Which element in the 8th column of the periodic table (shown below) has the largest radius?
Answer: Rn
Explanation:
When aluminum oxidizes in air, it forms aluminum oxide (ai2o3): 4ai (s) + o2 (g_ -> 2ai2o3 (s) if a 77 g sheet of aluminum oxide formed completely in excess oxygen, how many grams of aluminum were oxidized?
Mole measure the number of elementary entities of a given substance that are present in a given sample. Therefore, 78 g of aluminum were oxidized.
What is mole?The SI unit of amount of substance in chemistry is mole. The mole is used to measure the quantity or amount of substance. We know one mole of any element contains 6.022×10²³ atoms which is also called Avogadro number. Stoichiometry represents the number of moles.
4 Al + 3 O[tex]_2[/tex]→ Al[tex]_2[/tex]O[tex]_3[/tex]
moles of aluminium oxide = 77 g/101.96
moles of aluminium oxide=0.75moles
The mole ratio of aluminium oxide to aluminium is 1:3
moles of aluminium= 4×0.75moles
moles of aluminium= 3 moles
mass of aluminium = moles × molar mass
mass of aluminium= 3 ×26
mass of aluminium = 78 g
Therefore, 78 g of aluminum were oxidized.
To know more about mole, here:
https://brainly.com/question/15209553
#SPJ5
Is it necessary that compounds be colored to be separated by chromatography?
A reaction which forms a solid product is an example of a(n): gas evolution reaction. combustion reaction. precipitation reaction. oxidation-reduction reaction. none of the above
An electron is on a -2.5 eV energy level. the electron is stuck by a 2.5 eV photon. What will most likely happen?
Which electron configuration represents an atom of lithium in an excited state?
An excited state configuration for lithium could be 1s²2p¹, showing that the electron from the 2s orbital has moved to the 2p orbital after absorbing energy.
Explanation:The main answer to the question regarding which electron configuration represents an atom of lithium in an excited state involves understanding that in an excited state, electrons have absorbed energy and have moved to a higher energy orbital than their ground state. For lithium, the ground state electron configuration is 1s²2s¹. In an excited state, the remaining electron from the 2s orbital may have jumped to the 2p orbital or even higher, such as 3s, depending on the amount of energy absorbed. A possible excited state configuration for lithium could thus be 1s²2p¹, indicating that the third electron has moved from the 2s to the 2p orbital.
How would you calculate the number of nanometers in 8.1 cm
What determines whether or not a substance can be actively transported through the membrane?
Why do covalent compounds have significantly lower melting/boiling points than ionic compounds?
The sterile saline solution used to rinse contact lenses can be made by dissolving 400 mg of nacl in sterile water and diluting to 100 ml. what is the molarity of the solution?
The molarity of the NaCl solution is calculated to be 0.0685 M.
To calculate the molarity of the solution, we need to determine the number of moles of NaCl dissolved in the solution. First, we convert 400 mg of NaCl to grams:
400 mg = 0.400 g
Using the molar mass of NaCl (58.44 g/mol), we find the number of moles:
Number of moles = 0.400 g / 58.44 g/mol ≈ 0.00685 moles
The volume of the solution is 100 mL, which we convert to liters:
Volume in liters = 100 mL / 1000 mL/L = 0.1 L
Finally, we calculate the molarity (M) of the solution:
Molarity (M) = Number of moles / Volume in liters = 0.00685 moles / 0.1 L = 0.0685 M
Therefore, the molarity of the NaCl solution is 0.0685 M.
A chemist measures the amount of hydrogen gas produced during an experiment. she finds that 926. g of hydrogen gas is produced. calculate the number of moles of hydrogen gas produced.
Answer:
Number of moles of hydrogen gas produced is 463.
Explanation:
Mass of hydrogen gas measured by chemist = 926 g
Molar mass of hydrogen gas = 2 g/mol
[tex]Moles=\frac{\text{Given mass of compound}}{\text{Molar mass of compound}}[/tex]
Moles of hydrogen gas:
[tex]\frac{926 g}{2 g/mol}=463 mol[/tex]
Number of moles of hydrogen gas produced is 463.
Is gasoline an element compound solution or heterogeneous mixture?
How many electrons would be expected in the outermost electron shell of an atom with atomic number 12?
Final answer:
A neutral magnesium (Mg) atom, with atomic number 12, has 2 electrons in its outermost shell.
Explanation:
The atom with atomic number 12 is magnesium (Mg), and according to its electronic configuration, it has 12 electrons.
In a neutral magnesium atom, the first shell (1s) is filled with 2 electrons, the second shell (2s and 2p) contains a total of 8 electrons, and the third and outermost shell has 2 electrons, as expressed in the electronic configuration of Mg (1s²2s²2p¶3s²).
Therefore, the number of electrons in the outermost electron shell of an atom with atomic number 12 would be 2.
A lithium ion is much less reactive than a lithium atom because it
The electron configuration for the carbon atom (c) 1s22s22p2. the atomic number of carbon is
Final answer:
The atomic number of carbon is 6, corresponding to its electron configuration 1s²2s²2p². Its valence shell electron configuration is 2s²2p², important for understanding its chemical properties and reactivity.
Explanation:
The student's question pertains to the electron configuration of carbon and its corresponding atomic number. Carbon's atomic number is indeed 6, which signifies that a neutral carbon atom contains six protons and, consequently, six electrons. The electron configuration for carbon (C) is denoted as 1s²2s²2p². This depicts that two electrons occupy the first energy level (1s orbital), two occupy the second energy level's s orbital (2s orbital), and the remaining two electrons are in the second energy level's p orbital (2p orbitals).
According to Hund's rule, the most stable arrangement of electrons in subshells with the same energy (degenerate orbitals) is the one with the maximum number of unpaired electrons, which is why in the case of carbon's 2p orbitals, the two electrons remain unpaired, each occupying a separate 2p orbital. This is also in accordance with the Pauli exclusion principle, which states that no two electrons in the same atom can have identical sets of all four quantum numbers.
The valence shell electron configuration of carbon, which is critical for chemical bonding and reactivity, is 2s²2p². This is important to note because elements in the same column of the periodic table generally have similar valence shell electron configurations, which influences their chemical properties. For example, elements with an ns²np² valence configuration show similar reactivity and bonding characteristics.
What trend does the first ionization energy follow going across the periodic table?
Explanation:
Ionization energy is defined as the energy necessary to remove an electron from a gaseous atom or ion.
Therefore, smaller is the size of an atom or ion more energy it needs to remove an electron because more is the charge on an ion smaller will be its size.
Hence, more will be the attraction between nucleus and valence electrons of the atom. So, more difficulty is faced by the atom to lose an electron. As a result, ionization energy will increase.
Across the period, there will be decrease in size of elements of the periodic table.
Thus, we can conclude that there will be increase in first ionization energy across the periodic table.
How many times more hydroxide ions are there in a solution with a ph of 9 than in a solution with a ph of 3?
The concentration of hydroxide ions in a solution with pH of 9 is 10⁶ times more than that of a solution with pH of 3.
What is the pH?The pH of a solution is measured as a negative logarithm of the concentration of hydrogen ions present in the solution.
Mathematically, pH is represented as:
pH = -log [H⁺]
Similarly, the pOH is expressed as: pOH = -log [OH⁻]
The sum of the value of the pH and the value of pOH is equal to 14.
pH + pOH = 14
Given, solution 1 with pH = 9. Then the value of pOH = 14 - pH
(pOH)₁ = 14 - 9 = 5
For solution 2 with pH = 3. Then the value of pOH = 14 - pH
(pOH)₂ = 14 - 3 = 11
The concentration of the hydroxide ions for solution 1 is:
pOH = -log [OH⁻]
5 = -log [OH⁻]
[OH⁻]₁ = 10⁻⁵
The concentration of the hydroxide ions for solution 2 is:
pOH = -log [OH⁻]
11 = -log [OH⁻]
[OH⁻]₂ = 10⁻¹¹
Now the ratio of the concentration of hydroxide ions for both solutions:
[OH⁻]₁/ [OH⁻]₂ = 10⁻⁵/ 10⁻¹¹
[OH⁻]₁ = 10⁶ [OH⁻]₂
Therefore, the hydroxide ions in a solution with pH of 9 is 10⁶ times more than that of a solution with pH of 3.
Learn more about pH and pOH, here:
https://brainly.com/question/17144456
#SPJ2
A sample of ammonia has a mass of 82.9 g. how many molecules are in this sample?
Answer: [tex]29.37\times 10^{23}molecules [/tex]
Explanation: To calculate the moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\textMolar mass}}[/tex]
Given mass of ammonia [tex]NH_3[/tex] given = 82.9 g
Molar mass of ammonia [tex]NH_3[/tex] = 17 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of sodium}=\frac{82.9g}{17g/mol}=4.87mol[/tex]
According to Avogadro's law,
1 mole of any substance contains avogadro's number [tex]6.023\times 10^{23}[/tex] of particles.
Thus 4.87 moles of ammonia contains=[tex]\frac{6.023\times 10^{23}}{1}\times 4.87=29.37\times 10^{23}molecules [/tex] of ammonia.
Is the reaction mg²⁺(aq) + h₂o(l) → mgo(s) + 2h⁺(aq) endothermic or exothermic?
The reaction is likely exothermic as bond formation is usually accompanied by release of energy. However, without enthalpy values of the reactants and products, it is hard to definitively classify the reaction.
Explanation:The reaction stated, mg²⁺(aq) + h₂o(l) → mgo(s) + 2h⁺(aq), does not directly tell us whether it's endothermic or exothermic. However, we can try to infer the nature of the reaction based on general principles. Endothermic reactions usually involve the breaking of bonds, which requires energy, whereas exothermic reactions involve the formation of new bonds, which usually releases energy. By looking at the equation, it can be inferred that a bond formation (MgO) is taking place and energy likely being released, which suggests that the reaction is exothermic. However, without specific enthalpy values of the reactants and products, it would be hard to definitively classify the reaction as endothermic or exothermic.
Learn more about Endothermic and Exothermic Reactions here:https://brainly.com/question/9799465
#SPJ11
When atoms share six electrons, they are joined by a double bond. (.5 points)
a. True
b. False?
When the atoms share six electrons they are joined by a double bond that is a covalent bond . Hence, the given statement is true.
What is a covalent bond?Covalent bond is defined as a type of bond which is formed by the mutual sharing of electrons to form electron pairs between the two atoms.These electron pairs are called as bonding pairs or shared pair of electrons.
Due to the sharing of valence electrons , the atoms are able to achieve a stable electronic configuration . Covalent bonding involves many types of interactions like σ bonding,π bonding ,metal-to-metal bonding ,etc.
Sigma bonds are the strongest covalent bonds while the pi bonds are weaker covalent bonds .Covalent bonds are affected by electronegativities of the atoms present in the molecules.Compounds having covalent bonds have lower melting points as compared to those with ionic bonds.
Learn more about covalent compounds,here:
https://brainly.com/question/21505413
#SPJ5
What property do the elements of the noble gas family all share?
The elements in the noble gas family share the property of being extremely unreactive due to their full valence shells. This makes them stable and resistant to forming compounds.
Explanation:The elements in the noble gas family, also known as Group 8A, share the property of being extremely unreactive. This is because they have a full valence shell of electrons, making them stable and unlikely to form compounds. The noble gases are helium, neon, argon, krypton, xenon, and radon. These gases are characterized by their full outer subshell and large ionization energies, which make them highly stable and resistant to forming chemical bonds.
Noble gases, found in Group 18 of the periodic table, are extremely unreactive due to having a full valence shell of electrons, leading to stable noble gas configurations and high ionization energies. They are gases at room temperature and are used in situations requiring minimal reactivity.
Explanation:The elements of the noble gas family all share the property of being extremely unreactive, and this is due to each having a full valence shell of electrons. For helium, this means two valence electrons, and for the others, like neon, argon, krypton, xenon, and radon, it is eight valence electrons. The full valence shell makes noble gases very stable and not inclined to participate in chemical reactions that involve the transfer or sharing of electrons. This unique characteristic can be traced to their position in Group 18 (or 8A) of the periodic table, where all elements are gases at room temperature.
Because the noble gases have their outermost electron shell completely filled, they naturally have the most stable electron configuration possible, which is known as a noble gas configuration. Other elements strive to achieve a similar configuration by gaining, losing, or sharing electrons. The full valence shell also means that the noble gases have high ionization energies, which means they do not easily lose electrons, and would only accept an extra electron at a significantly higher and less stable energy level. These properties explain why the noble gases are found in their elemental form in nature and are used in applications where minimal reactivity is desired.
The best way to learn is through questioning. Explain in full sentences please..
Solid iron(iii) sulfide is oxidized by oxygen gas to solid iron(iii) oxide and sulfur dioxide gas. express your answer as a chemical equation. identify all of the phases in your answer.
Iron(III) sulfide reacts with oxygen to produce iron(III) oxide and sulfur dioxide. The reaction can be represented by this balanced chemical equation: 4 Fe2S3(s) + 11 O2(g) -> 2 Fe2O3(s) + 12 SO2(g). This is an example of a combination reaction; a type of redox reaction.
Explanation:The reaction of solid iron(III) sulfide (Fe2S3) with oxygen gas (O2) produces solid iron(III) oxide (Fe2O3) and sulfur dioxide gas (SO2). The chemical equation representing this reaction is:
4 Fe2S3(s) + 11 O2(g) -> 2 Fe2O3(s) + 12 SO2(g)
In this equation, (s) represents solid, (g) represents gas, and the numbers in front of the chemical formulas are coefficients indicating the number of moles of each substance involved in the reaction. This reaction is an example of a combination reaction, which is a type of oxidation-reduction (or redox) reaction where a substance reacts with oxygen to form oxides.
Learn more about Chemical Reaction here:https://brainly.com/question/34137415
#SPJ12
A compound contains 3 nitrate ions for every 1 aluminum ion. what is the chemical formula?
1.What percent of light passes through the sample if its absorbance A=2?
2. For the best calibration curve, the transmittance values (%T) should fall within the range from 10% to 90%. What is the approximate range of corresponding absorbance values?
3. What is the absorbance of the solution if the percent transmittance for it is 10%?
1. The formula for absorbance is given as:
A = log (Io / I)
where A is absorbance, Io is initial intensity, and I is final light intensity
log (Io / I) = A
log (Io / I) = 2
Io / I = 100
Taking the reverse which is I / Io:
I / Io = 1 / 100
I / Io = 0.01
Therefore this means that only 0.01 fraction of light or 1% passes through the sample.
2. What is meant by transmittance values is actually the value of I / Io. So calculating for A:
at 10% transmittance = 0.10
A = log (Io / I)
A = log (1 / 0.10)
A = 1
at 90% transmittance = 0.90
A = log (Io / I)
A = log (1 / 0.90)
A = 0.046
So the absorbance should be from 0.046 to 1
3. at 10% transmittance = 0.10
A = log (Io / I)
A = log (1 / 0.10)
A = 1
in terms of spacing of particles what would be necessary to change from solid to gas what is the process called and how is it achieved
To change from a solid to a gas, particles must gain sufficient energy to overcome intermolecular forces, a process known as sublimation when it occurs directly, or through melting and evaporation in two steps. This significantly increases the substance's volume. Sublimation and deposition are energy-involving phase transitions affected by temperature and pressure changes.
To change from a solid to a gas, particles need to gain enough energy to overcome their intermolecular interactions and disperse throughout the available space. This increase in energy allows the particles to move from a closely packed structure to one where they move about randomly and independently. This process is known as sublimation when a solid turns directly into a gas without passing through the liquid phase. However, typically a solid will first melt into a liquid and then the liquid will evaporate into a gas. This is achieved through the addition of energy, which can come from heat, for example.
The characteristic increase in volume that accompanies this transition is considerable. During the transition from liquid to gas especially, the volume of a substance can increase by a factor of 1,000 or more. Sublimation and the reverse process, deposition (where a gas becomes a solid directly), are facilitated by changes in temperature and pressure, and these phase transitions are both isothermal and involve a measurable change in energy.
At the molecular level, each state of matter—solid, liquid, gas—has different properties. Solids have particles in a fixed arrangement, while in liquids particles are still in contact but can move past one another. The gas phase is a state in which particles are separated by large distances relative to their size and move independently in a container, expanding to fill its shape and volume.
What happens to the light as the ocean increases in depth? Explain
The ocean is much too deep for light to penetrate, thus it cannot reach the bottom of the water. Electromagnetic radiation that the human eye can detect as light.
What is light?Electromagnetic radiation that the human eye can detect as light. From radio waves with wavelengths measured in meters to gamma rays with wavelengths shorter than roughly 1 1011 meter, electromagnetic radiation occurs throughout a very broad range of wavelengths.
The wavelengths of light that are visible to humans fall into a relatively small range within that wide spectrum, ranging from about 700 nanometers for red light to roughly 400 nm for violet light. Infrared and ultraviolet are two spectral bands that are close to the visible band and are frequently referred to as light as well. The ocean is much too deep for light to penetrate, thus it cannot reach the bottom of the water.
Therefore, the ocean is much too deep for light to penetrate, thus it cannot reach the bottom of the water.
To learn more about light, here:
https://brainly.com/question/28246334
#SPJ6
The type of energy present in the bonds between atoms is
Which atom is least likely to form an ion? which atom is least likely to form an ion? carbon, c aluminum, al bromine, br phosphorus, p?
Answer:
Aluminum
Explanation:
Its the same as the top on but easier to understand
and the top one was approved so.................its right
Calculate the formula mass of calcium iodate, ca(io3)2, in atomic mass units (amu or u).
The formula mass of calcium iodate, Ca(IO3)2, is calculated by multiplying the quantity of each atom by its atomic mass and summing up those values. Thus, the formula mass of Ca(IO3)2 is 389.88 atomic mass units (amu).
Explanation:To calculate the formula mass of calcium iodate, or Ca(IO3)2, we must first know the atomic masses of the individual elements. The atomic mass of calcium (Ca) is approximately 40.08 amu, that of iodine (I) is about 126.90 amu, and that of oxygen (O) is approximately 16.00 amu. Calcium iodate consists of one calcium atom, two iodine atoms and six oxygen atoms. Thus, the formula mass can be calculated as follows:
Mass of calcium = 1 x 40.08 amu = 40.08 amuMass of iodine = 2 x 126.90 amu = 253.80 amuMass of oxygen = 6 x 16.00 amu = 96.00 amuBy adding all these up, the formula mass of calcium iodate is 40.08 amu + 253.80 amu + 96.00 amu = 389.88 amu.
Learn more about Formula Mass here:https://brainly.com/question/3952904
#SPJ3