is as periodic table?Scientists can quickly calculate an element's weight, number of electrons, electronic structures, and other distinguishing chemical properties thanks to the periodic table, often known as the periodic table of elements.
Why is the periodic table important?Every known element is grouped into groups with related properties in the periodic table of elements. As a result, it becomes an essential tool for researchers and chemists. You can forecast how chemicals will behave if you know how to use and comprehend the periodic table.
To know more about Periodic table visit:
https://brainly.com/question/11155928
#SPJ2