Which is the best approximation for the value of √140?
A.11
B.12
C.70
D.72

Which Is The Best Approximation For The Value Of 140?A.11B.12C.70D.72

Answers

Answer 1
12^2 = 144

so answer

best approximation for the value of √140
B.12
Answer 2

Answer:

12

Step-by-step explanation:

because if you put it all together it will equal 12


Related Questions

Approximately what percentage of scores falls below the mean in a standard normal distribution

Answers

50% of scores will fall below the mean in a standard distribution

find the area of a regular nonagon with a side length of 7 and an apothem of 5

Answers

Check the wording of that problem.
If side length = 7 then apothem = 9.6162


Find all complex solutions of 4x^2-5x+2=0.

(If there is more than one solution, separate them with commas.)

Answers

we use quadratic formula for that one
remember that √-1=i

so

for
ax^2+bx+c=0
[tex]x=\frac{-b+/-\sqrt{b^2-4ac}}{2a}[/tex]
so
given
4x^2-5x+2=0
a=4
b=-5
c=2

[tex]x=\frac{-(-5)+/-\sqrt{(-5)^2-4(4)(2)}}{2(4)}[/tex]
[tex]x=\frac{5+/-\sqrt{25-32}}{8}[/tex]
[tex]x=\frac{5+/-\sqrt{-7}}{8}[/tex]
[tex]x=\frac{5+/-i\sqrt{7}}{8}[/tex]

so in complex form (a+bi)
[tex]x=\frac{5}{8}+\frac{i\sqrt{7}}{8}, \frac{5}{8}-\frac{i\sqrt{7}}{8}[/tex]

How do you solve
8(x-1)-2x=-(x+50)

Answers

8X-8-2X = X+50
8x-2x-x= 50+8
5x=58
x=58/5   
= 11.6


The solution to the equation 8(x-1) - 2x = -(x + 50) is x = -6.

To solve the equation 8(x-1) - 2x = -(x + 50).

First, distribute the 8 to the terms inside the parentheses:

8x - 8 - 2x = -(x + 50)

Simplify the left side of the equation:

6x - 8 = -(x + 50)

Distribute the negative sign to the terms inside the parentheses:

6x - 8 = -x - 50

Isolate the x terms on one side and the constant terms on the other side:

6x + x = -50 + 8

Combine like terms:

7x = -42

Divide both sides of the equation by 7:

7x / 7 = -42 / 7

x = -6

Therefore, the solution to the equation 8(x-1) - 2x = -(x + 50) is x = -6.

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ6

#3 In the figure below, the measure of Arc AC is 65 degree and if angle abc is equal to 78 degree.

True or false

Answers

Its probalt false bcoz there's no such relation.

False, The measure of Arc AC is not 65 degree if angle ABC is equal to 78 degree.

What is Circle?

The circle is a closed two dimensional figure , in which the set of all points is equidistance from the center.

Given that;

The statement is,

The measure of Arc AC is 65 degree if angle ABC is equal to 78 degree.

Now,

Since, Sum of Measure of arc AC and angle ABC is equal to 360 degree.

So, In angle ABC is 78 degree.

Then, Measure of arc AC = 360 - 78

                                       = 282 degree.

Thus, The measure of Arc AC is not 65 degree if angle ABC is equal to 78 degree.

Learn more about the circle visit:

https://brainly.com/question/24810873

#SPJ6

D is (8,4) it just got cut off

Answers

4x+6y=40
-2x-6y=-26 (this is the second equation multiplied by -1)
2x=14 (added the equations together, 6y is cancelled out by -6y)
x=7
Now plug this value in to one of the equations to get y value
4(7)+6y=40
28+6y=40
6y=12
y=2
The answer is B

How to find the area of region composed of rectangles and/or right triangles?

Answers

To determine the area of a region that is composed of rectangles and triangles, you should just calculate for the individual area of each of the rectangles and the triangles. Then, after determining the areas, you add them all up. The sum would represent the total area of the region. The area is the number of square units in a shape. It is one way of describing the size of a particular surface. For a rectangle, it is calculated from the product of its length and its width. For a triangle, it obtained from one half the product of its base and the height.

Write 11•47 using the distributive property. Then simplify.

Answers

Distributive property :

a (b+c) = ab + bc

Try writing 47 = 50-3  or 47 = 40+7.

11 x 47 = 11 x (50-3) = 11 x 50 - 11 x 3 = 550 - 33 =  517

or 

11 x 47 =  11 x (40+7) = 11 x 40 + 11 x 7 = 440 + 77 = 517

Answer please math isn't my forte

Answers

4)
x + 5 < 14

Subtract 5 on both sides
x + 5 - 5 < 14 - 5
x < 14 - 5
x < 9
Answer is D.

5)
< (less than) and > (greater than) have empty circles because the number is not included.
For example, x > 5
5 is not a solution because we are looking for all x that is greater than 5.

≤ (less than or equal to) and ≥ (greater than or equal to) have a closed circle because the number is included.
For example, x ≤  7
7 is a solution because we are looking for all x that is less than or equal to 7.

Answer is C.

6)
4(x-1) ≥ 8
Divide 4 on both sides
(x-1) ≥ 2
Add 1 on both sides
x ≥ 3

Answer is D.

What are the rigid transformations that will map
△ABC to △DEF?

Translate vertex A to vertex D, and then reflect
△ABC across the line containing AC.

Translate vertex B to vertex D, and then rotate
△ABC around point B to align the sides and angles.

Translate vertex B to vertex D, and then reflect
△ABC across the line containing AC.

Translate vertex A to vertex D, and then rotate
△ABC around point A to align the sides and angles.

Answers

Answer:

The answer above is correct! The answer is option D.

Step-by-step explanation:

Hope this helped clarify :D

Translating vertex A to vertex D, and then rotate △ABC around

point A to align the sides and angles will bring about a rigid

transformation.

What is Rigid transformation?

This is the transformation which preserves the Euclidean

distance between every pair of points. This could be as a result

of the following:

RotationReflectionTranslation etc.

Option D when done will preserve the distance between the

points when vertex A is translated to vertex D as they contain

the same angle with other sides and angles being made to

align.

Read more about Rigid transformation here https://brainly.com/question/1462871

The area of a triangle is 92 cm2. the base of the triangle is 8 cm. what is the height of the triangle?

a. 11.5 cm

b. 23 cm

c. 4 cm

d. 46 cm

Answers

[tex]\frac{1}{2}bh=A \ \ \ \ \text{[A=area, b=base, h=height] } \\ \\ \frac{1}{2}*8*h=92\\4h=92 \\ h = 92/4 \\ h=23 \ \text{cm }[/tex]

Answer: b. 23 cm

Step-by-step explanation:

We know that area of a triangle is given by :-

[tex]\text{Area}=\dfrac{1}{2}bh[/tex], where b is the base of triangle and h is the height of the triangle.

Given : The area of a triangle is [tex]92\ cm^2[/tex]

The base of the triangle = 8 cm

Let h be the height of the triangle , then we have

[tex]92=\dfrac{1}{2}(8)h\\\\\Rightarrow\ h=\dfrac{92}{4}\\\\\Rightarrow\ h = 23[/tex]

Hence, the height of the triangle = 23 cm

The following table shows information collected from a survey of students regarding their grade level and transportation they use to arrive at school. What is the probability that a randomly selected eighth grader takes the bus?

Answers

Answer: 0.25

---------------------------------------------------------------------
---------------------------------------------------------------------

Work Shown:

A = student selected is an eighth grader
B = chosen student takes bus
P(A) = probability of selecting eighth grader
P(A and B) = probability of selecting eighth grader AND student who takes bus
P(A and B) = probability of selecting eighth grader who takes the bus
P(B|A) = probability of selecting someone who takes the bus given they are an eighth grader

P(B|A) = [P(A and B)]/[P(A)]
P(B|A) = 0.11/0.44
P(B|A) = 0.25


A computer training institute has 625 students that are paying a course fee of $400. Their research shows that for every $20 reduction in the fee, they will attract another 50 students. What fee should the school charge to maximize their revenue?
$275
$380
$320
$325

Answers

1.
If no changes are made, the school has a revenue of :

625*400$/student=250,000$

2.
Assume that the school decides to reduce n*20$.

This means that there will be an increase of 50n students.

Thus there are 625 + 50n students, each paying 400-20n dollars.

The revenue is: 

(625 + 50n)*(400-20n)=12.5(50+n)*20(20-n)=250(n+50)(20-n)

3.

check the options that we have, 

a fee of $380 means that n=1, thus 

250(n+50)(20-n)=250(1+50)(20-1)=242,250   ($)


a fee of $320 means that n=4, thus

 250(n+50)(20-n)=250(4+50)(20-4)=216,000    ($)


the other options cannot be considered since neither 400-275, nor 400-325 are multiples of 20.

Conclusion, neither of the possible choices should be applied, since they will reduce the revenue.

Answer: it’s D $325

Step-by-step explanation:

the fee the school should charge to maximize their revenue is $325

What value of x makes the denominator of the function equal zero? y= 6/4x-40

Answers

To find the value that would make the denominator equal to zero, set the denominator equal to zero and solve for x.
4x - 40 = 0
Add 40 to both sides.
4x = 40
Divide both sides by 4
x = 10

The value of x makes the denominator of the function equal zero is 10

what is an equation?

An equation is a mathematical expression that contains an equals symbol. Equations often contain algebra.

Given that:

y = [tex]\frac{6}{4x-40}[/tex]

Now the denominator is: 4x - 40

So, 4x =40

      x =40/4

      x =10

So, make the denominator 0, put x= 10.

Learn more about equation here:

https://brainly.com/question/2263981

#SPJ2

If a radius of a circle bisects a chord which is not a diameter, then ______

Answers

Frst, some notation. Let AB be a chord on circle O, and let CD be a diameter of O that passes through AB at M.

Answer:

the radius is perpendicular to the chord.

Step-by-step explanation:

The geometry is drawn in the image shown below in which AB is the chorh and O is the centre of the circle. Om is the radius which bisects the chord.(Given) So, AN = NB

From the image, considering ΔAON and ΔBON,

AO = BO (radius of circle)

AN = NB (given)

ON = ON (common)

So,

ΔAON ≅ ΔBON

Hence, ∠ANO = ∠BNO

Also, ∠ANO + ∠BNO = 180° (Linear Pair)

So,

∠ANO = ∠BNO = 90°

Hence, it is perpendicular to the chord.

Find all complex solutions of 3x^2+3x+4=0.

(If there is more than one solution, separate them with commas.)

Answers

Given equation is [tex]3x^2 + 3x + 4 = 0[/tex]

Now we can compare it with general form of quadratic equation ([tex]ax^2 + bx + c = 0[/tex])
a = 3 , b = 3 and c = 4

Now we can apply quadratic formula which is given as
[tex]x =\frac{ -b+/- \sqrt{b^2-4ac} }{2a}[/tex]

Now we can plugin value of a , b or c
[tex]x = \frac{-3+/- \sqrt{(3)^2 - 4*3*4} }{2*3} [/tex]
         [tex]= \frac{-3+/- \sqrt{9 - 48} }{6} = \frac{-3+/- \sqrt{-39} }{6} [/tex]
In general we know [tex] \sqrt{-1} = i [/tex]
So we can write [tex] \sqrt{-39 } = \sqrt{-1} * \sqrt{39} = i \sqrt{39} [/tex]
So
[tex]x = \frac{-3+/-i \sqrt{39} }{6} [/tex]
So [tex]x = \frac{-3+i \sqrt{39} }{6} [/tex] or [tex]x = \frac{-3- \sqrt{39} }{6} [/tex]
Final answer:

The complex solutions to the equation[tex]3x^2+3x+4=0 are x = (-3 + i\sqrt{39})/6 and x = (-3 - i\sqrt{39})/6.[/tex]

Explanation:

To find all complex solutions of the quadratic equation [tex]3x^2+3x+4=0[/tex]e the quadratic formula:

[tex]x = \((-b \pm \sqrt{b^2-4ac})/(2a)\).[/tex]

Here, a = 3, b = 3, and c = 4. Plugging these values into the formula, we get:

[tex]x = \((-3 \pm \sqrt{3^2-4 \cdot 3 \cdot 4})/(2 \cdot 3)\).[/tex]

This simplifies to:

[tex]x = \((-3 \pm \sqrt{-39})/6\).[/tex]

Since the discriminant (under the square root sign) is negative, we know that the solutions will be complex. Using i to represent the square root of -1, we can write the solutions as:

[tex]x = \((-3 \pm i\sqrt{39})/6\).[/tex]

So, the complex solutions are [tex]x = (-3 + i\sqrt{39})/6 and x = (-3 - i\sqrt{39})/6.[/tex]

ANSWER ASAP Find the value of x. A. sqrt 3 B. 3 sqrt 2/2 C. 3 sqrt 2 D. 3 sqrt 3

Answers

Since this is a right triangle we can use the Pythagorean Theorem:

h^2=x^2+y^2, and since x and y are both opposite 45° angles, they are equal to one another, so we have:

h^2=2x^2  since h=3

2x^2=9

x^2=9/2

x=√(9/2)

x=3√(1/2)  if we rationalize the denominator by multiplying the fraction by √2/√2 we get

x=(3√2)/2

Answer:

B.

Step-by-step explanation:

If sam walks 650 meters in x minutes then write an algebraic expression which represents the number of minutes it will take sam to walk 1500 meters at the same average rate.

Answers

x / 650 * 1500 <== ur expression

Find the x- and y-components of the vector d⃗ = (9.0 km , 35 ∘ left of +y-axis).

Answers

Final answer:

The x- and y-components of the given vector are calculated using trigonometric functions, resulting in -5.16 km along the x-axis and 7.37 km along the y-axis, considering the direction of the vector relative to the axes.

Explanation:

The question asks to find the x- and y-components of the vector d⟷ = (9.0 km, 35° left of +y-axis). To solve this, we use trigonometric functions, specifically sine and cosine, because the vector makes an angle with the axis.

Given the vector makes a 35° angle to the left of the +y-axis, this effectively means it is 35° above the -x-axis (or equivalently, 55° from the +x-axis in the second quadrant). We can calculate the components as follows:

y-component: Dy = D*cos(35°) = 9.0 km * cos(35°) = 9.0 km * 0.8191 = 7.37 kmx-component: Dx = -D*sin(35°) = -9.0 km * sin(35°) = -9.0 km * 0.5736 = -5.16 km (negative because it's in the direction of the -x axis)

The negative sign in the x-component indicates that the direction is towards the negative x-axis. Therefore, the x- and y-components of the vector are -5.16 km and 7.37 km, respectively.

1. [tex]\(\mathf{d}\): \(d_x = -3.8 \text{ km}, d_y = 8.2 \text{ km}\)[/tex]

2. [tex]\(\mathf{v}\): \(v_x = -4.0 \text{ cm/s}, v_y = 0\)[/tex]

3. [tex]\(\mathf{a}\): \(a_x = 10.3 \text{ m/s}^2, a_y = -14.7 \text{ m/s}^2\)[/tex]

To find the [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-components of vectors given in terms of magnitude and direction, we need to decompose the vectors using trigonometric functions. Let's go through each problem step by step.

1. Find the [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-components of the vector [tex]\( \mathf{d} = (9.0 \text{ km}, 25^\circ \text{ left of } +\mathbf{y}\text{-axis}) \)[/tex].

First, understand that "25° left of +[tex]\( y \)[/tex]-axis" means the vector is rotated 25° counterclockwise from the [tex]\( y \)[/tex]-axis.

Decomposition:

- Magnitude, [tex]\( d = 9.0 \text{ km} \)[/tex]

- Angle from the [tex]\( y \)-axis, \( \theta = 25^\circ \)[/tex]

To find the components:

- [tex]\( d_x = d \sin(\theta) \)[/tex]

- [tex]\( d_y = d \cos(\theta) \)[/tex]

However, since the angle is counterclockwise from the [tex]\( y \)-axis[/tex] and to the left, the [tex]\( x \)[/tex]-component is negative.

Therefore:

- [tex]\( d_x = -9.0 \sin(25^\circ) \)[/tex]

- [tex]\( d_y = 9.0 \cos(25^\circ) \)[/tex]

Calculating these:

- [tex]\( d_x \approx -9.0 \times 0.4226 \approx -3.8 \text{ km} \)[/tex]

- [tex]\( d_y \approx 9.0 \times 0.9063 \approx 8.2 \text{ km} \)[/tex]

So, the components are:

- [tex]\( d_x \approx -3.8 \text{ km} \)[/tex]

- [tex]\( d_y \approx 8.2 \text{ km} \)[/tex]

2. Find the [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-components of the vector [tex]\( \mathf{v} = (4.0 \text{ cm/s}, -x \text{-direction}) \).[/tex]

Since the vector is given in the [tex]\(-x\)[/tex]-direction, it means the entire magnitude is in the [tex]\( x \)[/tex]-direction and negative.

Decomposition:

- Magnitude, [tex]\( v = 4.0 \text{ cm/s} \)[/tex]

- Direction: [tex]\(-x\)[/tex]

Therefore:

- [tex]\( v_x = -4.0 \text{ cm/s} \)[/tex]

- [tex]\( v_y = 0 \text{ cm/s} \)[/tex]

So, the components are:

- [tex]\( v_x = -4.0 \text{ cm/s} \)[/tex]

- [tex]\( v_y = 0 \text{ cm/s} \)[/tex]

3. Find the [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-components of the vector [tex]\( \mathbf{a} = (18 \text{ m/s}^2, 35^\circ \text{ left of } -y \text{-axis}) \)[/tex].

"35° left of -[tex]\( y \)[/tex]-axis" means the vector is rotated 35° counterclockwise from the negative [tex]\( y \)[/tex]-axis.

Decomposition:

- Magnitude, [tex]\( a = 18 \text{ m/s}^2 \)[/tex]

- Angle from the [tex]\(-y \)[/tex]-axis, [tex]\( \theta = 35^\circ \)[/tex]

To find the components:

- [tex]\( a_x = a \sin(\theta) \)[/tex]

- [tex]\( a_y = -a \cos(\theta) \)[/tex]

However, since the angle is counterclockwise from the [tex]\(-y \)[/tex]-axis and to the left, the [tex]\( x \)[/tex]-component is positive.

Therefore:

- [tex]\( a_x = 18 \sin(35^\circ) \)[/tex]

- [tex]\( a_y = -18 \cos(35^\circ) \)[/tex]

Calculating these:

- [tex]\( a_x \approx 18 \times 0.5736 \approx 10.3 \text{ m/s}^2 \)[/tex]

- [tex]\( a_y \approx -18 \times 0.8192 \approx -14.7 \text{ m/s}^2 \)[/tex]

So, the components are:

- [tex]\( a_x \approx 10.3 \text{ m/s}^2 \)[/tex]

- [tex]\( a_y \approx -14.7 \text{ m/s}^2 \)[/tex]

The correct question is:

1. Find the [tex]$x$[/tex] - and [tex]$y$[/tex]-components of the vector [tex]$d \boxtimes=(9.0 \mathrm{~km}, 25 \boxtimes$[/tex] left of [tex]$+\mathrm{y}$[/tex]-axis).

2. Find the [tex]$\mathrm{x}$[/tex] - and [tex]$\mathrm{y}$[/tex]-components of the vector [tex]$\mathrm{v} \boxtimes=(4.0 \mathrm{~cm} / \mathrm{s},-\mathrm{x}$[/tex]-direction [tex]$)$[/tex].

3. Find the [tex]$x$[/tex] - and [tex]$y$[/tex]-components of the vector [tex]$a \boxtimes=(18 \mathrm{~m} / \mathrm{s} 2,35 \boxtimes$[/tex] left of [tex]$-y$[/tex]-axis [tex]$)$[/tex].

Avery can run at 10 uph. The bank of a river is represented by the line 4x + 3y = 12, and Avery is at (7, 5). How much time does Avery need to reach the river?

Answers

The minimum distance will be along a perpendicular line to the river that passes through the point (7,5)

4x+3y=12

3y=-4x+12

y=-4x/3+12/3

So a line perpendicular to the bank will be:

y=3x/4+b, and we need it to pass through (7,5) so

5=3(7)/4+b

5=21/4+b

20/4-21/4=b

-1/4=b so the perpendicular line is:

y=3x/4-1/4

So now we want to know the point where this perpendicular line meets with the river bank.  When it does y=y so we can say:

(3x-1)/4=(-4x+12)/3  cross multiply

3(3x-1)=4(-4x+12)

9x-3=-16x+48

25x=51

x=51/25

x=2.04

y=(3x-1)/4

y=(3*2.04-1)/4

y=1.28

So now that we know the point on the river that is closest to Avery we can calculate his distance from that point...

d^2=(x2-x1)^2+(y2-y1)^2

d^2=(7-2.04)^2+(5-1.28)^2

d^2=38.44

d=√38.44

d=6.2 units

Since he can run at 10 uph...

t=d/v

t=6.2/10

t=0.62 hours  (37 min 12 sec)

So it will take him 0.62 hours or 37 minutes and 12 seconds for him to reach the river.




Find the exact values of sin A and cos A. Write fractions in lowest terms. A right triangle ABC is shown. Leg AC has length 24, leg BC has length 32, and hypotenuse AB has length 40.

Answers

sin A = 32/40 = 4/5

cos A = 24/40 = 6/10 = 3/5

In this question , it is given that

A right triangle ABC is shown. Leg AC has length 24, leg BC has length 32, and hypotenuse AB has length 40.

And we have to find the values of sin A and cos A .

[tex]sin A  = \frac{opposite}{hypotenuse} = \frac{32}{40}[/tex]

[tex]sin A = \frac{4}{5}[/tex]

And

[tex]cos A = \frac{adjacent}{hypotenuse} = \frac{24}{40}[/tex]

[tex]cos A = \frac{3}{5}[/tex]

And these are the required values of sin A and cos A .

A cone has a volume of about 28 cubic inches. Which are possible dimensions for the cone?

Answers

The formula for the volume, V of a cone is V = (1/3)*π*(radius)^2 * height.

So, as you see you have two variables, radius and height, which means that there are different combinations of radius and height that lead to the same volume.

That implies that your questions is missing some information.

I searched for it and found that the question has a list of answer choices. This is the list:

a) radius 6 inches, height 3 inches

b) diameter 6 inches, height 3 inches

c) diameter 4 inches, height 6 inches

d) diameter 6 inches, height 6 inches


Now you can probe those options to see which leads to an approximate volume of 28 cubic inches.

a) radius 6 in, height 3 in

=> V = (1/3)*3.14*(6in)^2 * 3in = 113.04 in^3 => not possible


b) diameter 6 in, height 3 inc


diameter 6 in => radius 3 in

=> V = (1/3)*3.14*(3in)^2 * 3in = 28.26 in^3 => this is the answer

The other options lead to values far from 28 in^3.

Answer: diameter 6 inches, height 3 inches.

Find the distance between the points (13, 20) and (18, 8).

Answers

distance  = sqrt (13-18)^2 + (20-8)^2 )

               =   sqrt ( 5^2 + 12^2)

               =   sqrt 169   = 13

Answer: 13 units

Step-by-step explanation:

The distance formula to calculate distance between two points (a,b) and (c,d) is given by :-

[tex]d=\sqrt{(d-b)^2+(c-a)^2}[/tex]

Given points : (13, 20) and (18, 8)

Now, the distance between the points (13, 20) and (18, 8)is given by ;-

[tex]d=\sqrt{(8-20)^2+(18-13)^2}\\\\\Rightarrow\ d=\sqrt{(-12)^2+(5)^2}\\\\\Rightarrow\ d=\sqrt{144+25}\\\\\Rightarrow\ d=\sqrt{169}\\\\\Rightarrow\ d=13\text{units}[/tex]

Hence, the distance between the points (13, 20) and (18, 8) is 13 units.

A line has no width and extends infinitely far in _____ directions.

Answers

a line has no width and extends infinitely far in two opposite directions

Four less than a number is greater than -28

Answers

This question implies that a number which is subtracted by 4 will still be larger than -28.
Any number which is larger than -28 by at least 5 would work.
Examples, -23, 0, 99 etc. 

Hope this helps!

A dress is priced at $21.42. The store is having a 30%-off sale. What was the original price of the dress?

Answers

The dress is currently priced at 70% of the original cost.

.7x = $21.42
Divide both sides by .7
x = $30.60

If ON = 9x – 4, LM = 8x + 7, NM = x – 3, and OL = 4y – 8, find the values of x and y for which LMNO must be a parallelogram.

Answers

x=11 y=4 :) i need 20 characters so im randomly typing

A. x = 11, y = 4 If this is the case, then: 8x + 7 = 9x -4 --> x = 11 4y - 8 = x - 3 --> 4y -8 = 11 -3 and 4y =16 and y = 4.

Need help with this please

Answers

First, are you really familiar with the graph of y = [x]? If so, your answer choices move that graph up or down.

A. Move the graph of y=[x] UP 3 units
B. Move the graph UP 1 unit
C. Move the graph DOWN 1 unit
D. Move the graph DOWN 3 units

The graph you're given on the problem screen is not a very good one, I think. Would it help to draw y = [x] on a piece of graph paper where one square = 1 unit? The graph you're shown has one square = 2 units, which could lead to some confusion.

So, draw the graph of y = [x], then figure out which way the graph was moved -- and how far -- to get the graph in the problem.

Here is a link to a YouTube video that might help a lot.
https://youtu.be/UQ3a2QH_-GU



A quadratic equation has a discriminant of 0. which describes the number and type of solutions of the equation?

Answers

Discriminant 0 in quadratic equation means 1 real solution—a repeated root where parabola touches x-axis once.

When the discriminant of a quadratic equation is 0, it means that the quadratic equation has exactly one real solution. This solution is considered a "double root" or "repeated root," meaning that the parabola defined by the quadratic equation touches the x-axis at exactly one point. Mathematically, this occurs when the quadratic equation has two identical roots.

The general form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex], and the discriminant, denoted by [tex]\(b^2 - 4ac\),[/tex] helps determine the nature of the roots.

When the discriminant is zero [tex](\(b^2 - 4ac = 0\))[/tex], the quadratic equation has one real root. This happens when the parabola defined by the equation just touches the x-axis at one point. The solution is given by:

[tex]\[x = \frac{{-b \pm \sqrt{b^2 - 4ac}}}{{2a}}\][/tex]

The following conditions are:

D < 0      ; there are two non-real or imaginary roots which are complex conjugates

D = 0      ; there is one real root and one imaginary (non-real)

D > 0      ; there are two real distinct roots

Therefore the answer to this question is:

The solution has one real root and one imaginary root.

Rationalize the denominator

Answers

see attached picture:

Answer:

[tex]\frac{60 - 10\sqrt10-6\sqrt3+\sqrt30}{97}[/tex]

Step-by-step explanation:

Hello!

To rationalize the denominator, we have to remove any root operations from the denominator.

We can do that by multiplying the numerator and denominator by the conjugate of the denominator. The conjugate simply means the same terms with different operations.

Rationalize[tex]\frac{6 - \sqrt10}{10 + \sqrt3}[/tex][tex]\frac{6 - \sqrt10}{10 + \sqrt3} * \frac{10 - \sqrt3}{10 - \sqrt3}[/tex][tex]\frac{(6 - \sqrt10)(10 - \sqrt3)}{100 - 3}[/tex][tex]\frac{60 - 10\sqrt10-6\sqrt3+\sqrt30}{97}[/tex]

The answer is [tex]\frac{60 - 10\sqrt10-6\sqrt3+\sqrt30}{97}[/tex].

Other Questions
Who was a reformer who was a defender of the english monarchy who believed that if church officials misused their god-given authority then they should be replaced by civil authorities if not be ecclesiatical authorities? john of damascus john wycliffe john chrysostom john hus? Which principle suggests that inherited traits contributing to reproduction and survival will most likely be passed on to succeeding generations? In Twain's "The Private History of a Campaign that Failed," Smith, the blacksmith's apprentice, is given "ultimate credit" for A. being killed in battle. B. keeping the group trained and ready for battle. C. naming the militia group's encampments. D. earning the rank of sergeant. Objectives of Indian gst as the driver of vehicles , your only responsibility is to operate the vehicle in a safe manner. true or false Hace cuntos aos se construy el primer tren de Costa Rica? hace alrededor de cincuenta aoshace muy pocos aoshace ms de cien aosThanks in Advance The skin cancer most likely to metastasize is cancer of the melanocytes. a. True b. False Who were the first three presidents of the united states and what were the dates of their adminastration? How to simplify all this numbers to make one equation? Miguel typed 270 words in 6 minutes. His paper is 630 words. If he keeps typing at the same rate, in how many more minutes will Miguel finish typing his paper? A. 8 minutes B. 14 minutes C. 16 minutes D. 22 minutes An eating disorder in which a person eats large amounts and then self-induced vomiting or using laxatives is called An expression is shown below:square root of 32 plus square root of 2Which statement is true about the expression? It is rational and equal to 4. It is rational and equal to 5. It is irrational and equal to 5 multiplied by square root of 2. It is irrational and equal to 4 multiplied by square root of 2. The CBS television show 60 Minutes has been successful for many years. That show recently had a share of 20, which means that among the TV sets in use at the time the show aired, 20% were tuned to 60 Minutes. Assume that this is based on a sample size of 5000 which is a typical sample size for this kind of experiments. Construct a 95% confidence interval for the true proportion of TV sets that are tuned to 60 Minutes.. Determine the equation of the graph and select the correct answer below. y = (x + 1)2 + 3 y = (x + 1)2 3 y = (x 1)2 3 y = (x 1)2 + 3 A double slit apparatus is held 1.2 m from a screen. [___/4] (a)When red light ( = 600 nm) is sent through the double slit, the interference pattern on the screen shows a distance of 12.5 cm between the first and tenth dark fringes. What is the separation of the slits? (b)What will be the difference in path length for the waves travelling from each slit to the tenth nodal line? Remains or traces of organisms preserved in rock are called Loamy soil is ideal for gardening because it contains a-mostly silt with very little clay or sand.b- mostly clay with very little silt or sand. c-mostly sand with very little clay or silt.d- roughly equal parts sand, clay, and silt. How does the increase in carbon dioxide emissions affect the earth's natural cycle of temperature change? If a source is trustworthy the source is considered The length of a rectangle is 3 mm greater than the width. the area is 154 mm squared. find the length and the width. Steam Workshop Downloader