Answer:
sqrt of 2/2
Step-by-step explanation:
Answer:
The exact value of cos 45° is: [tex]\frac{\sqrt{2} }{2}[/tex].
Step-by-step explanation:
Two fair dice are rolled.
What is the PROBABILITY that the FIRST lands on a 6 and the SECOND lands on an ODD number?
SHOW YOUR WORK! Use the sample space from question 8 to assist you! Write your answer in SIMPLIFIED FRACTION form.
Answer:
1/12
Step-by-step explanation:
There are two dices being rolled. A dice has six faces numbered from one to six. A fair dice means that the probability of each number to appear is equal. Thus the probability of any number showing up is:
P(a number appears on the dice) = how much times the number has been displayed on the dice/number of faces of the dice.
Since all numbers appear once, and there are six sides of a dice. therefore:
P(a number appears on the dice) = 1/6. Thus, P(6 appears on a dice) = 1/6.
As far as the odd numbers are concerned, there are three even numbers and three odd numbers on the dice. So P(odd number appears on the dice) = 3/6 = 1/2.
Assuming that the probabilities of both the dices are independent, we can safely multiply both the probabilities. Thus:
P(first dice lands on a 6 and second dice lands on an odd number) = 1/6 * 1/2 = 1/12.
Thus, the final probability is 1/12!!!
PLEASE HELP ME
CHOICE OPTIONS:
(7,5, 0.5)
(7, 0.5)
(7, 1)
(7, 0)
Answer:
(7, .5)
Step-by-step explanation:
From the origin, our intersection is 7 units to the right where x is positive, so x = 7. It appears that we are between y values of 0 and 1 at x = 7, so the coordinate that best represents the solution is (7, .5)
Select the correct answer.
Which system of equations can be represented by this matrix?
Answer:
A) x + 2y = 4
3x + 4y -9z = 2
-x + 7z = 1
Step-by-step explanation:
The matrix form is
x y z
1 2 0 4
3 4 -9 2
-1 0 7 1
Here 0 represents no term in system.
So, the following system represents the above matrix.
x + 2y + 0z = 4 => x + 2y = 4
3x + 4y -9z = 2
-x + 0y + 7z = 1 => -x + 7z = 1
Therefore, the answer is A.
Stephanie is a goalie on her soccer team, which means she tries to block any shots her opponents take on goal. During a tournament, she blocked 15 shots but allowed 4 goals. For every goal Stephanie allowed, she blocked nearly shots.
Complete the following exercises by applying polynomial identities to complex numbers.
Factor x2 + 64. Check your work.
Factor 16x2 + 49. Check your work.
Find the product of (x + 9i)2.
Find the product of (x − 2i)2.
Find the product of (x + (3+5i))2.
Please help, explanations and written work apprciated
1.)
=(x-8i)(x+8i)
x^2+8ix-8ix-64i^2
x^2-64i^2
x^2-64(-1)
x^2+64
2.)
=(4x-7i)(4x+7i)
16x^2+28ix-28ix-49i^2
16x^2-49i^2
16x^2-49(-1)
16x^2+49
3.)
=(x+9i)(x+9i)
x^2+9ix+9ix+81i^2
x^2+18ix+81(-1)
x^2+18ix-81
4.)
=(x-2i)(x-2i)
x^2-2ix-2ix+4i^2
x^2-4ix+4(-1)
x^2-4ix-4
5.)
=[x+(3+5i)]^2
(x+5i+3)^2
(x+5i+3)(x+5i+3)
x^2+5ix+3x+5ix+25i^2+15i+3x+15i+9
x^2+6x+10ix+30i+25i^2+9
x^2+6x+10ix+30i+25(-1)+9
x^2+6x+10ix+30i-25+9
x^2+6x+10ix+30i-16
Hope this helps :)
Need help with a math question
Answer:
360
Step-by-step explanation:
n=?
1800° = sum of interior angles
Pentagon = 5 sides
n = 1800° ÷ 5
n = 360
Answer: [tex]n=12[/tex]
Step-by-step explanation:
You can observe that the formula for the sum of the interior angles of a polygon is:
[tex]sum=(n-2)180[/tex]
Where "n" is the number of sides of the polygon.
You know that the sum of the interior angles of this polygon is 1,800 degrees. Therefore, you can find the number of sides by substituting this sum into the formula and then solving for "n".
Then:
[tex]1,800=(n-2)180\\\\\frac{1,800}{180}=n-2\\\\10=n-2\\\\10+2=n\\\\n=12[/tex]
PLEASE HELP
4. The table shows the probabilities of a response chocolate or vanilla when asking a child or adult. Use the formula for conditional probability to determine independence.
Chocolate | Vanilla | Total
Adults 0.21 0.39 0.60
Children 0.14 0.26 0.40
Total 0.35 0.65 1.00
a. Are the events “Chocolate” and “Adults” independent? Why or why not?
b. Are the events “Children” and “Chocolate” independent? Why or why not?
c. Are the events “Vanilla” and “Children” independent? Why or why not?
Answer:
a) Yes the events Chocolate and Adults are independent
b) Yes the events Children and Chocolate are independent
c) Yes the events Vanilla and Children are independent
Step-by-step explanation:
* Lets study the meaning independent and dependent probability
- Two events are independent if the result of the second event is not
affected by the result of the first event
- If A and B are independent events, the probability of both events
is the product of the probabilities of the both events
- P (A and B) = P(A) · P(B)
* Lets solve the question
# From the table:
- The probability of chocolate is 0.35
- The probability of vanilla is 0.65
- The probability of adults is 0.60
- The probability of children is 0.40
- The probability of chocolate and adults is 0.21
- The probability of chocolate and children is 0.14
- The probability of vanilla and adult is 0.39
- The probability of vanilla and children is 0.26
a.
∵ P(chocolate) = 0.35
∵ P(Adults) = 0.60
∵ Two events are independent if P (A and B) = P(A) · P(B)
∵ P(chocolate) · P(adults) = (0.35)(0.60) = 0.21
∵ P(chocolate and adults) = 0.21
∴ P(chocolate and adults) = P(chocolate) · P(adults)
∴ The events chocolate and adults are independent
b.
∵ P(chocolate) = 0.35
∵ P(children) = 0.40
∵ Two events are independent if P (A and B) = P(A) · P(B)
∵ P(chocolate) · P(children) = (0.35)(0.40) = 0.14
∵ P(children and chocolate) = 0.14
∴ P(chocolate and children) = P(chocolate) · P(children)
∴ The events chocolate and children are independent
c.
∵ P(vanilla) = 0.65
∵ P(children) = 0.40
∵ Two events are independent if P (A and B) = P(A) · P(B)
∵ P(vanilla) · P(children) = (0.65)(0.40) = 0.26
∵ P(vanilla and children) = 0.26
∴ P(vanilla and children) = P(vanilla) · P(children)
∴ The events vanilla and children are independent
Write a polynomial function of minimum degree with real coefficients whose zeros include those listed. Write the polynomial in standard form.
5, -3, and -1 + 2i
Answer:
x^4 - 15x^2 - 38x - 60.
Step-by-step explanation:
Writing it in factor form:
( x - 5)(x + 3) ( x - (-1 + 2i) )(x - (-1 - 2i))
There are 4 parentheses because complex roots occur in pairs.
( x - (-1 + 2i) )(x - (-1 - 2i))
= ( x + 1 - 2i) )(x +1 + 2i))
= x^2 + x + 2ix + x + 1 + 2i - 2ix - 2i + 4
= x^2 + 2x + 4.
So our polynomial is
( x - 5)(x + 3)( x^2 + 2x + 4)
= (x^2 - 2x - 15)(x^2 + 2x + 4)
= x^4 + 2x^3 + 4x^2 - 2x^3 - 4x^2 - 8x - 15x^2 - 30x - 60
= x^4 - 15x^2 - 38x - 60.
Which number line represents the solutions to |x – 2| = 6?
Answer:
The solutions are x=8 and x=-4
Step-by-step explanation:
we have
[tex]\left|x-2\right|=6[/tex]
step 1
Find the first solution
case positive
[tex]+(x-2)=6[/tex]
[tex]x=6+2=8[/tex]
step 2
Find the second solution
case negative
[tex]-(x-2)=6[/tex]
[tex]-x+2=6[/tex]
[tex]x=2-6=-4[/tex]
Can u guys please do this ratio question. THIS IS EXTREMELY URGENT
A tap is leaking water at a rage of 1L every 8 hours. How long will it take for the tap to leak a total of 300mL?
Answer:
I think 8 hours maybe if I wrong sorry
The time taken for tap to leak a total of 300mL is 2.4 hours.
Given information:A tap is leaking water at a rage of 1L every 8 hours.
Calculation of time taken:Since 1L = 1000 mL and it takes 8 hours
So for 300 mL it takes
[tex]= 300 \times 8 \div 1000[/tex]
= 2.4 hours
Learn more about the tap here: https://brainly.com/question/24489593
Suppose the population of a town is 2,700 and is growing 4% each year. Write an equation to model the population growth. Predict the population after 12 years
Sarita has to solve the problem below for homework
2x+3y=25
4x+2y=22
Which variable should she choose to solve for so that she can use substitution to solve the system?
A. Sarita should solve for y in the second equation because the coefficients can be reduced by a common factor to eliminate the coefficient for y.
B. Sarita should solve for x in the first equation because the coefficients can be reduced by a common factor to eliminate the coefficient for x.
C. Sarita should solve for y in the first equation because the coefficients can be reduced by a common factor to eliminate the coefficient for y.
D. Sarita should solve for x in the second equation because the coefficients can be reduced by a common factor to eliminate the coefficient for x.
Answer:
Option A is correct.
Step-by-step explanation:
2x+3y=25
4x+2y=22
Option A
2y = 22-4x
y = 11 -2x
Option B
2x = 25 -3y
x = 25/2 -3/2y
Option C
3y = 25 - 2x
y = 25/3 -2/3x
Option D
4x = 22 - 2y
x = 22/4 -2/4y
x = 11/2 -1/2y
In Option B,C and D we have fractions and for substitution the calculations will be complex.
But Option A has no fractions and solving by putting the value of y in equation 1 is easy.
So, Option A is correct.
Answer:
A
Sarita should solve for y in the second equation because the coefficients can be reduced by a common factor to eliminate the coefficient for y.
Step-by-step explanation:
Alexander throws a baseball straight up into the air with an initial vertical velocity of 48 ft/s
from an initial height of 3.4 ft. Which equation can be used to find the time, T, it takes for the
ball to reach the ground?
[tex]\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in feet} \\\\ h(t) = -16t^2+v_ot+h_o \\\\ ~~~~~~\textit{in meters} \\\\ h(t) = -4.9t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{48}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{3.4}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}[/tex]
[tex]\bf h(t)=-16t^2+48t+3.4\implies \stackrel{\textit{when it hits the ground}}{\stackrel{h(t)}{0}=-16t^2+48t+3.4}[/tex]
Check the picture below.
What is the equation and solution for the sentence?
The sum of a number and thirty-one is one hundred thirteen.
Write the equation as n-31=113 and subtract 31 from both sides. The answer is 82.
Write the equation as n+31=113 and subtract 31 from both sides. The answer is 82.
Write the equation as n+31=113 and add 31 to both sides. The answer is 144.
Write the equation as n-31=113 and add 31 to both sides. The answer is 144.
Answer:
Write the equation as n+31=113 and subtract 31 from both sides. The answer is 82.
Step-by-step explanation:
Let
n ----> the number
we have that
The equation is equal to
n+31=113
solve for n
subtract 31 both sides
n+31-31=113-31
n=82
Answer:Write the equation as n+31=113 and subtract 31 from both sides. The answer is 82.
Step-by-step explanation:
The system of equations shown below is graphed on a coordinate grid:
3y + x = 6
2y – x = 9
Which statement is true about the coordinates of the point that is the solution to the system of equations?
[ ] It is (–6, 4) and lies on both lines.
[ ] It is (–6, 4) and does not lie on either line
[ ] It is (–3, 3) and lies on both lines.
[ ] It is (–3, 3) and does not lie on either line.
WILL GIVE BRAINIEST FOR CORRECT ANSWER
First of all, for a point to be the solution to the system of equations, it must be located on both lines, since we are calculating the point at which the lines cross. Therefor, we can automatically discount B and D as the answers, which state that the point does not lie on either line. To see whether it is A or C we will have to solve the equations.
1. There are quite a few ways to approach solving the system of equations, however I will show the substitution method as it requires less modification of equations.
What we need to do is to isolate either x or y in one of the equations so that we can then substitute this value into the other equation. So for example if we take the first equation and isolate x:
3y + x = 6
x = 6 - 3y (Subtract 6 from both sides)
2. Now we can substitute this into the second equation (2y - x = 9).
when x = 6 - 3y:
2y - (6 - 3y) = 9
2y - 6 + 3y = 9
5y - 6 = 9 (Add 2y and 3y)
5y = 15 (Add 6 to both sides)
y = 3 (Divide both sides by 5)
From here, we can already see that the answer is C, since A has a y-value of 4, however if we were to completely solve the question we would do the following:
3. Now that we know the value of y, we can substitute this back into our equation of x = 6 - 3y to find x:
x = 6 - 3(3)
x = 6 - 9
x = -3
So, our solution is the point (-3, 3). It also has to lie on both lines to be a solution. Therefor C. It is (-3, 3) and lies on both lines, is the correct answer.
Answer:
The answer is C
(It is (−3, 3) and lies on both lines.)
Step-by-step explanation:
PLEASE HELP ASAP The diagram shows squares 1,2, and 3 constructed on the sides of a right triangle.
Answer: Area of 1+Area of 2=Area of 3
I just took the test
Step-by-step explanation:
Answer:
Option D
Step-by-step explanation:
Since the given triangle is a right angle triangle and it has been given that squares 1, 2 and 3 are constructed on its respective sides.
Since the triangle is the right angle triangle so it will follow Pythagoras theorem.
Hypotenuse² = (height )² + (base)²
since hypotenuse is the one side of square 3
so area of square 3 = Hypotenuse²
similarly height² = area of square 1
Base² = area of square 2
so area of 1 + area of 2 = area of 3 will be defined by the Pythagoras theorem.
Therefore, Option D. is the answer.
Darlene's room measures 12feet on ones side and 9 feet on another, help her calculate the area of her room. The area if a rectangular room is a product of its length and width
Answer:
108 ft²
Step-by-step explanation:
The product of length and width is ...
(12 ft)(9 ft) = 12·9 ft·ft = 108 ft²
Type the correct answer in the box. Mr. Jensen is a salesperson for an insurance company. His monthly paycheck includes a base salary of $2,175 and a commission of $250 for each policy he sells. Write an equation, in slope-intercept form, that represents the total amount, y, in dollars, of Mr. Jensen's paycheck in a month when he sells x policies. Do not include dollar signs in the equation.
Answer:
y= 250x + 2175
Step-by-step explanation:
the slope intercept form is y = mx + b so you would put 250 for the M because it depends on each policy he sells which is X so y = 250x + b and B is the fixed price of 2,175 so you would get Y = 250x + 2175 as your answer
Answer:
The required answer is [tex]y = 250x + 2175[/tex].
Step-by-step explanation:
Consider the provided information.
The base salary of Mr. Jensen is 2175.
The commission per policy is 250.
The slope intercept form is:
[tex]y = mx + c[/tex]
Where, m is slope and c is y intercept.
Let "x" be the number of policy Mr. Jensen sells and "y" is the total paycheck including the commission.
[tex]y = 250x + 2175[/tex]
Therefore, the required answer is [tex]y = 250x + 2175[/tex].
Need help with a math question
Answer:
Z =7
Step-by-step explanation:
The middle segment theorem of a triangle says that: A middle segment connecting two sides of a triangle is parallel to the third side and is half its length.
In this case, the middle segment connecting two sides of a triangle is Z.
This means that
[tex]Z = 0.5(14)[/tex]
Finally we have that:
[tex]Z =7[/tex]
The length of the middle segment is 7 units
Im timed i need the answer NOW
Find the distance between point A(0,4) and point B (-2,-7) rounded to the nearest tenth.
A.3.6
B. 11.1
C.11.2
D.3.7
Answer:
C.11.2
Step-by-step explanation:
The distance between 2 points is given by
d = sqrt( (x2-x1)^2 + (y2-y1)^2)
= sqrt( ( -2-0)^2 + (-7-4)^2)
= sqrt( (-2)^2 + (-11)^2)
= sqrt( 4 + 121)
= sqrt(125)
= 11.18033989
To the nearest tenth
11.2
Suppose xy > 0. Describe the points whose coordinates are solutions to the inequality.
Answer:
all points in the 1st and 3rd quadrants (not including the x- and y-axes).
Step-by-step explanation:
The product of positive numbers will be greater than 0, as will the product of two negative numbers. Both coordinates are positive in the first quadrant; both are negative in the third quadrant.
The quadrant boundaries, x=0, y=0, are excluded from the solution set.
A train arrives at a station and waits 2 min before departing. Another train arrives at the station 18 minutes later, repeating the cycle. Identify the probability that a train will be at the station when you arrive.
[tex]|\Omega|=20\\|A|=2\\\\P(A)=\dfrac{2}{20}=\dfrac{1}{10}=10\%[/tex]
Answer:
1/10.
Step-by-step explanation:
The length of each cycle is 2 + 18 = 20 minutes.
During this time the train in stationary for 2 minutes.
So the probability of the train being at the station when you arrive is 2/20 = 1/10.
please help will mark brainliest
The following dot plot shows the mass of each rock in Nija's rock collection. Each dot represents a different rock.
Answer:
10
Step-by-step explanation:
Each dot represents 1 rock.
There are 10 dots in the plot, so there are 10 rocks in the collection.
PLEASE HELP!!!!
Question: ⇒ An object is launched from the ground. The object’s height, in feet, can be described by the quadratic function h(t) = 80t – 16t2, where t is the time, in seconds, since the object was launched. When will the object hit the ground after it is launched?
⇒ Explain how you found your answer.
⇒ No spam answers, please!
⇒ No wrong answers, please!
Thank you!
Answer:
it would take 5 seconds for the object to hit the ground after launched.
////////////////////////////////////////////////////////////////////////////////
1st step: (turn the quadratic function to a quadratic equation by setting the equal to zero): 0 = -16t2 + 80t + 0
2nd step: t = 0 & t = 5
(t = 0 is the time of launch. t = 5 represents the 5 seconds it took to hit the ground after the object was launched.)
Answer:
The object will hit the ground after 5 seconds. You can rewrite the quadratic function as a quadratic equation set equal to zero to find the zeros of the function 0 = –16t2 + 80t + 0. You can factor or use the quadratic formula to get t = 0 and t = 5. Therefore, it is on the ground at t = 0 (time of launch) and then hits the ground at t = 5 seconds
Based on the line of best fit estimate what the income might be for 2006
Answer:
190000 is the best answer in my opinion because by 2006 it is more then 160000 but it is less then 200000
Step-by-step explanation:
For the inverse variation equation xy = k, what is the constant of variation, k, when x = 7 and y = 3?
A. 3/7
B. 7/3
C. 10
D. 21
Answer:
D. 21
Step-by-step explanation:
The equation tells you xy = k. Substituting the given values, you get ...
7·3 = k
21 = k
Answer:
D) 21
Step-by-step explanation:
The given inverse variation equation is x.y = k, where k is the constant of proportionality.
Given: x = 7 and y = 3.
We need to find the constant variation, k.
To find the constant variation, k, plug in x = 7 and y = 3 in the given equation and simplify.
k = 7*3
k = 21.
Therefore, the constant of variation k = 21.
Answer is D) 21.
Un árbol ha sido partido por un rayo en dos partes formando un triangulo rectángulo la parte superior del árbol forma con la horizontal un ángulo de 36 grados mientras que la parte inferior no fue da?ada y mide 5 m ?Cuánto media el árbol antes de ser partido
Answer:
13,506 m
Step-by-step explanation:
Applying the trigonometric relation between opposite leg and hypotenuse
[tex]sin(\alpha)=\frac{Op}{h}[/tex]
isolating the variable [tex]sin(\alpha)=\frac{Op}{h} \longrightarrow h=\frac{Op}{sin(\alpha)}\longrightarrow h=\frac{5m}{sin(36^o)}=8,506m[/tex]
the total height is the sum to the hypotenuse and the opposite leg
[tex]h_{total}=hypotenuse+h=8,506m+5m=13,505m[/tex]
How many solutions does the equation 5m − 5m − 12 = 14 − 2 have?
None
One
Two
Infinite
Answer:
None
Step-by-step explanation:
It simplifies to -12 = 12, which cannot be made true by any value of m.
Answer:
none
Step-by-step explanation:
Select the correct solution in each column of the table.
Solve the following equation.
Table included in image below:
Answer:
No of real solutions =1
No of extraneous solution =2
Real solution: x =3
Step-by-step explanation:
[tex]\frac{3}{x}-\frac{x}{x+6}=\frac{18}{x^2+6x}[/tex]
solving:
Taking LCM of x, x+6 and x^2+6 we get x(x+6)
Multiply the equation with LCM
[tex]\frac{3}{x}*x(x+6)-\frac{x}{x+6}*x(x+6)=\frac{18}{x^2+6x}*x(x+6)\\3(x+6)-x*x=\frac{18}{x(x+6)}*x(x+6)\\3(x+6)-x*x=18\\3x+18-x^2=18\\-x^2+3x+18-18=0\\-x^2+3x=0\\x^2-3x=0\\x(x-3)=0\\x=0 \,\,and\,\, x =3\\[/tex]
Checking for extraneous solution
for extraneous solution we check the points where the solution is undefined
The solution will be undefined. if, x=0 or x=-6 so both are extraneous solutions
Putting x =3
[tex]\frac{3}{3}-\frac{3}{3+6}=\frac{18}{(3)^2+6(0)}[/tex]
[tex]\frac{3}{3}-\frac{3}{3+6}=\frac{18}{(3)^2+6(3)}\\1-\frac{3}{9}=\frac{18}{9+18}\\1-\frac{1}{3}=\frac{18}{27}\\\frac{3-1}{3}=\frac{2}{3}\\\frac{2}{3}=\frac{2}{3}[/tex]
So, x=3 is real solution.
Now, Selecting answers from tables
No of real solutions =1
No of extraneous solution =2
Real solution: x =3
Number of Number of Real solutions
real solution Extraneous solution
1 1 x=3
Step-by-step explanation:Extraneous solution--
It is a solution which is obtained on solving the equation but it does not satisfies the equation i.e. after it is put back to the equation it does not occur as a valid solution.
True solution or real solution--
It is the solution which is obtained on solving the equation and is also a valid solution to the equation.
The equation is:
[tex]\dfrac{3}{x}-\dfrac{x}{x+6}=\dfrac{18}{x^2+6x}[/tex]
On taking lcm in the left hand side of the equation we get:
[tex]\dfrac{3\times (x+6)-x\times x}{x(x+6)}=\dfrac{18}{x^2+6x}\\\\i.e.\\\\\dfrac{3x+18-x^2}{x(x+6)}=\dfrac{18}{x(x+6)}\\\\i.e.\\\\\dfrac{3x+18-x^2}{x(x+6)}-\dfrac{18}{x(x+6)}=0\\\\i.e.\\\\\dfrac{3x+18-x^2-18}{x(x+6)}=0\\\\i.e.\\\\\dfrac{3x-x^2}{x(x+6)}=0\\\\i.e.\\\\3x-x^2=0\\\\i.e.\\\\x(3-x)=0\\\\i.e.\\\\x=0\ or\ x=3[/tex]
When we put x=0 back to the equation we observe that the first term of the left hand side of the equation becomes undefined.
Hence, x=0 is the extraneous solution.
whereas x=3 is a valid solution to the equation.
Find all angles, 0 ≤C<360 that satisfy the equation below, to the nearest tenth of a degree.
Move all the terms involving the sine to one side, and all the numbers to the other:
[tex]9\sin(c)-2=\sin(c)-7 \iff 8\sin(c) = -5\iff \sin(c)=-\dfrac{5}{8} \iff c = \arcsin\left(-\dfrac{5}{8}\right)\approx 321.3[/tex]