What is the magnifying power of an astronomical telescope using a reflecting mirror whose radius of curvature is 5.5 mm and an eyepiece whose focal length is 2.9 cmcm ? Follow the sign conventions.

Answers

Answer 1

The magnifying power of an astronomical telescope will be:

"0.095".

Telescope: Focal length and Power

According to the question,

Radius of curvature, R = 5.5 mm

Focal length of eyepiece, [tex]F_e[/tex] = 2.9 cm

We know that,

→ Focal length of mirror,

F₀ = [tex]\frac{Radius \ of \ curvature}{2}[/tex]

By substituting the values,

    = [tex]\frac{5.5}{2}[/tex]

    = 2.75 mm or,

    = 0.278 cm

hence,

The telescope's magnification be:

= [tex]\frac{F_0}{F_e}[/tex]

= [tex]\frac{0.275}{2.9}[/tex]

= 0.095

Thus the above approach is correct.

Find out more information about magnification here:

https://brainly.com/question/1477543

Answer 2

Final answer:

The magnifying power of the astronomical telescope using the given values is approximately 0.19.

Explanation:

In order to find the magnifying power of an astronomical telescope, we need to use the formula:

Magnifying Power = Angular Magnification = (focal length of objective) / (focal length of eyepiece)

Given that the radius of curvature of the reflecting mirror is 5.5 mm (which is equal to 0.55 cm) and the focal length of the eyepiece is 2.9 cm, we can substitute these values into the formula to find the magnifying power.

Magnifying Power = (radius of curvature of mirror) / (focal length of eyepiece)

Magnifying Power = 0.55 cm / 2.9 cm

Magnifying Power = 0.19

Therefore, the magnifying power of the astronomical telescope is approximately 0.19.


Related Questions

You have just completed the first part of this lab and have five time values for a particular height: 1.8, 1.7, 1.9, 0.8, and 1.9 seconds. a) Give one quantitative reason why you think that 0.8 sec is or is not consistent with the other measurements.

Answers

Answer: because 1.8 is an outlier.

Explanation: it can been seen that from the data given to us, 1.7, 1.8, 1.9, 1.9 are all close to each other with a difference of 0.2 or 0.1.

By considering 0.8, this value (0.8) is at a very far distance away from other observational data with a difference of at least 0.9.

This henceforth makes 0.8 an outlier ( a data which is at a far distance away from other observational data)

The 0.8-second measurement is likely inconsistent with the others due to its significant deviation from the clustered times around 1.8 seconds, pointing to it as an outlier potentially caused by an experimental error.

One quantitative reason to suspect that the time value of 0.8 seconds is inconsistent with the other measurements of 1.8, 1.7, 1.9, and 1.9 seconds is the concept of measurement uncertainties and standard deviation. When comparing the given times, we see that the majority of the values are clustered around 1.8 seconds, suggesting a certain range of natural variability in repeated measurements. However, 0.8 seconds is significantly lower than the others, indicating that it is an outlier and might have been affected by experimental error or a faulty measurement. The use of mean and standard deviation can give us a formal way to assess consistency among data. If we calculated the mean and standard deviation, we would likely find 0.8 seconds to fall outside an acceptable range based on the precision of our measurements, reinforcing the idea that this result is inconsistent with the others.

Two children stand on a platform at the top of a curving slide next to a backyard swimming pool. At the same moment the smaller child hops off to jump straight down into the pool, the bigger child releases herself at the top of the frictionless slide.

Upon reaching the water, how does the kinetic energy of the smaller child compare with that of the larger child?

Answers

Answer:

THE KINETIC ENERGY OF THE SMALLER CHILD IS LESS THAN THAT OF THE BIGGER CHILD

Explanation: Kinetic energy is the energy that is exerted on a body that is in motion, kinetic energy is affected by both the mass of the object and the velocity of the object.

Mathematically,Kinetic energy is represented as follows;

K.E=1/2M[tex]V^{2}[/tex]

Where M represents the mass of the object in kilograms and V represents velocity of the moving object measured in meters per seconds.

The higher the weight of the object the higher the kinetic energy of the object which means the bigger child will have a higher kinetic energy than the smaller child.

Final answer:

Both children start with the same potential energy, which is converted into kinetic energy as they move; hence, both have the same kinetic energy upon landing in the water. However, the distribution of this energy according to the mass and velocity of each child results in a higher velocity for the smaller child and a lower velocity for the larger child.

Explanation:

The subject of this question is in the field of Physics, specifically on the concept of conservation of energy. Both children start from the same height, so they both have the same potential energy. When they land in the pool, this potential energy has been converted into kinetic energy.

The kinetic energy of an object in motion is given by the formula [tex]KE = 1/2 mv^2[/tex], where 'm' is the mass of the object, and 'v' is its velocity. Since we're told to ignore factors like friction and air resistance, we can say that when both children land in the pool they have the same kinetic energy, and the only difference is how this energy is distributed between the mass and the velocity.

The smaller child, having less mass, will have to have a greater velocity to account for the same amount of kinetic energy. The bigger child, with more mass, will have a smaller velocity. So in terms of kinetic energy, it is the same for both children when they reach the water.

Learn more about Kinetic Energy here:

https://brainly.com/question/33783036

#SPJ11

Suppose the truck that’s transporting the box In Example 6.10 (p. 150) is driving at a constant speed and then brakes and slows at a constant acceleration. While coming to a stop, the driver looks in the rear-view mirror and notices that the box is not slipping. In what direction is the frictional force acting on the box?

Answers

Answer:

Friction acts in the opposite direction to the motion of the truck and box.

Explanation:

Let's first review the problem.

A moving truck applies the brakes, and a box on it does not slip.

Now when the truck is applying brakes, only it itself is being slowed down. Since the box is slowing down with the truck, we can conclude that it is friction that slows it down.

The box in the question tries to maintains its velocity forward when the brakes are applied. We can think of this as the box exerting a positive force relative to the truck when the brakes are applied. When we imagine this, we can also figure out where the static friction will act to stop this positive force. Friction will act in the negative direction. Or in other words, friction will act in the opposite direction to the motion of the truck and box. This explains why the box slows down with the truck, as friction acts to stop its motion.

Final answer:

The frictional force acting on the box in a decelerating truck acts forward, towards the direction of the truck's original motion. This occurs as a result of trying to prevent the box from slipping backward by opposing its tendency to remain in motion, illustrating key concepts from Newton's laws of motion.

Explanation:

When the truck brakes and slows down at a constant acceleration, the box inside does not slip due to the frictional force acting on it. The direction of the frictional force on the box will be forward, towards the direction of the truck's original motion.

This might initially seem counterintuitive, but it's essential to understand that the frictional force is what keeps the box from sliding backward as the truck decelerates. According to Newton's first law of motion, an object in motion will stay in motion with the same speed and in the same direction unless acted upon by an unbalanced external force.

In this case, the frictional force acts as that external force, opposing the box's tendency to remain in motion while the truck slows down.

Friction, in physics, acts opposite to the direction of motion and is necessary for stopping the movement of objects. Since the truck is decelerating, the box tries to maintain its state of motion (Newton's first law), but the frictional force acts forward relative to the truck to prevent the box from slipping backward.

This example beautifully demonstrates the role of friction in everyday phenomena, aligning with concepts like Newton's laws of motion and the interaction between surfaces in contact.

A 15.0 g bullet is moving to the right with speed 270 m/s when it hits a target and travels an additional 25.0 cm into the target. What are the magnitude (in N) and direction of the stopping force acting on the bullet

Answers

Answer:

[tex]F=2187\ N[/tex]

Explanation:

Given:

mass of bullet,[tex]m=15\ g=0.015\ kg[/tex] initial velocity of bullet, [tex]u=270\ m.s^{-1}[/tex]displacement of the bullet in the target, [tex]s=25\ cm=0.25\ m[/tex]

Here as given in the question the bullet penetrates the target by the given displacement of the bullet into it. During this process it faces deceleration and hence it comes to rest.

so, final velocity of the bullet, [tex]v=0\ m.s^{-1}[/tex]

Now using the equation of motion:

[tex]v^2=u^2+2a.s[/tex]

where:

[tex]a=[/tex] acceleration of the bullet

[tex]0^2=270^2+2a\times 0.25[/tex]

[tex]a=145800\ m.s^{-2}[/tex]

Now the force of resistance offered by the target in stopping it:

[tex]F=m.a[/tex]

[tex]F=0.015\times145800[/tex]

[tex]F=2187\ N[/tex]

Suppose a sound wave and an electromagnetic wave have the same frequency. Which has the longer wavelength? 1. the electromagnetic wave 2. the sound wave

Answers

Answer:

1. the electromagnetic wave.

Explanation:

Mathematically,

wavelength = velocity ÷ frequency

A mechanical wave is a wave that is not capable of transmitting its energy through a vacuum. Mechanical waves require a medium in order to transport their energy from one location to another. A sound wave is an example of a mechanical wave. Sound waves are incapable of traveling through a vacuum.

Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter, increasing frequency decreases wavelength.

Sound waves (which obviously travel at the speed of sound) are much slower than electromagnetic waves (which travel at the speed of light.)  

Electromagnetic waves are much faster than sound waves and If the Velocity of the wave increases and the frequency is constant, the wavelength also increases.

Light of wavelength 710 nm passes through two narrow slits 0.66 mm apart. The screen is 2.00 m away. A second source of unknown wavelength produces its second-order fringe 1.25 mm closer to the central maximum than the 710-nm light. What is the wavelength of unknown light?

Answers

Answer:

The wavelength is 503 nm  

Explanation:

Considering constructive interference , this means that route(path) difference is equal to the product of order of fringe and wavelength of the light

 i.e   dsinθ  = m[tex]\lambda[/tex]

Where [tex]\lambda[/tex]  is the wavelength of light  and m is the order of the fringe

    Looking at θ to be very small , sin θ can be approximated to  θ

              and   [tex]\theta \approx \frac{x}{l}[/tex]

Substituting this into the above equation

           [tex]d[\frac{x}{l} ] =m\lambda[/tex]

      making x the subject

                    [tex]x =\frac{m\lambda l}{d}[/tex]

      This above equation will give the value of the distance of the [tex]m^{th}[/tex] order fringe of the wavelength [tex]\lambda[/tex] from the central fringe

       Replacing with the value given in the question we have

  [tex]\lambda[/tex] = 710 nm  m = 2  d =0.66 mm , l = 2.0 m

                  [tex]x = \frac{(2)(710nm)(2.0m)[\frac{10^9}{1m} ]}{(0.66mm)(\frac{10^6}{1mm} )}[/tex]

                   [tex]=(4.303*10^6nm)[\frac{\frac{1}{10^6}mm }{1nm} ][/tex]

                    [tex]=4.303mm[/tex]

 The separation of the second fringe from central maximum is 4,303 mm    

   

To obtain the separation of the second order fringe of the unknown light from central maximum

       [tex]x' = 4.303mm - 1.25 mm = 3.053mm[/tex]

Now to obtain the wavelength of this second source

                   from [tex]x = \frac{m\lambda l}{d}[/tex]

                       [tex]\lambda' = \frac{x'd}{ml}[/tex]

Now substituting 3,053 mm for [tex]x'[/tex] 2.0 mm for l , 0.66 mm  for d and 2 for m in the above formula

           [tex]\lambda' =\frac{(3.053mm)(0.66mm)}{(2)(2.0)(\frac{10^3mm}{1m} )}[/tex]

                  [tex]= (503.7*10^{-6}mm)(\frac{10^6nm}{1mm} )[/tex]

                   [tex]=503.7nm[/tex]

A space station sounds an alert signal at time intervals of 1.00 h . Spaceships A and B pass the station, both moving at 0.400c0 relative to the station but in opposite directions.

Part A
How long is the time interval between signals according to an observer on A?
Part B
How long is the time interval between signals according to an observer on B?
Part C
At what speed must A move relative to the station in order to measure a time interval of 2.00 hbetween signals?

Answers

Answer:

(A). The the time interval between signals according to an observer on A is 1.09 h.

(B). The time interval between signals according to an observer on B is 1.09 h.

(C). The speed is 0.866c.

Explanation:

Given that,

Time interval = 1.00 h

Speed = 0.400 c

(A). We need to calculate the the time interval between signals according to an observer on A

Using formula of time

[tex]\Delta t=\dfrac{\Delta t_{0}}{\sqrt{1-(\dfrac{v}{c})^2}}[/tex]

Put the value into the formula

[tex]\Delta t=\dfrac{1.00}{\sqrt{1-(\dfrac{0.400c}{c})^2}}[/tex]

[tex]\Delta t=\dfrac{1.00}{\sqrt{1-(0.400)^2}}[/tex]

[tex]\Delta t=1.09\ h[/tex]

(B). We need to calculate the time interval between signals according to an observer on B

Using formula of time

[tex]\Delta t=\dfrac{\Delta t_{0}}{\sqrt{1-(\dfrac{v}{c})^2}}[/tex]

Put the value into the formula

[tex]\Delta t=\dfrac{1.00}{\sqrt{1-(\dfrac{0.400c}{c})^2}}[/tex]

[tex]\Delta t=\dfrac{1.00}{\sqrt{1-(0.400)^2}}[/tex]

[tex]\Delta t=1.09\ h[/tex]

(C). Here, time interval of 2.00 h between signals.

We need to calculate the speed

Using formula of speed

[tex]\Delta t=\dfrac{\Delta t_{0}}{\sqrt{1-(\dfrac{v}{c})^2}}[/tex]

Put the value into the formula

[tex]2.00=\dfrac{1.00}{\sqrt{1-(\dfrac{v}{c})^2}}[/tex]

[tex]\sqrt{1-(\dfrac{v}{c})^2}=\dfrac{1.00}{2.00}[/tex]

[tex]1-(\dfrac{v}{c})^2=(\dfrac{1.00}{2.00})^2[/tex]

[tex](\dfrac{v}{c})^2=\dfrac{3}{4}[/tex]

[tex]v=\dfrac{\sqrt{3}}{2}c[/tex]

[tex]v=0.866c[/tex]

Hence, (A). The the time interval between signals according to an observer on A is 1.09 h.

(B). The time interval between signals according to an observer on B is 1.09 h.

(C). The speed is 0.866c.

The atoms that constitute your body are mostly empty space, and structures such as the chair you're sitting on are composed of atoms that are also mostly empty space. So why don't you fall through the chair

Answers

Explanation:

As we all know that the atom mainly composed of two parts, Nucleus at the center and the electrons dancing around it. And, yes there is a vast distance between nucleus and the electrons and it's about ten billionth of a meter. So the question is if there is such an empty space then why not our body just move through the chair and fall?  So the answer is, it's all due to the forces. Just like the cracking of lightning through the void, specks of electrons and nuclei are constantly interacting through the force called electromagnetic forces. During each interaction there is an exchange of energy particles called photons. So the each photon swapped is equals to the push or pull or the forces exerted across the emptiness. So these forces enable us to sit on chair or to do other things.

A centrifuge accelerates uniformly from rest to 15,000 rpm in220s. Through how many revolutions did it turn in this time?

Answers

Answer:

27588

Explanation:

Given,

Speed of the centrifuge = 15000 rpm

time, t = 220 s

Revolution = ?

1 min = 60 s

Speed of centrifuge = [tex]\dfrac{15000}{60}[/tex]

                                 = 250 rps

Initial angular speed = 0 rps

[tex]\alpha = \dfrac{250-0}{220}[/tex]

[tex]\alpha = 1.14\ rev/s^2[/tex]

Now,

revolution

[tex]\theta = \omega_0 t - \dfrac{1}{2}\alpha t^2[/tex]

[tex]\theta = 0 + \dfrac{1}{2}\times 1.14\times 220^2[/tex]

[tex]\theta = 27588\ rev[/tex]

Hence, the number of turns is equal to 27588.

Two thermally insulated cylinders, A and B, of equal volume, both equipped with pistons, are connected by a valve. Initially A has its piston fully withdrawn and contains a perfect monatomic gas at temperature T, while B has its piston fully inserted, and the valve is closed. Calculate the final temperature of the gas after the following operations, which each start with the same initial arrangement. The thermal capacity of the cylinders is to be ignored.
(a) The valve is fully opened and the gas slowly drawn into B by pulling out the piston B; piston A remains stationary.
(b) Piston B is fully withdrawn and the valve is opened slightly; the gas is then driven as far as it will go into B by pushing home piston A at such a rate that the pressure in A remains constant: the cylinders are in thermal contact

Answers

Final answer:

In scenario (a), the temperature of the gas decreases since it is an adiabatic process. In scenario (b), the final temperature depends on the initial and final volumes and the presence of heat exchange.

Explanation:

In scenario (a), the gas is slowly drawn into cylinder B by pulling out the piston B while cylinder A remains stationary. Since the cylinders are thermally insulated, there is no heat exchange with the surroundings, and the process is adiabatic. As a result, the temperature of the gas decreases.

In scenario (b), the gas is driven as far as it will go into cylinder B by pushing the piston A at a rate that maintains constant pressure in cylinder A. In this case, the process is isobaric, and the gas expands while exerting work. Since there is thermal contact between the cylinders, heat can be exchanged between the gas and the surroundings, leading to a change in temperature.

To calculate the final temperatures in both scenarios, it is necessary to know the initial pressure and volume of the gas in cylinder A, as well as the final volume of the gas in cylinder B, in each case.

Learn more about Thermal processes in isolated cylinders here:

https://brainly.com/question/32426393

#SPJ12

For the adiabatic free expansion in scenario (a), the final temperature remains the same as the initial temperature. In scenario (b), the gas undergoes adiabatic compression followed by isothermal expansion, resulting in the final temperature being the same as the initial temperature, T.

Final Temperature Calculation in Two Scenarios

Let's explore the gas dynamics in two scenarios involving thermally insulated cylinders A and B containing a perfect monatomic gas at initial temperature T.

Scenario (a): Valve is Fully Opened and Gas is Drawn into B

Initial conditions:

Volume of cylinder A (Va): VVolume of cylinder B (Vb): 0Initial temperature (T): T

Since cylinder A is insulated and its piston remains stationary, there is no work done on or by the gas in cylinder A. The gas expands into cylinder B, which is an adiabatic free expansion:

The final temperature (T') will be the same as the initial temperature (T). Because the process is adiabatic and involves no work, the internal energy (and thus temperature) of the gas remains unchanged.

Scenario (b): Adiabatic Compression of A and Isothermal Expansion into B

Initial conditions:

Volume of cylinder A (Va): VVolume of cylinder B (Vb): 0Initial temperature (T): T

We perform an adiabatic process on cylinder A and isothermal expansion into B. The adiabatic compression affects the temperature of the gas in A before the gas is allowed to expand isothermally:

1. Adiabatic compression in A:
For adiabatic processes, TVγ-1 = constant, where γ = 5/3 for a monatomic ideal gas. The final volume of gas in A is V/2 because the gas expands equally into B.

2. Isothermal expansion into B:
After the compression, we allow the gas to expand isothermally into B at constant temperature T. Hence, the final temperature in both cylinders will be T because the gas reaches thermal equilibrium with the environment.

Air exits a turbine at 200 kPa and 1508C with a volumetric flow rate of 7000 liters/s. Modeling air as an ideal gas, determine the mass flow rate, in kg/s.

Answers

Answer:

mass flow rate = 11.464 kg/sec

Explanation:

given data

P = 200 kPa = 2 × [tex]10^{5}[/tex]  Pa

temperature = 150°C  = 423 k

volumetric flow rate = 7000 liters/s

solution

first we get here molar flow rate that is express as

molar flow rate  = [tex]\frac{Pv}{RT}[/tex]   .................1

put here value

molar flow rate  = [tex]\frac{2 \times 10^5 \times 7}{8.314\times 423}[/tex]  

molar flow rate  = 398.06 mol/sec

and

now we get mass flow rate

mass flow rate = molar flow rate × average  mol weight ..............2

mass flow rate = 398.06 × 28.8

mass flow rate = 11464.3 g/sec

mass flow rate = 11.464 kg/sec

Final answer:

The mass flow rate of air exiting the turbine is calculated using the ideal gas equation and the given conditions of pressure, temperature, and volumetric flow rate. By substituting the values into the equation, the mass flow rate is found to be 11.6 kg/s.

Explanation:

The problem involves finding the mass flow rate of air using the ideal gas model, given the exiting conditions from a turbine. The known variables are the pressure (200 kPa), temperature (150°C which is 423.15 K after conversion from Celsius to Kelvin), and volumetric flow rate (7000 liters/s or 7 m³/s). To find the mass flow rate, we can use the ideal gas equation PV = mRT, where P is the absolute pressure, V is the volume flow rate per unit time, m is the mass flow rate, R is the specific gas constant for air, and T is the absolute temperature.

The specific gas constant for air (R) is 287 J/kg·K, and it can be solved for m as:

m = PV / (RT)

Substituting the given values:

m = (200,000 Pa)(7 m³/s) / (287 J/kg·K)(423.15 K)

m = 11.599 kg/s (rounded to three significant figures)

Therefore, the mass flow rate of the air exiting the turbine is 11.6 kg/s.

a copper rod of length 27.5 m has its temperature increases by 35.9 degrees celsius. how much does its length increase?(unit=m)

Answers

Answer:0.01678325m

Explanation:

Original length(L1)=27.5m

Temperature rise(@)=35.9°C

Linear expansivity of copper(α)=0.000017

Length increment(L)=?

L=α x L1 x @

L=0.000017 x 27.5 x 35.9

L=0.01678325m

Answer:

0.0168

Explanation:

Remember about significant digits (there must be 3)

A bullet is fired with a muzzle velocity of 1446 ​ft/sec from a gun aimed at an angle of 5 degrees above the horizontal. Find the vertical component of the velocity.

Answers

Answer:

126.03 ft/sec

Explanation:

From the question above,

V₁ = VsinФ............. Equation 1

Where V₁ = vertical component of the velocity, V = Velocity acting on the x-y plane, Ф = angle to the horizontal.

Given: V = 1446 ft/sec, Ф = 5°

Substitute into equation 1

V₁ = 1446sin(5)

V₁  = 1446(0.0872)

V₁  = 126.03 ft/sec.

Hence the vertical component of the velocity = 126.03 ft/sec

Assume: The small objects are point particles. The system of seven small 2 kg objects is rotating at an angular speed of 9 rad/s. The objects are connected by light, flexible spokes that can be lengthened or shortened.

A) What is the initial angular momentum of the object?

B)What is the new angular speed if the spokes are shortened from 9 m to 6 m ?

C)What is the new angular momentum of the object?

Answers

Answer: a) [tex]L = 10206 kg \cdot \frac{m^{2}}{s}[/tex], b) [tex]\omega_{f} = 20.25 rad/s[/tex], c) [tex]L = 10206 kg \cdot \frac{m^{2}}{s}[/tex]

Explanation:

The angular momentum of a system of particles rotating around an axis is:

[tex]L = \sum_{i=1}^{7} r_{i}^{2} \cdot m_{i} \cdot \omega[/tex]

a) The previous expression can be simplified to find the initial angular momentum:

[tex]L = 7 \cdot r^{2} \cdot m \cdot \omega\\L = 7 \cdot (9 m)^2 \cdot (2kg) \cdot (9 \frac{rad}{s} )\\L = 10206 kg \cdot \frac{m^{2}}{s}[/tex]

b) The new angular speed is calculated from the Principle of Angular Momentum Conservation, since there are no external forces influencing over the system:

[tex]L = 7 \cdot r_{f}^2 \cdot (m) \cdot \omega_{f}[/tex]

[tex]\omega_{f}=\frac{L}{7 \cdot r_{f}^2\cdot m}[/tex]

[tex]\omega_{f} = 20.25 rad/s[/tex]

c) The angular momentum remains constant, since there is no information that indicates the presence of external forces influencing the system.

(A)  The initial angular momentum of the object is 10206 kgm²/s

(B)  The new angular speed is 20.25 rad/s

(C)  The angular momentum does not change

Conservation of angular momentum:

All 7 objects have a mass of m = 2kg. The length of the spokes is R = 9m.

(A) The angular momentum of a system is given by:

L = Iω

where I is the moment of inertia of the system

ω is the angular speed = 9 rad/s (given)

L = 7×mR²×ω

L = 7×(2×9²)×9 kgm²/s

L = 10206 kgm²/s

(B) According to the law of conservation of angular momentum, the angular momentum of the system must remain conserved.

So, the new angular momentum is:

L' =  7×(2×6²)×ω'

where ω' is the new angular momentum

10206 = 7×(2×6²)×ω'

ω' = 20.25 rad/s

(C) The new angular momentum of the object is same as the original angular momentum of the object since there is no dissipative force so the angular momentum must be conserved.

Learn more about angular momentum:

https://brainly.com/question/15104254?referrer=searchResults

A rectangular loop of wire with width 0.4 cm and length 0.4 cm is oriented with the normal to the face of the loop making an angle of 30° with respect to the direction of B. The B field has a magnitude of 0.77 T. Find the magnetic flux through the loop.

Answers

Answer:

0.001067 Wb

Explanation:

Parameters given:

Magnetic field, B = 0.77 T

Angle, θ = 30º

Width = 0.4cm = 0.04m

Length = 0.4cm = 0.04m

Magnetic flux, Φ(B) is given as:

Φ(B) = B * A * cosθ

Where A is Area

Area = length * width = 0.04 * 0.04 = 0.0016 m²

Φ(B) = 0.77 * 0.0016 * cos30

Φ(B) = 0.00167 Wb

Answer:

1.07×10⁻⁵ Wb

Explanation:

Using

Φ = BAcosθ.................. Equation 1

Where Φ = magnetic Flux, B = magnetic Field, A = Area of the rectangular loop, Angle between the loop and the Field.

But

A = L×W........................ Equation 2

Where L = Length, W = Width.

Substitute equation 2 into equation 1

Φ = BLWcosΦ................ Equation 3

Given: B = 0.77 T, L = 0.4 cm = 0.004 m, W = 0.4 cm = 0.004 m, Ф = 30°

Substitute into equation 3

Ф = 0.77(0.004)(0.004)cos30

Ф  = 1.07×10⁻⁵ Wb.

Hence the magnetic Field through the loop = 1.07×10⁻⁵ Wb.

The slotted link is pinned at O, and as a result of the constant angular velocity u # = 3 rad>s it drives the peg P for a short distance along the spiral guide r = (0.4 u) m, where u is in radians. Determine the velocity and acceleration of the particle at the

Answers

Answer:

A) vᵣ = 1.2 m/s

B) vₜ = 0.4π m/s = 1.257 m/s

C) aᵣ = - 1.2π m/s² = - 3.771 m/s²

D) aₜ = 7.2 m/s²

Explanation:

Given,

θ' = 3 rad/s

r = 0.4 θ

Note that

θ' = (dθ/dt) = 3 rad/s

θ" = (d²θ/dt²) = (d/dt) (3) = 0 rad/s²

r' = (dr/dt) = (d/dt) (0.4θ) = 0.4 (dθ/dt) = 0.4 × θ' = 0.4 × 3 = 1.2 m/s

r" = (d²r/dt²) = 0.4 (d²θ/dt²) = 0 m/s²

A) Radial component of the velocity of P at the instant θ=π/3rad.

From the kinematics of a particle in a plane,

vᵣ = r' = 1.2 m/s

B) Transverse component of the velocity and acceleration of P at the instant θ=π/3rad.

vₜ = rθ' = (0.4 θ) (3) = 1.2 θ = 1.2 (π/3) = 0.4π m/s = 1.257 m/s

C) Radial component of the acceleration of P at the instant θ=π/3rad.

aᵣ = r" - r(θ'²) = 0 - (0.4θ)(3²) = - 3.6θ = - 3.6 (π/3) = - 1.2π m/s² = - 3.771 m/s²

D) Transverse component of the acceleration of P at the instant θ=π/3rad

aₜ = rθ" + 2r'θ' = (0.4θ)(0) + (2)(1.2)(3) = 0 + 7.2 = 7.2 m/s²

Hope this Helps!!!

Final answer:

The response requires understanding rotational kinematics and dynamics to determine the velocity and acceleration of a particle moving along a spiral guide, involving calculus and principles of rotational motion.

Explanation:

The question pertains to kinematics in the context of rotational and spiral motion. In particular, it involves the motion of a particle along a spiral guide with a given radial dependency on the angle turned through (in radians). To find the velocity and acceleration of the particle, one must apply the equations of motion that relate linear and angular quantities and consider any given geometric relationships and constraints, such as the provided relationship between radial distance and angular position. To solve the tasks posed, one would typically employ differential calculus and the principles of rotational dynamics including tangential and radial components of velocity and acceleration.

For example, the velocity of the particle can be found by taking the time derivative of the radial position r, which in turn depends on the angular velocity ω. The acceleration would then be found by differentiating the velocity with respect to time or by explicitly using the tangential and radial acceleration components for rotational motion, which are related to ω and its time derivative (angular acceleration).

Suppose you analyze standardized test results for a country and discover almost identical distributions of physics scores for female and male students. Which of the following would NOT be an explanation based upon what you read in the textbook? Select one:

O a. Physics ability is less likely than math to reflect real biological differences.
O b. There were no gender differences in the teaching and learning of physics in this country
c. Physics ability is not defined as gendered in this country
O d . The standardized testing took place in a relatively gender equal society.

Answers

Final answer:

The textbook would not likely suggest 'Physics ability is less likely than math to reflect real biological differences' as an explanation for identical physics scores between genders. This because research shows academic abilities aren't influenced by biological gender differences but rather other factors like sociocultural influences, teaching methods, and individual variance.

Explanation:

The statement that would not be an explanation for finding the almost identical distribution of physics scores between male and female students, based on information provided in a textbook, is a. Physics ability is less likely than math to reflect real biological differences.

This claim implies there is a biological basis for differing abilities in physics between genders. However, research has largely debunked this concept, showing that abilities in academic subjects are not influenced by biological gender differences. Instead, other factors like sociocultural influences, teaching methods, and individual variance play a significant role.

Options b, c, and d all refer to sociocultural aspects such as the way physics is taught, the societal concept of gender roles, and the equality of the society. These, not inherent biological differences, could explain identical distributions of physics scores between genders.

Learn more about Physics and Gender Differences here:

https://brainly.com/question/33229071

#SPJ3

The intensity of a linearly polarized electromagnetic wave is directly proportional to the square of the electric field (e.g., I = k*E2). If the Receiver’s meter reading was directly proportional to the incident microwave’s intensity, the meter would read the relationship M = Mocos2 θ. Plot this relationship. Based on your graphs, discuss the relationship between the meter reading of the Receiver and the polarization and magnitude of the incident microwave.

Answers

Answer:

Please find attached file for complete answer solution and explanation of same question.

Explanation:

A copper rod of length 27.5 m has its temperature increases by 35.9 degrees celsius. how much does its length increase?(unit=m)

Answers

The increase in length = 1.87 x 10⁻²

Explanation:

When copper rod is heated , its length increases

The increase in length can be found by the relation

L = L₀ ( 1 + α ΔT )

here L is the increased length and L₀ is the original length

α  is the coefficient of linear expansion and ΔT is the increase in temperature .

The increase in length = L - L₀ = L₀ x α ΔT

Substituting all these value

Increase in length = 27.5 x 1.7 x 10⁻⁵ x 35.9

= 1.87 x 10⁻² m

Answer:0.01678325m

Explanation:

Original length(L1)=27.5m

Temperature rise(@)=35.9°C

Linear expansivity(α)=0.000017

Length increase(L)=?

L=α x L1 x @

L=0.000017 x 27.5 x 35.9

L=0.01678325m

ou place the spring vertically with one end on the floor. You then drop a book of mass 1.40 kgkg onto it from a height of 0.800 mm above the top of the spring. Find the maximum distance the spring will be compressed.

Answers

Complete question:

A spring of negligible mass has force constant k = 1600 N/m. (a) How far must the spring be compressed for 3.20 J of potential energy to be stored in it? (b) You place the spring vertically with one end on the floor. You then drop a 1.40-kg book onto it from a height of 0.800 m above the top of the spring. Find the maximum distance the spring will be compressed.

Answer:

(a) 0.063 m

(b) 0.126 m

Explanation:

Given;

force constant, K =  1600 N/m

Part (a)

Elastic potential energy is given as;

U = ¹/₂Kx²

where;

x is the extension in the spring

[tex]x = \sqrt{\frac{2U}{K} } = \sqrt{\frac{2*3.2}{1600} } = 0.063 \ m[/tex]

Part (b)

given;

mass of the book, m = 1.4 kg

height above the spring from which the book was dropped, h = 0.8 m

From the principle of conservation of energy;

Gravitational potential energy = Elastic potential energy

mgH = ¹/₂Kx²

H is the total vertical distance from floor to 0.8 m =  maximum distance the spring will be compressed + h

let the maximum distance = A

mg(A+h) = ¹/₂KA²

1.4 x 9.8(A + 0.8) = ¹/₂ x 1600A²

13.72 (A + 0.8) = 800A²

13.72A + 10.976 = 800A²

800A² - 13.72A -  10.976 = 0

This is a quadratic equation, and we solve using formula method, where a = 800, b = - 13.72 and c = - 10.976

A = 0.126 m

Final answer:

The question involves determining the maximum compression of a spring by using energy conservation to equate the gravitational potential energy of a falling book to the elastic potential energy of the spring. The calculation needs the spring constant, which is not given in the question.

Explanation:

The student's question involves finding the maximum compression of the spring after dropping a 1.40 kg book on it from a certain height. This is a classic energy conservation problem in physics, where the gravitational potential energy of the book is converted into the elastic potential energy of the spring upon impact.

Firstly, the initial gravitational potential energy (Ug) of the book can be calculated using Ug = mgh, where m is the mass of the book, g is the acceleration due to gravity (approximately 9.81 m/s2), and h is the height from which the book is dropped.

The elastic potential energy stored in the spring (Ue) at maximum compression can be expressed as Ue = (1/2)kx2, where k is the spring constant and x is the compression of the spring.

Assuming no energy is lost due to friction or air resistance, energy conservation dictates that the initial gravitational potential energy will equal the elastic potential energy at the point of maximum compression. Therefore, mgh = (1/2)kx2. To find the maximum compression, x, you would rearrange this equation to solve for x and plug in the values for m, g, h, and k.

The actual computation requires the value of the spring constant k, which was not provided in the question. If it were provided, one would simply calculate the maximum compression using the specified formula.

person is 1.9 m tall. Where should he place the top of a mirror on the wall so he can see the top of his head? Assume his eyes are 5.1 cm below the top of his head. Find a minimal vertical distance from the level of the person’s eye

Answers

Answer:

The minimal vertical distance from the level of the person’s eye is 2.55 cm.

Explanation:

Given;

height of the person = 1.9 m

his eyes are 5.1 cm below the top of his head

If top of his head is the same distance from the mirror as his eyes is from the mirror, then the top of the mirror must be half of his eyes level.

Therefore, the minimal vertical distance from the level of the person’s eye is ¹/₂ x 5.1 cm = 2.55 cm

The minimal vertical distance of the mirror from the level of the person’s eye is 2.55 cm.

In a transpiration experiment, the air bubble has an initial volume of 4.33 mL, and an initial pressure of 101.9 kPa. What will be the pressure reading after the plant transpires 0.26 mL of water from the tubing

Answers

Answer:

Explanation:is in the picture below

The temperature within a thin plate with thermal conductivity of 10 W/m/K depends on position as given by the following expression: TT=(100 K)????????−xx2/????????xx 2cos�yy/????????yy�+300 K Where, Lx = 1 m, and Ly = 2 m. At the point (0.4 m, 1 m), find: a. The magnitude of the heat flux b. The direction of the heat flux

Answers

Answer:

Heat flux = (598.3î + 204.3j) W/m²

a) Magnitude of the heat flux = 632.22 W/m²

b) Direction of the heat flux = 18.85°

Explanation:

- The correct question is the first image attached to this solution.

- The solution to this question is contained on the second and third images attached to this solution respectively.

Hope this Helps!!!

A 20-kg child starts at the center of a playground merry-go-round that has a radius of 1.5 mm and rotational inertia of 500kg⋅m2 and walks out to the edge. The merry-go-round has a rotational speed of 0.20 s−1 when she is at the center.

What is its rotational speed when she gets to the edge?

Answers

Answer:

w = 0.189 rad/ s

Explanation:

This exercise we work with the conservation of the moment, the system is made up of the merry-go-round and the child, for which we write the moment of two instants

Initial

         L₀ = I₀ w₀

Final

          [tex]L_{f}[/tex] = I w

         L₀ = L_{f}

         I₀ w₀ = I_{f} w

         .w = I₀/I_{f}   w₀

The initial moment of inertia is

        I₀ = 500 kg. m2

The final moment of inertia

         [tex]I_{f}[/tex] = 500 + m r²

         I_{f} = 500 + 20 1.5

         I_{f} = 530 kg m²

Initial angular velocity

         w₀ = 0.20 rad / s

Let's calculate

          w = 500/530 0.20

          w = 0.189 rad / s

Our eyes are typically 6 cm apart. Suppose you are somewhat unique, and yours are 7.50 cm apart. You see an object jump from side to side by 0.95 degree as you blink back and forth between your eyes. How far away is the object?

Answers

Answer:

Distance of the object from eye is approx 4.52 m

Explanation:

As we know that the object subtend a small angle on both the eyes which is given as

[tex]\theta = 0.995 degree[/tex]

now we know that the distance between two eyes is given as

d = 7.50 cm

so we have

[tex]angle = \frac{arc}{Radius}[/tex]

so here the radius is same as the distance from eye while arc is the distance between two eyes

so we have

[tex]0.95 \frac{\pi}{180} = \frac{7.50}{R}[/tex]

[tex]R = 452 cm[/tex]

Consider a rigid steel beam of length L = 13 m and mass mb = 388 kg resting on two supports, one at each end. A worker of mass mw = 74 kg sits on the beam at a distance x from support A. Refer to the figure.

When the worker sits at a distance x = 7.5 m from support A, calculate the force, in newtons, that support B must exert on the beam in order for it to remain at rest. Use g with three significant figures.

Answers

Answer:

2321 N

Explanation:

Let g = 9.807 m/s2

Assume this is a uniform beam and the center of mass it at the geometric center, which is half way between the 2 ends, or h = 13/2 = 6.5 m from the left end (support A).

For the system to remain at rest, then the total moments around a point (let pick support A) must be 0. Moments created by each force is the product of the force magnitude and the moment arm, aka distance from the force to support A

[tex]\sum M_A = 0[/tex]

[tex]M_w + M_b + M_B = 0[/tex]

[tex]F_wx + F_bh + F_BL = 0[/tex]

[tex]m_wgx + m_bgh = -F_BL[/tex]

If we take upward direction be the positive direction, that means all the gravity acting downward are negative

[tex]74*(-9.807)*7.5 + 388(-9.807)*6.5 = -F_B13[/tex]

[tex]-13F_B = -30176.139[/tex]

[tex]F_B = -30176.139/-13 = 2321 N[/tex]

So the force at support B has a magnitude of 2321 N acting upward

Final answer:

The force that support B must apply to keep the beam balanced when the worker sits at a distance of 7.5m from support A is approximately 1597.92 N.

Explanation:

This problem involves understanding of statics, specifically the principle of moments or torques. Assuming the system is in equilibrium (i.e., the beam does not rotate or translate), the sum of the forces and the sum of the torques must both be zero.

We start by calculating the total weight of the beam, which is simply its mass multiplied by the acceleration due to gravity, g. This gives mb * g = 388 kg * 9.81 m/s^2 = 3806.68 N, this force acts in the middle of the beam, that is at a distance of L/2 = 13m/2 = 6.5m from each support.

Similarly, the weight of the worker is given by mw * g = 74 kg * 9.81 m/s^2 = 725.94 N, this force acts at a distance of x = 7.5m from the left support (A) and L - x = 13m - 7.5m = 5.5m from the right support (B).

Now we can calculate the net force (Fn) and the net torque (Tn). We choose the left support (A) as the pivot point. The total force acting on the beam is the sum of the weights of the beam and the worker, and this must be supported by the two supports. Since sum of the forces must be zero: Fn = F_A + F_B = mass_beam * g + mass_worker * g.

The net torque is calculated from the forces acting at a distance from the pivot point. So we get, Tn = beam_weight * distance_beam - worker_weight * distance_worker + F_B * L = 0. From this, we can solve for F_B (force at support B), we find: F_B = (beam_weight * distance_beam - worker_weight * distance_worker) / L.

Plugging into these formulas, we get the force that support B must apply to keep the system in balance: F_B = (3806.68 N * 6.5m - 725.94 N * 7.5m) / 13m = 1597.92 N.

Learn more about static equilibrium here:

https://brainly.com/question/29316883

#SPJ3

An uncharged metal sphere, A, is on an insulating base. A second sphere, B, of the same size, shape, and material carrying charge Q is brought close to, but not touching, sphere A. Describe what happens to the charges on A and B as they are brought close but not touching. If we now remove sphere B and place it far away, what is the charge on sphere A

Answers

Answer:

0

Explanation:

If we bring the charged sphere B close to, but not touching it , to the uncharged sphere A, as charges can move freely on the conductor, a charge -Q will be built on the outer surface of the sphere A, facing to sphere B.As the sphere A must remain neutral, a charge Q will be built on the surface, on the side farther to the sphere B, as the following condition must be met:

       Q +(-Q) =0.

If we now remove sphere B, and place it far away, there will be a charge redistribution within sphere A, making to disappear the separation between Q and -Q.The total charge on sphere A must be 0, as there is no charge transfer from sphere B to sphere A.

Final answer:

When identical conducting spheres A and B with charges of –5 nC and –3 nC respectively are brought into contact, the total initial charge of –8 nC is shared equally. Upon separation, each sphere holds a final charge of –4 nC.

Explanation:

When two conducting spheres, A and B, with different charges are brought into contact, the total charge is shared equally between them. Given sphere A has a charge of –5 nC and sphere B has a charge of –3 nC, the total initial charge is –8 nC. This charge will be evenly distributed between both spheres when they touch.

Therefore, after spheres A and B are brought into contact and then separated, the final charge on each sphere will be half of the total charge. This final charge will be calculated as follows:

Total charge before contact: –5 nC + –3 nC = –8 nCCharge on each sphere after contact and separation: –8 nC / 2 = –4 nC

Thus, after separation, both sphere A and B will have a charge of –4 nC each.

Suppose that you wish to fabricate a uniform wire out of1.15 g of copper. Assume the wire has aresistance R = 0.300 , and all ofthe copper is used.
(a) What will be the length of the wire?

(b) What will be the diameter of the wire?

Answers

Answer:

(a) L = 149.2 cm

(b) d = 0.033 cm

Explanation:

Note that the resistivity of copper is

[tex]\rho = 1.72\times 10^{-8}~{\rm \Omega . m} = 1.72\times 10^{-6}~{\rm \Omega.cm}[/tex]

and the mass density of copper is

[tex]d = 8.96~{\rm g/cm^3}[/tex]

We will use the following formula to relate the resistance to other parameters

[tex]R = \frac{\rho L}{A} = \frac{\rho L}{\pi r^2}[/tex]

If all the copper with 1.15 g is used, then

[tex]m = dV\\1.15 = 8.96 \times (L\pi r^2)\\L\pi r^2 = 0.128[/tex]

Back to the resistance:

[tex]0.3 = \frac{1.72\times 10^{-6} L}{\pi r^2}\\L = \pi r^2 (1.74\times 10^5)\\L = \frac{0.128}{L}(1.74\times 10^5)\\L = 149.2~{\rm cm}[/tex]

Then, the diameter is

[tex]149.2\times \pi r^2 = 0.128\\r = 0.0165~{\rm cm}\\d = 2r = 0.033~{\rm cm}[/tex]

A hockey puck is sliding across a frozen pond with an initial speed of 9.3 m/s. It comes to rest after sliding a distance of 42.0 m. What is the coefficient of kinetic friction between the puck and the ice?

Answers

Answer:

The coefficient of kinetic friction between the puck and the ice is 0.11

Explanation:

Given;

initial speed, u = 9.3 m/s

sliding distance, S = 42 m

From equation of motion we determine the acceleration;

v² = u² + 2as

0 = (9.3)² + (2x42)a

- 84a = 86.49

a = -86.49/84

|a| = 1.0296

[tex]F_k = \mu_k N[/tex] = ma

where;

Fk is the frictional force

μk is the coefficient of kinetic friction

N is the normal reaction = mg

μkmg = ma

μkg = a

μk = a/g

where;

g is the gravitational constant = 9.8 m/s²

μk = a/g

μk = 1.0296/9.8

μk = 0.11

Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11

Approximately 1.000 g each of four gasses H2, Ne, Ar, and Kr are placed in a sealed container all under1.5 atm of pressure. Assuming ideal behavior, determine the partial pressure of the H2 and Ne

Answers

Answer:

The partial pressure of H2 is 0.375 atm

The partial pressure of Ne is also 0.375 atm

Explanation:

Mass of H2 = 1 g

Mass of Ne = 1 g

Mass of Ar = 1 g

Mass of Kr = 1 g

Total mass of gas mixture = 1 + 1 + 1 + 1 = 4 g

Pressure of sealed container = 1.5 atm

Partial pressure of H2 = (mass of H2/total mass of gas mixture) × pressure of sealed container = 1/4 × 1.5 = 0.375 atm

Partial pressure of Ne = (mass of Ne/total mass of gas mixture) × pressure of sealed container = 1/4 × 1.5 = 0.375 atm

Final answer:

The partial pressures of H2 and Ne in the mixture under ideal gas behavior are approximately 1.278 atm and 0.128 atm respectively. This is calculated using their mole fractions and the total pressure.

Explanation:

In this scenario, we're essentially dealing with ideal gas behavior. The partial pressure of a gas in a mixture can be determined by the mole fraction of the gas times the total pressure. The moles of each gas can be calcuated using the equation: moles = mass/molar mass. The molar masses of H2, Ne, Ar, and Kr are approximately 2 g/mol, 20 g/mol, 40 g/mol, and 84 g/mol, respectively.

For example, moles of H2 ≈ 1.000 g / 2 g/mol = 0.5 mol. Likewise, moles of Ne = 1.000 g / 20 g/mol = 0.05 mol, moles of Ar = 1.000 g / 40 g/mol = 0.025 mol, and moles of Kr = 1.000 g / 84 g/mol = 0.012 mol. The total moles of gas = 0.5 mol + 0.05 mol + 0.025 mol + 0.012 mol = 0.587 mol.

The mole fraction of H2 = 0.5 mol / 0.587 mol = 0.852. Therefore, the partial pressure of H2 = 0.852 * 1.5 atm = 1.278 atm. Applying the same calculations for Ne, the mole fraction of Ne = 0.05 mol / 0.587 mol = 0.085. Therefore, the partial pressure of Ne = 0.085 * 1.5 atm = 0.128 atm.

Learn more about Partial Pressure here:

https://brainly.com/question/35280352

#SPJ3

Other Questions
Which region remains a source of conflict between India and Pakistan?A. Khyber PassB. BangladeshC. NepalD.Kashmir A researcher is testing a new drug for a condition that has no existing effective treatments. A sample of people with the condition is recruited and randomly divided into two groups treatment (which receives the new drug) and control (which receives a placebo). The placebo looks exactly like the real drug but it does not contain the active ingredients, and the participants do not know which they are receiving. To ensure this study is ethical, what needs to be included in the research procedures? An engineer scale model shows a building that is 3 inches tall. If the scale is 1 inch = 600 feet, how tall is the actual building in feet ? A 25-kg iron block initially at 350oC is quenched in an insulated tank that contains 100 kg of water at 18oC. Assuming the water that vaporizes during the process condenses back in the tank, determine the total entropy change during this process. On a container ship there were 30 small containers that each weighed 3 tons, 20 mediumcontainers that each weighed 5 tons, and 10 large containers that each weighed 8 tons.Find the mean weight of the containers on this ship. __________ is a strategy based on the use of IT to reduce the costs associated with the product assembly process or the way services are delivered to customers. Which of the following is the best example of sensitization? Select one: a. Klaus has learned to stay away from his boss on Mondays, because on several Mondays in the past he has seen the boss yell at coworkers. b. When she first put on the new blouse, Kendra felt that the fabric was delightfully soft and luxurious. Only a minute or two later, however, she was no longer aware of the feel of the soft fabric. c. Rachel did not pay any attention to the beeping from her refrigerator door alarm until she realized that it meant the door was left open and the cold air was escaping. Now when she hears the door alarm she runs to the kitchen to close the refrigerator door. d. Pavel was so hungry that when he ate the first piece of pizza it tasted better than any pizza he ever had before! Now, after eating three slices of pizza, he doesn't think that it tastes quite as good. Which statements apply to laws? Check all that apply.O Alaw is a factual statement.Alaw is testable.Alaw is a possible answer to a scientific question.Alaw is an explanation.A law cannot be changed or replaced. In a sample of pond water, a new organism is identified with the following characteristics: It consists of 70 cells surrounded by rigid cell walls, which join the cells together. Inside each of these identical cells are mitochondria and chloroplasts. Such an organism would most likely be classified as a colonial photosynthetic eukaryote Place several E-Field Sensors at a few points on different equipotential lines, and look at the relationship between the electric field and the equipotential lines. Which statement is true? 1-At any point, the electric field is perpendicular to the equipotential line at that point, and it is directed toward lines of higher voltages. 2-At any point, the electric field is perpendicular to the equipotential line at that point, and it is directed toward lines of lower voltages. 3-At any point, the electric field is parallel to the equipotential line at that point. What would happen to Earth's temperature if the energy absorbed from the sun (solar radiation) was less than the emitted (thermal) energy leaving the Earth? (2) Which of the following energy forms is not involved in hitting a tennis ball?a. kinetic energye gravitational potential energyb. chemical potential energyd. elastic potential energytantial energy is that Judsons wifeA. is suspicious of his actions.B. is afraid of him. C. believes he is harmless. D. thinks he is lying to her. What is the purpose of the Integral spacecraft?A.to record the environmental conditions of Earthfrom spaceB.to explore exciting parts of the universe purely forscientific discoveryC.to find a new planet for human colonization soeveryone can be happyD.to find new life and bring it under the control ofthe United State 100 POINTS! Name a dinosaur with 500 feet. (pls dont google it) Which of the following statements is TRUE of attachment? A. it's a learned physical behavior. B. it's an important two-way experience between infant and adult.C. its only an issue post toddlerhood.D. it's not important during the first year. Good cash management is an essential job of the financial manager. You own a small auto sales business called King Kars. You stock up on inventory in February, April, June, and September. Your annual cash budget indicates that your MONTHLY NET CASH for the year will be the following:JAN $5,000FEB -$30,000MAR $20,000APRIL -$35,000MAY $25,000JUNE -$10,000JULY $25,000AUG $25,000SEPT -$30,000OCT $15,000NOV $15,000DEC $25,000You begin the year with a cash balance of $50,000, and the minimum cash balance desired must be $50,000 every month. 1. Prepare a cash flow summary and external financing summary as noted in the Excel spreadsheet assigned to this submission.2. Do you believe that the company needs outside financing?3. What is the minimum line of credit to request from a lender?Do you think you are a good candidate for the line of credit? Why? Suppose that a meter stick is balanced at its center. A 0.11 kg mass is then positioned at the 17-cm mark. At what cm mark must a 0.38 kg mass be placed to balance the 0.11 kg mass what is the P(T,H,T,H) on 4 flips of a coin?i need help Is Dropbox profitable as of June 2010? Are you optimistic about its chances? How does your estimation of Dropboxs current profitableness influence your rating of the ventures chances? Steam Workshop Downloader