Which condition describes an object having terminal velocity?
a. gravity > air resistance
b. gravity < air resistance
c. gravity = air resistance

Answers

Answer 1
C. gravity = air resistance
Answer 2

Answer:

C. Gravity = air resistance

Explanation:

An object falling down has two forces acting on him:

- Gravity, which acts downward --> the magnitude of this force is constant (equal to [tex]mg[/tex], where m is the mass of the object and g is the gravitational acceleration)

- Air resistance, which acts upward --> the magnitude of this force is directly proportional to v, the speed of the object

When the object starts its fall, the speed is zero (v=0) so only gravity acts and it accelerates the object downward. Therefore, the speed of the object increases, and so does the air resistance, until a point where the air resistance becomes equal to gravity (which is constant): when this occurs, the acceleration of the object becomes zero (because forces are balanced), so the object continues its fall at constant velocity, called terminal velocity.


Related Questions

Salt water is denser than fresh water. a ship floats in both fresh water and salt water. compared to the fresh water, the volume of water displaced in the salt water is

Answers

The ship floats in water due to the buoyancy Fb that is given by the equation:

Fb=ρgV, where ρ is the density of the liquid, g=9.81 m/s² is the acceleration of the force of gravity and V is volume of the displaced liquid.

The density of fresh water is ρ₁=1000 kg/m³.

The density of salt water is in average ρ₂=1025 kg/m³.

To compare the volumes of liquids that are displaced by the ship we can take the ratio of buoyancy of salt water Fb₂ and the buoyancy of fresh water Fb₁.

The gravity force of the ship Fg=mg, where m is the mass of the ship and g=9.81  m/s², is equal to the force of buoyancy Fb₁ and Fb₂ because the mass of the ship doesn't change:
 
Fg=Fb₁ and Fg=Fb₂. This means Fb₁=Fb₂.

Now we can write:

Fb₂/Fb₁=(ρ₂gV₂)/(ρ₁gV₁), since Fb₁=Fb₂, they cancel out:

1/1=1=(ρ₂gV₂)/(ρ₁gV₁), g also cancels out:

(ρ₂V₂)/(ρ₁V₁)=1, now we can input ρ₁=1000 kg/m³ and ρ₂=1025 kg/m³

(1025V₂)/(1000V₁)=1

1.025(V₂/V₁)=1

V₂/V₁=1/1.025=0.9756, we multiply by V₁

V₂=0.9756V₁

Volume of salt water V₂ displaced by the ship is smaller than the volume of sweet water V₁ because the force of buoyancy of salt water is greater than the force of fresh water because salt water is more dense than fresh water.  


Final answer:

Compared to fresh water, a ship displaces less volume of salt water because salt water is denser, which means the ship will float higher in salt water.

Explanation:

When a ship floats in both fresh water and salt water, the volume of water displaced in the salt water is less compared to fresh water. This is because salt water is denser than fresh water. According to Archimedes' Principle, an object submerged in a fluid will displace a volume of fluid equal to its own weight. Since salt water is denser, a ship doesn't need to displace as much volume of water in saltwater to equal its weight and achieve buoyancy. This is the main reason why a ship will float higher in salt water than in fresh water.

The human body is an organism made up of cells, tissues, organs, and organ system. Here are examples of three types of muscle tissue that are made of very different cells. How can scientists determine what type of cells make up each of these three tissues? A) By using a magnifying glass to observe each tissue. B) By collecting the tissues of people who have died and making observations. C) By dissecting the tissues and then making observations using a dissecting scope. Eliminate D) By placing samples of each tissue on a slide and viewing the slides using a microscope.

Answers

I would think that would be C.

On a cloudless day, what happens to most of the visible light headed toward earth? hints on a cloudless day, what happens to most of the visible light headed toward earth? it is reflected by earthâs atmosphere. it is absorbed and reemitted by gases in earthâs atmosphere. it is completely reflected by earthâs surface. it reaches earthâs surface, where some is reflected and some is absorbed.

Answers

I think the correct answer would be the last option. On a cloudless day, most of the visible light that is headed towards the Earth would reach the surface wherein  some is being reflected and some is being absorbed. During this time, there are no hindrances for the light so it directly reaches the surface of the Earth and is absorbed or reflected by the objects it hits.

People who view society as a set of interrelated parts that work together to produce a stable social system are said to employ the
a.
manifest function.
c.
interactionist perspective.
b.
theoretical perspective.
d.
functionalist perspective.

Answers

The people who see society as a collection of interconnected components that cooperate to create a stable social order are said to use a Functionalist Perspective. Hence, option D is correct.

What is a Functionalist Perspective?

Each component of society is interrelated and contributes to the stability and smooth operation of society as a whole, according to the functionalist perspective in sociology. For instance, the government pays for the education of the family's children, who then pay taxes that the state needs to function.

In other words, the family depends on the school to assist kids in getting decent careers as adults, so they can support and raise their own families.

If everything works out, society's constituent elements provide production, stability, and order. If things do not go as planned, the components of society must then adjust to reestablish a new order, stability, and productivity. 

Hence, the people who see society as a collection of interconnected components that cooperate to create a stable social order are said to use a Functionalist Perspective.

To get more information about Functionalist Perspective :

https://brainly.com/question/20726165

#SPJ2

What effect does heating a solid to a high temperature have on its crystal lattice?

Answers

You should know from basic science that the difference in the three phases of matter is the arrangement of their molecules. Solids have compact molecules. Because of this, it is relatively more organized such that it is made up simple, repeating blocks of unit cells. This is called the crystal lattice. When the solid is heated, the kinetic energy of the system increases, thereby increasing frequency of collisions. But since the solid's atoms are compact, they merely vibrate. When the energy gets too high so that phase transformation can be achieved, the space inside the crystal lattice expands and the atoms move farther away from each other. Then, they could turn into a liquid of gaseous phase.

The lattice breaks apart and the ions flow freely. Gradpoint answer

Which example identifies a change in motion that produces acceleration?
a. a ball moving at a constant speed around a circular track
b. a particle moving in a vacuum at constant velocity
c. a speed skater moving at a constant speed on a straight track
d. a vehicle moving down the street at a steady speed?

Answers

The answer is the option a. a. a ball moving at a constant speed around a circular track.

Acceleration is the change in velocity. This change may be either on speed or on direction (or both).

A ball moving at a constant speed around a circular track is continously changing its direction so it is under acceleration (centripetal acceleration).

All the other cases are of objects moving at the constant speed and in straight line, i.e. constant velocity, which is not accelerating.

Option (a) is correct. The motion of a ball moving in a circular path at a constant speed is termed as the motion with acceleration.

Explanation:

The acceleration of a body is defined as the rate of change of velocity of the body. If the velocity of object under motion continues to change during the motion, the object is considered to be moving under acceleration.

The change in velocity is not only about the change in the magnitude of the speed of the object but it is also the change in the direction of motion of the object moving at a constant speed.

The motion of a particle in a circular path at a steady speed is an accelerated motion because the direction of motion of the ball changes at every instant during its motion in a circular path. The change in direction also changes the velocity of the object and therefore, it is categorized as the accelerated motion.

The motion of a particle at constant velocity in vacuum, a skater moving with a constant speed on a straight track and a vehicle moving on a street at steady speed are not considered as the accelerated motion because the velocity of the body does not change and the direction of motion also remains the same during the motion.

Thus, Option (a) is correct. The motion of a ball moving in a circular path at a constant speed is termed as the motion with acceleration.

Learn More:

1.  The acceleration of the bear https://brainly.com/question/6268248

2.  The kinetic energy of an object depends on https://brainly.com/question/137098

3.  Type of mirror used by dentist https://brainly.com/question/997618

Answer Details:

Grade: High School

Subject: Physics

Chapter: Motion in one dimension

Keywords:

Acceleration, velocity, rate of change, speed, direction of motion, steady speed, straight track, circular track, constant, vacuum.

In egypt, the physiologic density is ______ greater than the arithmetic density [estimate value], because _______ [reason for difference].

Answers

In Egypt, the physiologic density is 2580 persons per square kilometer greater than the arithmetic density which is 75, because most of the country's land is not suitable for agriculture.
The land which is suitable for agriculture is called arable land. when physiological density is larger than arithmetic density it means country less arable land.

Liquid flows through a 4.0 cm diameter pipe at 1.0 m/s. there is a 2.0 cm diameter restriction on the line. what is the velocity in this restriction?

Answers

To determine the velocity in the restriction, we need to remember the law of conservation of mass where mass in should be equal to the mass out since mass cannot be created or destroyed. For this system, mass flow rate in is equal to mass flow rate out. We do as follows:

Mass flow rate in = Mass flow rate out
density (volumetric flow rate in) = density (volumetric flow rate out)

Since the liquid in and out are the same, then density would be cancelled.
(volumetric flow rate in) = (volumetric flow rate out)
Area in x velocity in = Area out x velocity out
velocity out = area in x velocity in / area out
velocity out = π (4/2)^2 (1.0) / π (2/2)^2
velocity out = 4 m/s
Final answer:

The question pertains to the principle of continuity in fluid dynamics. When fluid flows from a wider to a narrower part of a pipe, its velocity increases to ensure that the mass flow rate remains constant. The velocity at the restriction can be found by plugging the appropriate area and velocity values from the wider part of the pipe into the continuity equation.

Explanation:

The subject in question relates to the physics principle of fluid dynamics. Specifically, we're discussing the continuity equation, which states that the mass flow rate must be constant throughout the pipe, irrespective of changes in the pipe's diameter. This is because the fluid is incompressible, meaning the same amount of fluid must flow past any point in the tube in a given time to ensure continuity of flow. Consequently, when the cross-sectional area of the pipe decreases, the velocity increases.

The formula that represents the continuity equation is A₁V₁= A₂V₂, where A represents the cross-sectional area of the pipe and V represents the velocity of the fluid. To find the velocity at the restriction (V₂), we must plug in the values for A₁, V₁, and A₂. Here, A₁ is the cross-sectional area of the larger part of the pipe, V₁ is the velocity in the larger pipe, and A₂ is the cross-sectional area of the restricted part.

To calculate A₁ and A₂, we use the formula for the area of a circle, which is A=πr². For A₁, r (radius) is half of the larger diameter, that is, 2 cm and for A₂, r is 1 cm (half of the restricted diameter). Substituting these values into the continuity equation will yield the desired velocity at the restriction (V₂).

Learn more about Fluid dynamics here:

https://brainly.com/question/30578986

#SPJ11

Which of the following describes the mechanical advantage of a compound machine?

Answers

It is the product of the mechanical advantages of the simple machines that make up

Name of the thing that hangs off a zipper

Answers

It is called the “pull tab”

Floods, droughts, fires, and earthquakes are examples of _____.

Answers

floods, droughts, fires, and earthquakes are examples of ****natural disasters***
Answer;

Natural disasters

Explanation;Floods, droughts, fires, and earthquakes are examples of natural disasters.Natural disasters are events that occur as a result of natural processes of the earth and cause adverse effects. They include, floods, volcanic eruptions, tsunamis, tornadoes, and hurricanes among others.These events are extreme, sudden events caused by environmental factors that injure people and damage property. For example, floods and earthquakes may strike anywhere on earth , often without warning.

Which one of these foods must be cooked to at least 165°f?
a. ground beef
b. pork
c. vegetables
d. chicken?

Answers

Among the foods mentioned - ground beef, pork, vegetables, and chicken - chicken is the one that must be cooked to at least 165°F to safely consume and ensure all harmful bacteria have been killed.

Out of the foods listed - ground beef, pork, vegetables, and chicken - the one that must be cooked to at least 165°F (73.9°C) is chicken.

Poultry, including chicken, should be cooked to a minimum internal temperature of 165°F as recorded on a food thermometer, to kill off any harmful bacteria that may be present. The safe minimum cooking temperature for ground meat, such as ground beef and pork, is lower at 160°F. Vegetables can be eaten raw or cooked to any preferred temperature.

Learn more about Food Safety here:

https://brainly.com/question/33878419

#SPJ6

if a 25kg block is being suspended 3 meters in the air, what is the potenti energy

Answers

Potential energy = gravitational potential energy
G.P.E = mgh
= 25 × 9.81 × 3
= 735.75 J
= 736 J

Hope it helped!

A 200 g oscillator in a vacuum chamber has a frequency of 2.0 hz. when air is admitted, the oscillation decreases to 60% of its initial amplitude in 50 s. how many oscillations will have been completed when the amplitude is 30% of its initial value?

Answers

Approximately 235 oscillations will have been completed when the amplitude of the oscillator decreases to 30% of its initial value.

To solve this problem, let's first understand the concept. The amplitude of an oscillator in simple harmonic motion decreases over time when air is admitted due to damping. We'll use the concept of exponential decay to model the decrease in amplitude.

The formula for exponential decay is:

[tex]\[ A(t) = A_0 \times e^{-\frac{t}{\tau}} \][/tex]

Where:

- A(t) is the amplitude at time t.

- [tex]\( A_0 \)[/tex] is the initial amplitude.

- [tex]\( \tau \)[/tex] is the time constant, which depends on the damping coefficient.

- e is the base of the natural logarithm.

Given that the amplitude decreases to 60% of its initial value in 50 seconds, we can use this information to find the time constant [tex]\( \tau \).[/tex]

[tex]\[ 0.6A_0 = A_0 \times e^{-\frac{50}{\tau}} \][/tex]

Solving for [tex]\( \tau \):[/tex]

[tex]\[ e^{-\frac{50}{\tau}} = 0.6 \][/tex]

[tex]\[ -\frac{50}{\tau} = \ln(0.6) \][/tex]

[tex]\[ \tau = -\frac{50}{\ln(0.6)} \][/tex]

Now, we can use the value of [tex]\( \tau \)[/tex] to find the time it takes for the amplitude to decrease to 30% of its initial value.

[tex]\[ 0.3A_0 = A_0 \times e^{-\frac{t}{\tau}} \][/tex]

Solving for t:

[tex]\[ e^{-\frac{t}{\tau}} = 0.3 \][/tex]

[tex]\[ -\frac{t}{\tau} = \ln(0.3) \][/tex]

[tex]\[ t = -\tau \times \ln(0.3) \][/tex]

Now, we need to find the number of oscillations completed during this time. We know that the frequency of oscillation is 2.0 Hz, which means the oscillator completes 2 oscillations every second.

Number of oscillations = frequency × time

Number of oscillations = 2.0 × t

Let's compute these values.

First, let's calculate the value of [tex]\( \tau \):[/tex]

[tex]\[ \tau = -\frac{50}{\ln(0.6)} \][/tex]

[tex]\[ \tau \approx -\frac{50}{-0.5108} \][/tex]

[tex]\[ \tau \approx 97.85 \, \text{s} \][/tex]

Now, let's find the time it takes for the amplitude to decrease to 30% of its initial value:

[tex]\[ t = -\tau \times \ln(0.3) \][/tex]

[tex]\[ t \approx -97.85 \times \ln(0.3) \][/tex]

[tex]\[ t \approx 97.85 \times 1.2039 \][/tex]

[tex]\[ t \approx 117.65 \, \text{s} \][/tex]

Now, let's find the number of oscillations completed during this time:

Number of oscillations [tex]= 2.0 \times t[/tex]

Number of oscillations [tex]\approx 2.0 \times 117.65[/tex]

Number of oscillations [tex]\approx 235.3[/tex]

Since the number of oscillations must be a whole number, we can assume it to be 235 oscillations.

Therefore, when the amplitude is 30% of its initial value, approximately 235 oscillations will have been completed.

Lines with irregular meter and length are called _____.

Answers

think its free verse 

Lines with irregular meter and length are called Free Verse.

Free Verse, a literary device in literature refers to the poetry which is free from defects of regular rhythm or meter and length. There is no rhythm of the words, and no rhyme scheme in such kind of literary pieces. These kind of poems simply do not follow the rules of poetry.

Consider the transition from the energy levels n = 3 to n = 6. what is the wavelength associated with this transition, in nm?

Answers

In quantum chemistry, when the energy of electron changes by moving from orbital to orbital, it emits or absorbs energy in the form of light. When this happens, you can measure its wavelength. Suppose an atom is heated. This excites the electron so it moves up higher to the next orbital. As a result, it would emit light. When its energy lowers and moves one orbital lower, it would absorb light. The equation to determine the wavelength is called the Rydberg formula.

1/wavelength = R(1/n1^2 - 1/n2^2), where
R is an empirical constant called Rydberg's constant equal to 1.9074 × 10^7 m^-1
n1 and n2 are orbitals of the atoms such that n2 is always greater than n1.

Substituting the values:

1/wavelength = 1.9074 × 10^7 (1/3^2 - 1/6^2)
wavelength = 1.09 × 10^-6 m or 1.09 micrometers

A force scale is attached to a stack of books lying on a flat table. 1.What happens to the size of the static frictional force as you begin to pull on the force scale? 2.What happens to the stack of the books if the applied force exceeds the maximum static frictional force? 3.What is the minimum size for the static frictional force, and under what conditions will the minimum static frictional force be observed? 4.What type of friction acts when the books are at rest but a force is exerted?

Answers

1. When you pull on the force scale, an opposite and equal reaction is also induced. This is the static frictional force. So when you begin to pull, the static frictional force gradually increases.

2. If it exceeds the maximum static frictional force, then the stack of backs begins to move. Then the static frictional force is converted to kinetic frictional force.

3. The minimum static frictional force is the least amount of force when you pull the force scale. Technically, you do not need to pull on it to achieve the minimum.

4. The type of friction is called the static frictional force. The term used is static because the object is at rest even though forces are exerted on it.
Final answer:

Static frictional force matches the applied force up to its maximum, after which the books slide, switching to kinetic friction. Minimum static friction is zero and occurs with no applied force. When resting books are subjected to a force below the static threshold, static friction acts.

Explanation:

Frictional Forces and a Stack of Books

When you begin to pull on a force scale attached to a stack of books lying on a table, the size of the static frictional force initially increases to match the applied force, up to its maximum value. If the applied force exceeds this maximum static frictional force, the books will begin to slide across the table, transitioning to a state where kinetic friction is acting on them. The minimum size for the static frictional force is observed when there is no applied force, and in such cases, it is effectively zero. While the books are at rest and a force is exerted that is below the static friction threshold, the type of friction acting is still static friction.

What is the main function of an ignition safety switch?

Answers

Answer:

to produce spark in engen

Explanation:

Final answer:

The main function of an ignition safety switch in an automobile is to prevent the engine from starting without the key being inserted into the ignition.

Explanation:

The main function of an ignition safety switch in an automobile is to prevent the engine from starting without the key being inserted into the ignition. It acts as a security measure to prevent unauthorized individuals from starting the vehicle. The switch is typically located close to the steering column and is connected to the ignition system.

When the key is inserted and turned in the ignition, it completes the circuit and allows electrical current to flow to the ignition system, which then starts the engine. If the ignition safety switch is not engaged or faulty, the circuit remains incomplete, and the engine will not start even if the key is turned.

A ufo was detected on the radar flying 7400 miles in 3 min, what is the estimated speed per hour?

Answers

S=7400mi
t=3 min= 0.05h
v=7400mi/0.05h
v=148000mph

What is the most relevant characteristic of motion

Answers

Motion is term which describes the change of the position of a body through time. 
Several things characterize motion: displacement, velocity, acceleration, speed, time,..
However the most relevant characteristic of motion is velocity- the rate of change of the position of an object in a certain time period. 


As much as 90% of the matter in the universe may be unseen “dark matter.” where is this dark matter?

Answers

As much as 90% of the matter in the universe my be unseen i.e. dark matter. There is a variety of explanations offered by many astronomers and physicists for this dark matter. It could merely be ordinary material such as ultra-faint stars, cold gas, large or small black holes or dust scattered around the universe, all of which emit or reflect too little radiation for our instruments to detect. It could also consist of exotic, unfamiliar particles that we have not figured out how to observe.

Final answer:

Dark matter is an unseen substance that makes up about 90% of the universe's mass, detectable through its gravitational effects on visible matter. It exists in a halo around galaxies and is essential for understanding the universe's composition and expansion fate.

Explanation:

The unseen matter that may constitute as much as 90% of the universe is known as dark matter. This dark matter is not directly observable because it does not emit or reflect any electromagnetic radiation. However, its existence is inferred from gravitational effects on visible matter, radiation, and the large-scale structure of the universe.

For example, galaxies contain far more mass than can be accounted for by the visible objects we can observe, and this extra mass is attributed to dark matter. The rapid rotation of stars on the outskirts of galaxies is one such gravitational effect indicating the presence of dark matter in a halo around the galaxies.

Discovering the true nature of dark matter is crucial as it may provide insights into particle physics and cosmology. There are theories that dark matter could be composed of neutrinos with a small mass or entirely new types of particles that have never been detected.

The understanding and evidence of dark matter continue to evolve, highlighting its importance in the universe's critical density and its possible role in the ultimate fate of the cosmic expansion.

John rows his canoe due east across a river at 5.5 miles per hour. if the river is flowing south at 4 miles per hour, find john’s direction.

Answers

This is the concept of trigonometry, the direction of the John will be given by:
tan theta=opposite/adjacent
suppose:
a=theta
opposite=4 mph
adjacent=5.5 mph
tan a=4/5.5
a=tan^-1(4/5.5)
a=36
therefore the boat canoe will be moving 36 degrees from East, his direction will be 126 degrees south east

Which is an example of natural erosion? ice forming in cracks of rocks acid rain falling on sidewalks waves washing over rocks on the beach water washing away soil in an area with off-road vehicles

Answers

ice forming in cracks of rocks 

Answer:  waves washing over rocks on the beach

Explanation:

A natural erosion is a phenomena of removal of the top layer of the soil or any other surface material by the action of the natural physical agents like water, wind and others. Waves washing over rocks on the beach is the correct example of natural erosion because waves from any water body are naturally generated by the effect of wind and gravity these can wipe the surface materials present over the rocks on the beach.

Which refers to the temperature to which air would have to be cooled to reach saturation?

Answers

the answer is Dew Point

Answer: It is called Dew Point

Explanation: The dew point is the exact temperature to which air must be cooled to become saturated with water vapor, if further cooled, the water vapor will condense to form liquid water.

What best describes the overall impact of wilhelm roentgen's discovery of x-rays?

Answers

Doctors still use his discovery to make images of the bodys insides.
It enabled diagnostic radiology, looking inside a person and making a diagnosis possible through radiation instead of by opening someone up.

An astronaut is taking a space walk near the shuttle when her safety tether breaks. what should the astronaut do to get back to the shuttle

Answers

The best way in handling in this situation is that in order for the astronaut to be able to get back to the shuttle is that he or she should take an object from his or her tool belt and to be thrown out away from the shuttle. This will allow her to weight lightly and safely return to the shuttle and would be easier for his or her to do so.
Final answer:

An untethered astronaut can return to the shuttle by using conservation of momentum or a safety jetpack known as Simplified Aid for EVA Rescue (SAFER). The first method involves throwing an object in the opposite direction, and the other involves using SAFER to propel back.

Explanation:

If an astronaut finds themselves adrift in space without a tether, their best bet would be to try and use conservation of momentum to return to the shuttle. They can do this by throwing an object in the opposite direction they wish to travel -- such as a tool or even their own glove. This action would propel them back towards the shuttle due to Isaac Newton's Third Law of Motion: For every action, there is an equal and opposite reaction.

Additionally, astronauts carry a safety jetpack called a Simplified Aid for EVA Rescue (SAFER) during spacewalks. They could use this to propel themselves back towards the shuttle.

Learn more about Space Physics here:

https://brainly.com/question/30899907

#SPJ12

A missile is fired from a jet flying horizontally at mach 1 (1100 ft/s). The missile has a horizontal acceleration of 1000ft/s. Calculate its horizontal velocity at 10.0 seconds after it is fired

Answers

The formula is Final velocity=initial velocity+acceleration x time when you plug all that in you get 11100

To find the horizontal velocity of the missile at 10.0 seconds after firing, use the motion equation v = u + at, with u = 1100 ft/s and a = 1000 ft/s²2. This results in a final velocity (v) of 11100 ft/s.

Calculating the Horizontal Velocity of a Missile

To calculate the horizontal velocity of the missile at 10.0 seconds after it is fired, we can use the equation of motion which relates initial velocity, acceleration, and time to find the final velocity. The equation we will use is:

v = u + at

Where:

v is the final velocity

u is the initial velocity

a is the acceleration

t is the time

Given:

Initial velocity (u) = Mach 1 = 1100 ft/s

Horizontal acceleration (a) = 1000 ft/s²

Time (t) = 10.0 s

To find the final velocity (v):

v = 1100 ft/s + (1000 ft/s² * 10.0 s)

v = 1100 ft/s + 10000 ft/s

v = 11100 ft/s

Therefore, the horizontal velocity of the missile at 10.0 seconds after being fired is 11100 ft/s.

How much force is needed to accelerate an object of mass 90 kg at a rate of 1.2 m/s2? 0.013 N 75 N 108 N 1080 N

Answers

F = m*a

F = 90*1,2

F = 108 N

Force needed to accelerate an object is 108 N. The correct option is third.

What is Net force?

When two or more forces are acting on the system of objects, then the to attain equilibrium, net force must be zero.

From the Newton's second law of motion, force is given by

F = ma

where, m is the mass of the object and a is the acceleration

Given

Plug the values, we get

F = 90 x1.2

F = 108 N

So, the force needed is 108 N.

Thus, the correct option is third.

Learn more about net force.

https://brainly.com/question/18031889

#SPJ6

The climate zones lying between 23.5 and 66.5 north and south latitude are called the

Answers

the answer is A temperate zones

Answer:

A

Explanation:

The pulse site located at the point where the upper leg bends is called the

Answers

The pulse site located at the point where the upper leg bends is called the femoral. It is an artery found in the thigh. It is large and is deemed as the main arterial supply for the lower part of the body. It is known as the second artery that is the largest. It is being used as the catheter access artery. From it, diagnostics for the heart, brain, arms, kidney and other parts can be directed to the other arterial system. It can also be used as a source to draw blood that is from the arteries when there is low blood pressure.
Other Questions
Suppose oil spills from a ruptured tanker and spreads in a circular pattern. if the radius of the oil spill increases at a constant rate of 1 m/s, how fast is the area of the spill increasing when the radius is 34 m? The onset of fatigue frequently coincides with the onset of Write out the balanced equation for the reaction that occurs when Ca and NaCl react together. You do not need to make your subscripts smaller; just write them out as regular numbers. For example: H2O. Determine whether a triangle can be formed with the given side lengths. If so, use Heron's formula to find the area of the triangle. a = 240 b = 123 c = 207 Three students have to give a speech in class today. In how many different orders can they give their speeches? Read the sentence. jacobs sister loaned me a sweater. which case is the underlined pronoun? nominative possessive objective What was the name given to journalist who focused on the poverty and corruption in the cities Nuclear binding energy is necessary to overcome which of the following? Einstein's mass defect kinetic energy of the nucleus repulsion of the protons weak nuclear force Dc construction has two divisions: remodeling and new home construction. each division has an on-site supervisor who is paid a salary of $69,000 annually and one salaried estimator who is paid $49,500 annually. the corporate office has two office administrative assistants who are paid salaries of $56,250 and $36,000 annually. the president's salary is $184,500. how much of these salaries are common fixed expenses? Which of the following is the best replacement for the word narcissistic in the sentence below?The implications of the narcissistic and exhibitionistic tendencies of social networkers also cry out for further consideration. There are opportunity costs when we spend so much time carefully grooming ourselves online. Concerned Open Self-absorbed Trustworthy Regression and modeling with functions Why is a pencil used to mark the chromatogram instead of pen? What is 5/14+1/6 I really need help For a science class project, Sandy wants to test the effect of rap music on pea plant growth. She plays loud rap music 24 hours a day to a series of pea plants grown under light and watered daily. At the end of her experiment, she concludes that rap is conducive to plant growth. Sandy receives a low grade on this experiment from her teacher.Why did Sandys teacher give a low grade for this experiment? What was the key problem with it? How could Sandy change her experiment to fix the problem? Rewrite the experiment so it will receive a better grade. One of the following items contains a comma splice, another is a run-on (or fused) sentence, and a third is correct. Select the item that is correct. The Amish movement stems from the Mennonite church it was founded by Jacob Ammon in 1698. The Amish movement stems from the Mennonite church, it was founded by Jacob Ammon in 1698. The Amish movement stems from the Mennonite church, founded by Jacob Ammon in 1698. How many positive integers not exceeding 1000 are not divisible by either 4 or 6? Samantha threw an apple out of a window. The equation -16t^(2)+120=y can be used to represent the apple's height above the ground, where t = time in seconds after she threw the apple. how long did it take for the apple to hit the ground. Round to nearest hundredth What are the two categories of chemical sedimentary rock? Why are the children too eager to go outdoors and play at the start of Games at Twilight? Use the text below to answer the following question:Case study: The Very Big AppleWith over eight million people, New York City is the most heavily populated city in the U.S. Between 1800 and 1900, the population of New York increased from about 80,000 to over three million people. In the years after the Civil War, the population of New York City tripled. With a large influx of European immigrants New York became known as the "melting pot." New York has always had the highest population density of any U.S. city. According to the 2000 census, New York City has about 26,403 people per square milealmost twice the number of people per mile as Chicago.In the years after the Civil War, the population of New York City tripled. What can you infer about why there was such a large increase in the population?People migrated from smaller towns to cities to find work.People felt that rural areas were no longer a safe place to live. People were interested in the culture that was available in cities. People moved closer together to show that the country was united. Steam Workshop Downloader