How is the impulse momentum relationship related to newton's second law?
Newton's Second Law and the Impulse-Momentum Relationship are intricately connected in physics due to their shared focus on force, acceleration, and momentum.
Newton's Second Law directly relates the total force that acts on an object to its acceleration at a specific time. The Impulse-Momentum Relationship involves force acting over time to change momentum, which is closely connected to Newton's second law.
Momentum continues to be a key concept in physics and is broadly applicable in various scenarios, including the study of atomic and subatomic particles.
Which of the following is known as the pulse of a wave?
a non-recurrent wave
the trigger of a wave
the repeat motion of a wave
one cycle of a wave motion
the input of energy to cause a wave motion
There is more than one
Which of the following is known as the pulse of a wave?
A non-recurrent wave and one cycle of a wave motion.
Answer:
A non-recurrent wave and one cycle of a wave motion.
Explanation:
What is a tectonic plate? a section of the earth's crust that is moving in response to the motion of the mantle beneath. a mountain range on earth a section of the venus's crust that is moving in response to the motion of the mantle beneath. an earthquake?
In which of the following is positive work done by a person on a suitcase
Positive work is done when a person moves a suitcase in the direction of the applied force, such as carrying it up stairs. No work is done when holding a suitcase stationary or moving it horizontally without vertical displacement. Friction can affect the net work done on an object by doing negative work.
Explanation:In scenarios where positive work is done by a person on a suitcase or briefcase, energy is being transferred to the object due to a force having a component in the direction of the object's motion. For example, carrying a briefcase up stairs at a constant speed involves positive work because the force applied by the person has a component in the direction of motion, effectively transferring energy to the briefcase. On the other hand, when a person holds a briefcase without moving it, or moves it horizontally at a constant speed with no vertical displacement, no work is done since there is no displacement in the direction of the applied force, thus no energy transfer occurs.
Furthermore, when discussing net work, it is important to consider all forces acting on the object, including friction. While a person may do a certain amount of work on an object, if friction is present it does negative work, which counters some of the energy put into the system by the person, resulting in a different value for net work.
When several radio telescopes are wired together, the resulting network is called a radio
a. Receiver
b. Interferometer
c. Tuner
d. Antenna
Answer:
Interferometer
Explanation:
I WILL GIVE BRAINLIEST 50!!
Standing near a campfire, you can feel heat. This is an example of
acceleration
conduction
convection
radiation
A circuit has a current of 3.6 A and a resistance of 5.0 Ω.
What is the voltage applied to the circuit?
0.72 V
1.4 V
8.6 V
18 V
The voltage applied to the circuit is 18 V. So, the fourth option is correct.
What is Ohm's law ?Ohm's law states that, the voltage across a conducting material is directly proportion to the amount of steady current passing through material and also the resistance of the material.
Here,
Current flowing through the circuit, I = 3.6 A
Resistance of the circuit, R = 5 Ω
According to Ohm's law,
V [tex]\alpha[/tex] I
V [tex]\alpha[/tex] R
So, V = IR
Voltage applied to the circuit,
V = 3.6 x 5
V = 18 V
Hence,
The voltage applied to the circuit is 18 Volt.
To learn more about Ohm's law, click:
https://brainly.com/question/1247379
#SPJ7
What two units of air pressure are commonly used in weather reports?
Final answer:
Commonly, air pressure in weather reports is measured in millibars (mb) and inches of mercury (in. Hg), where average sea level pressure is about 1013.2 mb or 29.92 in. Hg.
Explanation:
The two units of air pressure that are commonly used in weather reports are millibars (mb) and inches of mercury (in. Hg). Under average sea level conditions, the atmospheric pressure is approximately 1013.2 millibars or 29.92 inches of mercury. When watching a weather forecast, you might hear meteorologists refer to high and low-pressure systems using these units. High pressure is associated with greater than 1013.2 millibars and is typically indicative of fair weather, while low pressure is lower than this value, often leading to more stormy conditions.
What minimum speed must the rocket have just before impact in order to save the explorer's life?
What would be Kelly's weight be in newtons if her mass is 70 kilograms?
A: 70 x g
B: 70
_ _
g
C: 70
_ _
g^2
D: 70 x g^2
E: 70
Answer:
Choice a
Explanation:
The weight is defined in formulaic terms as the mass *g
You know the mass to be 70 kg so multiply by g which gives choice (A)
A good way to check is that you know weight has the units newtons (N) and you know kg* m/s^2 qill yield newtons therefore choice A is correct
Hope this helps :)
Answer:
See image
Explanation:
Plato
A plane starting at rest at the south end of a runway undergoes a constant acceleration of 1.6 m/s/s for a distance of 1600m before takeoff. What is the time required for takeoff? What is the plane’s velocity at takeoff?
The time the plane requires for takeoff, calculated using the equations of motion, is 50 seconds. The plane's velocity at takeoff is 80 m/s.
Explanation:The subject of your question involves motion in linear dimensions which is a concept in physics. We can solve this using the equations of motion. We can use equation s = ut + 0.5at², where s is the distance, u is the initial velocity, a is the acceleration, and t is the time. Since the plane starts from rest, u = 0. Thus, the equation turns into s = 0.5at².
To find the time required for takeoff, we rearrange the equation to solve for t, giving us t = sqrt(2s/a). Substituting the given values, we find t = sqrt((2 * 1600m)/1.6m/s²) = 50 seconds.
For the plane’s velocity at takeoff, we can use the equation v = u + at where v is the final velocity. Since again the plane starts from rest, u = 0. Substituting the given values, we find the plane's velocity at takeoff to be v = 0 + (1.6m/s² * 50s) = 80 m/s.
Learn more about Physics of Motion here:https://brainly.com/question/13966796
#SPJ3
A net force f is required to give an object with mass m an acceleration
a. if a net force 6f is applied to an object with mass 2m. what is the acceleration in this object
The net force is the product of mass and acceleration. Thus, acceleration of a force of 6 f for an object of mass 2 m is 6 f/m.
What is acceleration?Acceleration of a body is the rate of change of its velocity. It is a vector quantity thus, having both magnitude and direction. The commonly used unit of acceleration is m/s².
According to Newton's second law of motion force is the product of mass and acceleration of the body. Thus an increase in mass or acceleration increases the force acting on the body.
Given the mass = 2m
Force = 6 f
acceleration = force / mass
= 6f /2m = 3
Lets take force in 6 N and mass in 2 Kg, then the acceleration is 3 m/s².
Therefore, the acceleration of object of 2 kg to have a force of 6 N is 3m/s².
To find more on acceleration, refer here:
https://brainly.com/question/3046924
#SPJ5
An artillery shell is fired at an angle of 83.3 ◦ above the horizontal ground with an initial speed of 1600 m/s. the acceleration of gravity is 9.8 m/s 2 . find the total time of flight of the shell, neglecting air resistance. answer in units of min. 002 (part 2 of 2) 10.0 points find its horizontal range, neglecting air resistance. answer in units of km.
To solve this we must be knowing each and every concept related to time of flight. Therefore, the total time of flight of the shell, neglecting air resistance is 5.3 min.
What is time of flight?Time of flight (ToF) is indeed the time it takes an item, particle, or wave (whether acoustic, electromagnetic, or otherwise) to travel a distance across a medium.
This data may then be used to calculate velocity or journey length, or to learn about the attributes of the particle or medium. The moving item can be detected directly (through a transition metal ion in mass spectrometry, for example) or indirectly.
Mathematically, the formula for time of flight can be given as
t = 2×V₀×sin (α) / g
t = 2×1600×sin (83.3°) / 9.8
≈ 2×1600×0.993 / 9.8
≈ 324 sec
t =5.3 min
Therefore, the total time of flight of the shell, neglecting air resistance is 5.3 min.
To learn more about time of flight, here:
https://brainly.com/question/15183543
#SPJ5
When strong solar winds are displaced poleward by our magnetic fields, we get when strong solar winds are displaced poleward by our magnetic fields, we get sunspots. hurricanes in the tropics. droughts and dust bowls in the american west. intense auroral displays. the van allen radiation belts?
A basketball player can jump 1.6 m off the hardwood floor. With what upward velocity did he leave the floor?
1.4 m/s
2.8 m/s
4.2 m/s
5.6 m/s
Answer:
The upward velocity is 5.6 m/s.
(5) is correct option.
Explanation:
Given that,
Height = 1.6 m
We need to calculate the the upward velocity
Using equation of motion
[tex] v^2=u^2-2gh[/tex]
[tex]u=\sqrt{2gh}[/tex]
Here, g = acceleration due to gravity
v = final velocity
u = initial velocity
h = height
Put the value into the formula
[tex]u=\sqrt{2\times9.8\times1.6}[/tex]
[tex]u=5.6\ m/s[/tex]
Hence, The upward velocity is 5.6 m/s.
If a man weighs 900 n on the earth, what would he weigh on jupiter, where the acceleration due to gravity is 25.9 m/s2?
To find the weight of a person on Jupiter, divide their weight on Earth by the acceleration due to gravity on Earth and multiply that by the acceleration due to gravity on Jupiter.
Explanation:To calculate the weight of a person on different planets, we can use the formula: weight = mass x acceleration due to gravity. On Earth, the acceleration due to gravity is approximately 9.8 m/s2. Given that the weight of the man on Earth is 900 N, we need to find his mass first. Dividing his weight by the acceleration due to gravity on Earth: 900 N / 9.8 m/s2 = 91.84 kg. To find his weight on Jupiter, we can use the same formula but with the acceleration due to gravity on Jupiter, which is 25.9 m//s^2.
weight = 91.84 kg x 25.9 m/s^2
= 2377.856 N
This question involves understanding the concept of gravity and how it differs on various celestial bodies. Now, if we want to calculate his weight on Jupiter, we would use his mass and the acceleration due to gravity on Jupiter. Plugging the values into the formula gives us a weight of about 2377.56 N on Jupiter.
Learn more about Weight on Jupiter here:https://brainly.com/question/32434286
#SPJ3
Which of the following best illustrates a pair of sentences that are joined by an understood relationship?
A. Luke put three dollars into the office football pool. He was looking forward to vacation.
B. Detective Smiley scanned the dim hallway. He pulled his pistol from its holster.
C. It rained for ten days and ten nights. Grandmother Grady called a company to drill a well.
D. I don't understand a word you said. Have you taken a course in English literature?
For most people, getting 8 to 9 hours of sleep increases concentration, improves physical health, and improves one's mood.
Please select the best answer from the choices provided.
T
F
Answer: The given statement is true.
Explanation:
It is known that when we get enough sleep then we feel refreshed. Also, sleeping for 8 to 9 hours helps in the improvement of health of a person because more we sleep more our mind remains relaxed.
As a result, we feel good, happy and delighted. Therefore, we are able to focus on our goals with more concentration.
Thus, we can conclude that the statement for most people, getting 8 to 9 hours of sleep increases concentration, improves physical health, and improves one's mood, is true.
I WILL GIVE BRAINLIEST 50!!!!!
What is convection?
Transfer of heat through objects touching source
Transfer of heat through direct physical contact
Transfer of heat through electromagnetic waves
Transfer of heat through the movement of particles
Can you be fluid overload and dehydrated at the same time
While fluid overload and dehydration are generally opposite conditions, they can coexist if there is a water and electrolyte balance disruption.
Fluid overload and dehydration are typically seen as opposite conditions, but they can coexist under certain circumstances such as when there is a disruption in water and electrolyte balance. Dehydration occurs when the loss of water exceeds the intake, substantially reducing the body's water content. Signs of dehydration include thirst, dizziness, headaches, and in severe cases, loss of consciousness or death.
During fluid overload, the body may hold onto too much water, possibly leading to conditions like hyponatremia, where sodium levels are abnormally low. In contrast, during dehydration, the concentration of electrolytes becomes greater outside of cells, leading to water leaving cells and making them shrink. Both conditions can have severe consequences if not properly managed.
Severe cases of dehydration can lead to electrolyte imbalances and the body's inability to function correctly due to insufficient water. This can happen due to factors such as prolonged physical activity with excessive sweating and insufficient fluid intake, especially in hot weather conditions or during endurance sports. Such imbalances need to be treated promptly to restore the body's fluid and electrolyte balance.
How fast is the sixth cosmic velocity?
What advantages do sports drinks or juices have over water in terms of electrolyte content? Why does this matter for strenuous exercise?
Sports drinks do offer some benefits when comparing sports drinks vs. water. While water actually works better at fluid replacement, sports drinks are often more appealing to the palate. In other words, people who enjoy the taste of sports drinks may drink more of a sports drink than they would water; this will lead to better hydration.
Sports drinks also contain electrolytes and carbohydrates. While exercising for short periods of time, it is not necessary to replace electrolytes; however, athletes and marathon participants exercising for period of an hour or more can benefit from electrolyte replacement in particular. Carbohydrates offer the body energy. When the body burns calories, it needs carbohydrates to replace energy lost. The longer the workout, the more carbohydrates are needed.
Sports drinks or juices have advantages over water in terms of electrolyte content, as they provide a source of electrolytes that help replenish those lost during strenuous exercise. Electrolytes are minerals that maintain fluid balance and support muscle and nerve function.
Explanation:In terms of electrolyte content, sports drinks or juices have advantages over water. Electrolytes are minerals that help maintain the balance of fluids in the body and aid in nerve and muscle function. During strenuous exercise, the body loses electrolytes through sweat. Sports drinks or juices contain electrolytes such as sodium, potassium, and magnesium, which help replenish the lost electrolytes and maintain hydration.
Water, on the other hand, does not contain electrolytes. While it is essential for hydration, it does not provide the same replenishment of electrolytes as sports drinks or juices. This is particularly important during strenuous exercise as the loss of electrolytes can lead to muscle cramps, fatigue, and impaired performance.
In conclusion, sports drinks or juices have an advantage over water in terms of electrolyte content because they provide a source of electrolytes that help replenish those lost during strenuous exercise, supporting hydration and maintaining optimal muscle and nerve function.
Learn more about Electrolyte content in sports drinks and water here:https://brainly.com/question/32661168
#SPJ6
While conducting a lab experiment, Ali calculated that 1.20 E6 Joules of heat were needed to melt of 18.5 kilograms of an unknown substance at its melting point. What is the latent heat of fusion of the substance?
1.20 E^6/18.5=6.48E^4
Final answer:
The latent heat of fusion is the heat required to change a substance from solid to liquid state. In this case, the latent heat of fusion is calculated for an unknown substance when 1.20 E6 Joules of heat melts 18.5 kilograms of it.
Explanation:
The latent heat of fusion of a substance is the amount of heat required to change one mole of a substance from the solid to the liquid state.
In this case, we can calculate the latent heat of fusion by using the formula Q = m * Lf, where Q is the heat required, m is the mass of the substance, and Lf is the latent heat of fusion.
For the given scenario with 18.5 kg of the unknown substance and 1.20 E6 Joules of heat needed, we can calculate the latent heat of fusion as:
Convert 1.20 E6 J to kJ: 1.20 E6 J = 1200 kJ
Calculate Lf: Lf = Q / m = 1200 kJ / 18.5 kg
Lf = 64.86 kJ/kg