What is the average rate of formation of br2?

Answers

Answer 1
time interval is 8.40* 10^-5 moles/sec.maArk as brainliest



Related Questions

What is the speed of a transverse wave in a rope of length 2.00 m and mass 60.0 g under a tension of 500 n?

Answers

The formula we can use in this case would be:

v = sqrt (T / (m / l))

Where,

v = is the velocity of the transverse wave = unknown (?)

T = is the tension on the rope = 500 N

m = is the mass of the rope = 60.0 g = 0.06 kg

 l = is the length of the rope = 2.00 m

Substituting the given values into the equation to search for the speed v:
v = sqrt (500 N/(0.06 kg /2 m)) 
v = sqrt (500 * 2 / 0.06) 
v = sqrt (16,666.67) 
v = 129.10 m/s

Two people are rowing a boat at a speed of 9 m/s. in 3 seconds, they dock the boat at a pier. what is the boatâs acceleration?

Answers

Acceleration is a measure of how fast a subject or object has changed its speed over a course of time. This parameter may take a positive value if the speed is increased and negative if the speed is decreased. The latter is rather called deceleration.
With this being said, the acceleration is calculated by dividing the speed by the given time. That is,

acceleration = speed / time

Substituting the known values,
 
acceleration = (9 m/s) / (3 s) 
acceleration = 3 m/s²

Since the boat is docked this means that the speed is reduced. The value then becomes -3m/s². 

Therefore, the boat in this item has an acceleration of -3 m/s². 

How much would you have to raise the temperature of a copper wire (originally at 20 ?c) to increase its resistance by 18 % ? the temperature coefficient of resistivity of copper is 0.0068 (?c)?1?

Answers

The equation for how temperature changes the resistance R is: 

R=R₀(1+α(T-T₀)), where R₀ is the resistance at T₀=20°C, T is the temperature for which we want to calculate the resistance and α is the temperature coefficient for resistance. 

The resistance of the copper wire increases by 18% or by 0.18, so the new value for the resistance is R=1.18*R₀.

T₀=20°C
=0.0068
R=1.18*R₀

Now we need to input that into the equation for resistance change and solve for temperature T.  

1.18R₀=R₀(1+α(T-20)), R₀ cancels out,

1.18=1+α(T-20),

1.18-1=α(T-20), we divide by α,

0.18/α=T-20, we put 20 on the left side,

26.47+20=T

T=46.47°C

So the temperature on which the resistance of copper wire will increase by 18% is T=46.47°C. 

To increase the resistance of the copper wire by 18%, the temperature will be increase to 46.47 °C

Data obtained from the question Original temperature (T₁) = 20 °C Original resistance (R₁) = RNew resistance (R₂) = 18% increase = 1.18RCoefficient of resistivity (α) = 0.0068 °C¯¹New temperature (T₂) =?

How to determine the new temperature

α = R₂ – R₁ / R₁(T₂ – T₁)

0.0068 = 1.18R – R / R(T₂ – 20)

0.0068 = 0.18R / R(T₂ – 20)

0.0068 = 0.18 / (T₂ – 20)

Cross multiply

0.0068 (T₂ – 20) = 0.18

Divide both side by 0.0068

T₂ – 20 = 0.18 / 0.0068

T₂ – 20 = 26.47

Collect like terms

T₂ = 26.47 + 20

T₂ = 46.47 °C

Learn more about linear expansion:

https://brainly.com/question/23207743

A motorist travels for 3.0 h at 80 km/h and 2.0 h at 100 km/h. What is her average speed for the trip?

Answers

3x80=240
2x100=200
240+200/5=88 k/hr
☺☺☺☺

Answer:

The motorist average speed for the trip is 88 km/h

Explanation:

In order to know her average speed, we have to refer to the following ecuation:

<V> (average speed) = [tex]\frac{Vfinal+Vinital}{2}[/tex]

So, according to that, we know that the motorist has been having a speed of 80km/h during 3 hours, and a speed of 100 km/h during 2 hours. It means that her speed during all the travel is 5 hours.

Then, we have to affect the 5 hours to the inicial and final speed as follows:

First, at 80 km/h, she travels during 2 hours so:

3h*80km/h= 240 km

And then, at 100 km/h:

2h*100km/h= 200 km

Which leads us to:

initial speed: 240 km/ 5 h= 48 km/h

and final speed of: 200 km/ 5 h= 40 km/h

Then, the average speed is:

<V> = 48 km/h + 40 km/h = 88 km/h

A squirrel has x-and y-coordinates (1.1 m, 3.4 m) at time t1= 0 and coordinates (5.3 m, -0.5 m) at time t2= 3.0 s. for this time interval, find (a)the components of the average velocity

Answers

In position #1, at time t₁ = 0, the coordinates are (1.1 m, 3.4 m).
That is,
x₁ = 1.1 m, y₁ = 3.4 m.

In position #2, at time t₂ = 3.0 s, the coordinates are (5.3 m, -0.5 m).
That is,
x₂ = 5.3 m, y₂ = -0.5 m.

The x-component of the average velocity is
Vx = (x₂ - x₁)/(t₂ - t₁)
     = (5.3 - 1.1 m)/(3 - 0 s)
     = 1.4 m/s

Similarly, the y-component of the average velocity is
Vy = (-0.5 - 3.4)/3
     = -1.3 m/s

Answer
The x and y components of the average velocity are 1.4 m/s and -1.3 m/s respectively.

Final answer:

The x-and y-components of the squirrel's average velocity for the given time interval are 1.4 m/s and -1.3 m/s, respectively. These are found by dividing the changes in position by the time interval.

Explanation:

The student is asking for the calculation of the components of the average velocity of a squirrel over a time interval. To find these components, we use the formula for average velocity, which is given by the change in position (Δx and Δy) divided by the change in time (Δt). The changes in the x- and y-coordinates are found by subtracting the initial coordinates from the final coordinates.

The change in the x-coordinate (Δx) is

5.3 m - 1.1 m = 4.2 m

The change in the y-coordinate (Δy) is

-0.5 m - 3.4 m = -3.9 m

The change in time (Δt) is

t2 - t1 = 3.0 s - 0 = 3.0 s

Thus, the x-component of the average velocity is

Δx/Δt = 4.2 m/3.0 s = 1.4 m/s

and the y-component of the average velocity is

Δy/Δt = -3.9 m/3.0 s = -1.3 m/s.

A bar magnet is placed on a table so that the north pole faces right.

Which statement describes the magnetic field lines 2 cm above the table?

They are pointing down into the table.
They are pointing right to left.
They are pointing left to right.
They are pointing up out of the table.

Answers

The correct answer is C. They are pointing right to left.


Explanation.

A magnet has two poles, a north pole and a south pole.  When dealing with magnets, we define the concept of a magnetic field. A magnetic field represents the effect of the magnet on magnetic materials and moving charges in the space around the magnet. For every magnet, the magnetic field lines always point away from the north pole of the magnet towards the south pole. Since the north pole of this magnet faces right, the magnetic field lines point towards the left.

The correct answer is C. They are pointing right to left.

Answer:

so b????????

Explanation:

My trip to work is 120 miles. if i go 8 mph faster than my usual speed, i'll get to work 30 minutes earlier. how long does my trip take, in hours, if i go my usual speed?

Answers

Let x be the time it takes for the trip to be completed given that the speed is y.

When the time is 30 minutes (equal to 0.5 hour) shorter than x, the speed is 8 mph more than the original speed. 

The equations that would best represent the given conditions are:
      (1)             120 = (x)(y)
      (2)              120 = (x - 0.5)(y + 8)

Simplifying,
                       y = 120/x
Substitute:
                    120 = (x - 0.5)(120/x + 8)

The value of x from the equation is 3. Thus, if I go with the usual speed, the time it will take me to finish the trip is approximately 3 hours. 

Answer: Hello!

The total distance is 120 miles, and you know that if you go 8 mi/h faster than usual you get there 30(or 0.5 hours) minutes early.

So if v is your usual speed, and t is your usual time, we have the next equations:

1) v*t = 120mi

2) (v + 8mi/h)*(t - 0.5h) = 120 mi

In equation (1) we can write v as a function of t; this is v = 120mi/t, and replace it in the second equation.

(v + 8)*(t - 0.5) = 120

(120/t + 8)(t - 0.5) = 120

120 + 8*t -60/t - 4 = 120

8*t -60/t - 4 = 0

now we need to obtain the value of t. Multiplying by t in both sides we have:

8*t^2 -60 - 4t = 0

Now we can use Bhaskara to obtain the two possible values for t:

[tex]t = \frac{4 +- \sqrt{16 +4*60*8} }{16} = \frac{4+-\sqrt{1936} }{16}  = \frac{4 +-44}{16}[/tex]

So we have two solutions: [tex]t = \frac{4+44}{16} = 3h[/tex] and [tex]t = \frac{4 -44}{16} = -2.5h[/tex].

The second is a negative time, so this has no sense; then we only took the first solution; when you go at your usual speed, your trip takes 3 hours.

Two spaceships that have different masses but rocket engines of identical force are at rest in space. if they fire their rockets at the same time, which ship will speed up faster

Answers

The ship that will speed up faster if they fire their rockets at the same time is; The one with the lower mass

Rocket Propulsion

We are told that;

There are two spaceships

Each spaceship has different masses

Each spaceship has rocket engines of identical force.

We know that formula for force is;

F = ma

Thus, if force is constant, the higher the mass, the lesser the acceleration and also the lesser the speed. Thus, the lower the mass the faster the speed.

This means the spaceship that will speed up faster will be the one with lesser mass.

Read more on Rocket Propulsion at; https://brainly.com/question/20832283

The drawing (not to scale) shows one alignment of the sun, earth, and moon. the gravitational force vector f sm that the sun exerts on the moon is perpendicular to the force vector f em that the earth exerts on the moon. the masses are: mass of sun = 1.99 1030 kg, mass of earth = 5.98 1024 kg, mass of moon = 7.35 1022 kg. the distances shown in the drawing are rsm = 1.5 1011 m and rem = 3.85 108 m. determine the magnitude of the net gravitational force on the moon.

Answers

Solution:

Ms = 1.99 × 1030 kg− mass of Sun;

Me = 5.98 × 1024kg− mass of Earth;

Mm = 7.35 × 1022kg − mass of Moon;

rSM = 1.50 × 1011m − distance to the Moon from the Sun;

rEM = 3.85 × 108m − distance to the Moon from the Earth;

 

The gravitational force that acts on the Moon by the Earth (Law of Gravity):

 

[tex]F_{e} = G \frac {M_{e} * M_{m} } {r^{2}_{EM}} = 6.67 x 10^{-11} N * (\frac {m} {kg})^{2}*\frac {5.98 * 10^{24} kg * 7.35 * 10^{22} kg} {(3.85 x 10^{8}m)^{2}} = 1.98 * 10^{20} N[/tex]

The gravitational force that acts on the Moon by the Sun (Law of Gravity):

[tex]F_{S} = G \frac {M_{s} * M_{m} } {r^{2}_{EM}} = 6.67 x 10^{-11} N * (\frac {m} {kg})^{2}*\frac {1.99 * 10^{30} kg * 7.35 * 10^{22} kg} {(1.50 x 10^{11}m)^{2}} = 4.34 * 10^{20} N[/tex]

Net gravitational force on the moon:

[tex]F = F_{e} + F_{s} [/tex]

Pythagorean theorem for a right triangle ABC:

 

[tex]F = \sqrt {F^{2}_{S} + F^{2}_{e}} = \sqrt {(1.98 * 10^{20}N)^{2} + (4.34 * 10^{20} N)^{2}} = 4.77 * 10^{20}N[/tex]

Answer: Answer: magnitude of the net gravitational force on the moon is 4.77 × [tex]10^{20} [/tex]N.

Final answer:

The net gravitational force on the moon due to the earth and sun can be calculated using Newton's Law of Universal Gravitation. We apply this law to both the earth-moon and sun-moon systems, and the net force is the vector sum of these two forces.

Explanation:

The net gravitational force exerted on the moon by the sun and the earth can be calculated using Newton's law of gravitation, which states that the force between two objects is proportional to the product of their masses divided by the square of the distance between them. We use this law twice: once for the earth-moon system and once for the sun-moon system.

For the Earth-Moon system: F_EM = (G * mass of earth * mass of moon) / (distance from earth to moon)². Given the values in the problem, this amounts to F_EM = (6.67 * 10⁻¹¹ N.m²/kg² * 5.98 * 10²⁴ kg * 7.35 * 10²² kg) / (3.85 * 10⁸ m)².

For the Sun-Moon system: F_SM = (G * mass of sun * mass of moon) / (distance from sun to moon)². Again, substituting the given values we have F_SM = (6.67 * 10⁻¹¹ N.m²/kg² * 1.99 * 10³⁰ kg * 7.35 * 10²² kg) / (1.5 * 10¹¹ m)².

The net gravitational force on the moon is given by the vector sum of these two forces, which form a right angle, due to the geometry of the situation. Hence, the net force is the hypotenuse of a right triangle with sides F_EM and F_SM, and can be calculated using Pythagoras' Theorem: Net Force = √(F_EM² + F_SM²).

Learn more about Net gravitational force on moon here:

https://brainly.com/question/31112265

#SPJ3

How long will it take you to pass a truck at 60 mph with oncoming traffic?

Answers

This is impossible to calculate without knowing the speed of each vehicle. 

Answer:

4 seconds - Not practical

Explanation:

Length of the truck = 50'

Initial distance behind the truck = 30'

Finish Pass = 50' ahead of truck ,

Pass at =  60mph -- about 3.375 seconds.

- 70mph your closing speed is 130mph.  

If you were less than a 1/4 mile away when you tried the pass you will be dead.

That would be a quick pass.  You will probably want a mile beyond the oncoming traffic.

A jet plane is flying at a constant altitude. at time t1=0 it has components of velocity vx= 94 m/s , vy= 110 m/s . at time t2= 33.5 s the components are vx= 175 m/s , vy= 45 m/s . part a for this time interval calculate the average acceleration. give your answer as a pair of components separated by a comma. for example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. express your answer using two significant figures.

Answers

The average acceleration components of the jet plane for the given time interval are approximately 2.4, -1.9 m/s², calculated using the change in velocity components divided by the time interval.

To calculate the average acceleration of a jet plane flying at a constant altitude with given velocity components at two different times, we use the formula for average acceleration: a = (v_f - v_i) / Δt, where a is the average acceleration, v_f is the final velocity, v_i is the initial velocity, and Δt is the change in time.

Given the initial velocity components at t1=0 are v_x1 = 94 m/s and v_y1 = 110 m/s, and the final velocity components at t2=33.5 s are v_x2 = 175 m/s and v_y2 = 45 m/s, we can calculate the average acceleration components as follows:

Average acceleration in the x-direction: a_x = (v_x2 - v_x1) / Δt = (175 m/s - 94 m/s) / 33.5 s = 2.42 m/s²Average acceleration in the y-direction: a_y = (v_y2 - v_y1) / Δt = (45 m/s - 110 m/s) / 33.5 s = -1.94 m/s²

Therefore, the average acceleration components for the time interval are approximately 2.4, -1.9 m/s².

The number of hours of daylight at any place on earth depends on

Answers

the position that place, and the position of earth.

What is the first thing to check when a refrigerator stops working?
a. check the food temperature. if it is 35°f or colder, move the food into a working refrigerator
b. check the refrigerator thermometer. if it is below 51°f, move food into working refrigerator.
c. check the food temperature. if it is 41°f or colder, move the food into a working refrigerator
d. check the food temperature. if it is 32°f or colder, move the food into a working refrigerator?

Answers



b. check the refrigerator thermometer. if it is below 51°f, move food into working refrigerator.

Answer:

correct answer is option C (check the food temperature to decide if it is safe. If the thermometer measures under 41 degrees Fahrenheit, then you move it to a working refrigerator)

Explanation:

In a refrigerator there is a thermometer which is  designed for the refrigerator and it should read 40 degrees Fahrenheit or lower inside the refrigerator. If a refrigerator stops working the first thing which should be checked is the food temperature to decide if it is safe. Because if temperature of food is above 40 degree Farenheit for more than 2 hours it should not be used. If the thermometer measures under 41 degrees Fahrenheit, then you move it to a working refrigerator.

It is desired that 7.7 mc of charge be stored on each plate of a 5.3 mf capacitor. what potential difference is required between the plates?

Answers

In physics, the elements in a circuit could involve a resistor-capacitor, resistor-inductor, or just solely their own type of circuit. For a resistor-capacitor or RC circuit, the potential difference or voltage induced between the parallel plates of a capacitor is related by this equation:

Q = C × V, where

Q is charge in Coulombs
C is the capacitance in Faradays
V is the voltage in volts

Substituting the values, 

7.7×10⁻³ C = 5.3×10⁻³ F * V
V = 1.45 volts

How much heat transfer (in kilocalories) is required to thaw a 0.450-kg package of frozen vegetables originally at 0ºc if their heat of fusion is the same as that of water?

Answers

Final answer:

To thaw a 0.450-kg package of frozen vegetables at 0°C, with a heat of fusion equivalent to that of water, 36 kilocalories of heat transfer are required.

Explanation:

Calculating Heat Transfer for Thawing Frozen Vegetables

The question asks about the heat transfer necessary to thaw a 0.450-kg package of frozen vegetables originally at 0°C, given that their heat of fusion is equivalent to that of water. To calculate this, one can use the formula for heat transfer during a phase change:

Q = m × L

Where:
Q is the heat transfer,
m is the mass of the substance (in kilograms), and
L is the latent heat of fusion (for water, it's approximately 334,000 J/kg or 80 kcal/kg).

Plugging in the values, we get:

Q = 0.450 kg × 80 kcal/kg = 36 kcal

This calculation determines that 36 kilocalories of energy is required to thaw the frozen vegetables.

A 132 g piece of nickel is heated to 100.0 °c in a boiling water bath and then dropped into a beaker containing 877 g of water (density = 1.00 g/cm3) at 5.0 °c. what was the final temperature of the nickel and water after thermal equilibrium was reached

Answers

The answer is attached.

The final temperature of nickel and water having a mass of 132g and 877g and after thermal equilibrium was reached is 6.5 °C.

What is temperature?

The density is the mass of a material substance per unit volume. d = M/V, where d is density, M is mass, and V is volume, is the formula for density. Grams per cubic centimeter are a typical unit of measurement for density.

As an illustration, the density of Earth is 5.51 grams per cubic centimeter, whereas the density of water is 1 gram per cubic centimeter.

Given:

A 132 g piece of nickel is heated to 100.0 °C,

The quantity of water = 877 g,

The temperature of water = 5 °C,

Calculate the final temperature as shown below,

[tex]m_1c_1\Delta t_1 = m_2c_2\Delta t_2[/tex]

0.132 × 444(100 - t) = 0.877 × 4186 (t - 5)

Here, t is the final temperature of nickel and water,

58.608 (100 - t) = 3671.12 (t - 5)

100 - t = 62.64 (t - 5)

100 - t = 62.64t - 313.19

t = 413.19 /

t = 6.49 or 6.5 °C

Thus, the final temperature is 6.5 °C.

To know more about Density:

https://brainly.com/question/6329108

#SPJ5

In all chemical reactions, __________ and ____________ must be conserved. energy, matter atoms, heat enthalpy, energy

Answers

energy and matter atoms is the correct answers. Mass or matter can not be created nor destroyed.

Final answer:

In all chemical reactions, both matter and energy must be conserved. The law of conservation of matter states the quantity of each element remains constant, and the law of conservation of energy (the first law of thermodynamics) states that energy can be transformed but not created or destroyed. Chemical equations must be balanced to reflect these conservation laws.

Explanation:

In all chemical reactions, matter and energy must be conserved. These principles are known as the law of conservation of matter and the energy conservation law. According to these laws, the quantity of each element remains unchanged in a chemical reaction, meaning that there's the same amount of each element in the products as there was in the reactants because matter is conserved. This is reflected in a chemical equation where the same number of atoms of each element appears on each side of the equation.

In addition to matter being conserved, energy is also conserved as described by the first law of thermodynamics. Energy can be transformed from one form to another or transferred between objects, but the total energy before and after a chemical reaction remains constant. The conservation of energy is also important to understand because, despite matter and energy being interchangeable under certain circumstances in physics, in most chemical reactions, the energy changes are modest and the mass changes are negligible, so these two quantities appear to be conserved.

It is important to remember that these conservation laws are a fundamental aspect of chemical equations that need to be balanced to satisfy the law of conservation of matter. Atoms are neither created nor destroyed in chemical reactions so the reactants and products must always have the same total number of each type of atom. This aspect is critical for correctly understanding and performing chemical reactions.

Cora, an electrician, wraps a copper wire with a thick plastic coating. What is she most likely trying to do?
keep the electric potential of the wire balanced
decrease the wire’s resistance
increase the voltage produced by the wire
keep a current from passing out of the wire

p.s. if you're good at physics pm me, could use some help on a quiz.

Answers

The correct answer among the choices given is the last option. Cora wrapping the copper wire with a thick plastic coating keeps a current from passing out a wire. The plastic wire here serves as an insulator. An insulator is a material that prevents electricity or current to flow out the circuit. In order to lessen the loss of energy.

HOPE THIS HELPS!

Insulators are often defined as materials that do not allow electricity to flow through them. She wants to stop the flow of current out from the wire.

What is an insulator?

Insulators are commonly employed in physics. Insulators are often defined as materials that do not allow electricity to flow through them.

Insulators are also referred to as poor electrical conductors. We may discover various instances of these insulators in our daily lives. Insulators include materials such as paper, glass, rubber, and plastic.

From the following observation, we come to the result that she wants to make a insulator.

Hence the option d is correct .

To learn more about the insulator refer to the link;

https://brainly.com/question/24909989

A ball rolling down an incline has its maximum kinetic energy at

Answers

when its velocity is in maximum, that's just before it stops or before it continue movement on horizontal surface
Final answer:

A ball rolling down an incline has its maximum kinetic energy at the bottom of the incline because the potential energy is converted into kinetic energy as it descends down the slope.

Explanation:

In the context of Physics, a ball rolling down an incline has its maximum kinetic energy at the bottom of the slope. As the ball rolls downhill, potential energy (stored energy due to its position) is gradually converted into kinetic energy (the energy of motion). This is essentially the principle of conservation of energy. So, at the top of the incline, the ball's energy is primarily potential energy, but as it descends, it gains speed and thus kinetic energy. At the bottom of the slope, all the potential energy has been converted to kinetic energy, hence it is at its maximum. Friction and air resistance could decrease the kinetic energy slightly, but when neglecting these factors, the ball's kinetic energy is greatest at the lowest point.

Learn more about Kinetic Energy here:

https://brainly.com/question/33783036

#SPJ11

________ describes the total sediment load transported by a stream.

Answers

That is called the capacity.

The term that describes the total sediment load transported by a stream is "stream sediment transport."

What is stream sediment transport?

Stream sediment transport refers to the overall amount of sediment, including sand, silt, and clay particles, that is carried by a stream as it flows. Stream sediment transport is influenced by factors such as the stream's velocity, gradient, and the size and shape of the sediment particles.

It plays a crucial role in shaping stream channels, depositing sediments in floodplains, and influencing the overall geomorphology of a stream system.

Learn more about stream sediment on:

https://brainly.com/question/15513785

#SPJ6

What is the name of the imaginary line that lies 23 degrees south of the equator and marks the southern boundary of the area known as the tropics?

Answers

It is called the Tropic of Capricorn.

The largest driving force for pulling fluid from the interstitial spaces back into the capillaries is

Answers

The main driving force for pulling fluid from the interstitial spaces back into the capillaries is blood colloid osmotic pressure. The oncotic pressure or as called as colloid osmotic pressure is a classification of osmotic pressure transport to bear by proteins notably albumin in a blood vessel's plasma which is blood or liquid that typically inclines to pull water into the circulatory system.

Osmotic pressure, specifically the blood colloidal osmotic pressure, is the main force that moves fluid from interstitial spaces back into the capillaries, driven by protein concentration gradients.

The largest driving force for pulling fluid from the interstitial spaces back into the capillaries is the osmotic pressure, often specifically referred to as blood colloidal osmotic pressure (BCOP). This pressure exists due to the concentration of colloidal proteins such as albumin in the blood. These proteins create a higher solute concentration within the capillaries relative to interstitial spaces, resulting in water being attracted back into the bloodstream due to the solute-to-water concentration gradients established across the semipermeable capillary walls. Fluid re-enters the capillary where the capillary hydrostatic pressure is lower than the BCOP, typically at the venule end of the capillary.

What should you do if your boat capsizes answers?

Answers

Many of the boating fatalities take place after capsize, but a modest list of things to do before and after a capsize can minimize boat accidents and boat accident injuries. 

Initially there is an significant list of thing to do before you even step on the boat:

1. Take the boat safety and water safely courses
2. Make certain that yourself and everyone else on the boat is wearing a well-fitting and safe life jacket.
3. Go over the place of the safety items with everyone on the boat as well as the location of the horn of the boat and the flare of the boat.
4. Paint bright color the hull of the boat in order to be seen easily from the air.

After a capsize, there are significant steps to make

1. Stay calm
2. Execute a head count and check everybody for injuries or immediate dangers.
3. Ensure that everyone has floatation device that coolers and other items that can be used. 
4. Stay in the capsized boat unless dangerous.
5. Try to right the boat if someone has a knowledge on how to do so.
6. Use signal devices such as flares, bright colored life jacket, whistles, flashlights and mirror.
7. Try to reboard or climb onto it in order to get as much of your body out of the cold water as possible because treading water will ground to lose body heat sooner. 
8. Do not waste energy and only signal when needed. Try to keep warm and stay strong
Final answer:

If your boat capsizes, stay calm, hold on to the boat, signal for help, and wait for rescuers. Make sure to wear a life jacket when boating to increase your chances of survival.

Explanation:

If your boat capsizes, follow these steps:

Stay calm: It's important to stay calm and avoid panicking in this situation. Panicking can make it harder to make rational decisions.Hold on to the boat: Try to grab onto the boat and hold on to it. This will help keep you afloat and make it easier for rescuers to find you.Signal for help: Use any available signaling devices, such as whistles, flares, or flashing lights, to attract the attention of rescuers.Wait for help: Stay with the boat and wait for help to arrive. It may take some time, but rescuers will eventually find you.

Remember, it's important to always wear a life jacket when boating to increase your chances of survival in the event of a capsizing.

Learn more about Boat Capsizing here:

https://brainly.com/question/3915586

#SPJ6

F the radius of a sphere is increasing at the constant rate of 2 cm/min, find the rate of change of its surface area when the radius is 100 cm

Answers

The surface area of a sphere of radius r is
A(r) = 4πr²

The rate of change of the surface area with respect to time is
[tex] \frac{dA}{dt} = \frac{dA}{dr} \frac{dr}{dt} [/tex]

The radius increases at the constant rate of 2 cm/min, therefore
[tex] \frac{dA}{dt} = 2 \frac{dA}{dr}=2*(8 \pi r) =16 \pi r [/tex]

When r = 100 cm, the rate of change of the surface area is
16π(100) cm²/min
= 1600π cm²/min
= 5026.5 cm²/min

Answer: 1600π or 5026.5 cm²/min


A spring has an unstretched length of 10 cm . It exerts a restoring force F when stretched to a length of 11 cm .

Answers

Given:
L = 10 cm, original length

Because the stretched length is 11 cm, the extension is
d = 11 - 10 = 1 cm

Let the spring constant be k N/cm
Then the restoring force is
F = (k N/cm)*(1 cm)
   = k N

Answer:
The restoring force is equal to the spring constant, measured in Newtons per centimeter.

(a). The restoring force in the spring will be [tex]3F[/tex]  if it is stretched to a length of [tex]\boxed{13\,{\text{cm}}}[/tex] .

(b). The restoring force in the spring will be [tex]2F[/tex]  if it is compressed to a length of [tex]\boxed{8\,{\text{cm}}}[/tex] .

Further Explanation:

When we compress or stretch a spring from its natural length, there is a restoring force developed in the spring due to the compression and stretching of the spring.

The restoring force experienced by the spring due to stretching is expressed as:

[tex]F=k\cdot\Delta x[/tex]                                                           …… (1)

Here, [tex]F[/tex]  is the restoring force developed in the spring, [tex]k[/tex]  is the spring constant of the spring and [tex]\Delta x[/tex]  is the length through which the spring is stretched.

The spring experiences a restoring force of  [tex]F[/tex] when it is stretched to a length of [tex]11\,{\text{cm}}[/tex]  from its natural length [tex]10\,{\text{cm}}[/tex] .

[tex]\begin{aligned}\Delta x&={x_f} - {x_i}\\&=0.10 - 0.11\\&=0.01\,{\text{m}}\\\end{aligned}[/tex]

Substitute the values of force and change in length in equation (1).

[tex]\begin{aligned}F&=k\cdot0.01\hfill\\k&=\frac{F}{{0.01}}\hfill\\\end{aligned}[/tex]

Part (a):

When the spring experiences a restoring force of [tex]3F[/tex] , then the stretched length of the spring should be:

[tex]3F=k.\Delta x[/tex]

Substitute [tex]\frac{F}{{0.01}}[/tex]  for [tex]k[/tex]  in above expression.

[tex]\begin{aligned}3F&=\frac{F}{{0.01}}\cdot\Delta x' \\\Delta x'&=3\times0.01\,{\text{m}}\\&=3\,{\text{cm}}\\\end{aligned}[/tex]

So, the stretched length of the spring becomes:

[tex]\begin{aligned}L&={x_o}+\Delta x' \\&=10\,{\text{cm}}+3\,{\text{cm}}\\&=13\,{\text{cm}}\\\end{aligned}[/tex]

Thus, the restoring force in the spring will be [tex]3F[/tex]  if it is stretched to a length of [tex]\boxed{13\,{\text{cm}}}[/tex] .

Part (b):

The restoring force of magnitude [tex]2F[/tex]  is experienced by the spring on compression. The change in length due to compression will be:

[tex]2F=k\cdot\Delta x''[/tex]

Substitute [tex]\frac{F}{{0.01}}[/tex]  for  [tex]k[/tex] in above expression.

[tex]\begin{aligned}2F&=\frac{F}{{0.01}}\cdot\Delta x''\\\Delta x''&=2\times0.01\,{\text{m}}\\&=2\,{\text{cm}}\\\end{aligned}[/tex]

So, the compressed length of the spring becomes:

[tex]\begin{aligned}L'&={x_o}-\Delta x''\\&=10\,{\text{cm}}-{\text{2}}\,{\text{cm}}\\&=8\,{\text{cm}}\\\end{aligned}[/tex]

Thus, the restoring force in the spring will be [tex]2F[/tex]  if it is compressed to a length of [tex]\boxed{8\,{\text{cm}}}[/tex] .

Learn More:

1. How far must you compress a spring with twice the spring constant to store the same amount of energy? Https://brainly.com/question/2114706

2. Max and Maya are riding on a merry-go-round that rotates at a constant speed https://brainly.com/question/8444623

3. It's been a great day of new, frictionless snow. Julie starts at the top of the 60 https://brainly.com/question/3943029

Answer Details:

Grade: High School

Subject: Physics

Chapter: Work and energy

Keywords:

Spring, unstretched length, compressed, stretched, restoring force, 3F, 11 cm, F=kx, natural length of spring.

A carnot engine rejects 80 mj of energy every hour by transferring heat to areservoir at 10°c. determine the temperature of the high-temperature reservoir and the power produced if the rate of energy addition is 40 kw.

Answers

The Carnot engine is a heat engine that operates based on the reversible Carnot cycle. It is perceived as the ideal heat engine. To determine the temperature and the power that is produced by the Carnot engine, we make use of the definition of its efficiency. 

Efficiency = net work / heat in
     where net work = heat in - heat out
 Efficiency = heat in - heat out / heat in
                 = 1 - heat out / heat in = 1 - Tl / Th

where Tl is the temperature that is colder and Th is the hotter temperature.

heat out = 80 MJ / hr ( 1x10^6 J / 1 MJ ) ( 1 hr / 3600 s ) ( 1 KJ / 1000 J )= 22.22 KJ / s = 22.22 kW = power produced
heat in = 40 kW


 Efficiency = 1 - heat out / heat in = 1 - (22.22 / 40) = 0.4445
0.4445 = 1 - (10+273.15) / Th
Th = 509.72 K = 236.57 degrees Celsius


Final answer:

The temperature of the high-temperature reservoir of a Carnot engine releasing 80 MJ/hour to a 10°C reservoir and receiving energy at the rate of 40 kW is approximately 510.72 K. The power produced by this engine is approximately 17.78 kW.

Explanation:

The temperature of the high-temperature reservoir of the Carnot Engine can be determined using Carnot's theorem, which states that Qc/Qh=Tc/Th or its simplified version, efficiency (Eff) = 1 - (Tc/Th) for a Carnot engine. Given the energy released by the engine (Qc) as 80 MJ/hour or 22.22 kW, and the rate of energy addition (Qh) as 40 kW, we can determine the temperature of the high-temperature reservoir (Th) from the ratio of these values and the known temperature of the cold reservoir (Tc) of 10°C or 283.15 Kelvin (K).

To achieve this, we first determine the engine's efficiency. Given Qc and Qh, we have Eff = 1 - (Qc/Qh) = 1 - (22.22 kW / 40 kW) = 0.445 (or 44.5%). Applying this to the efficiency formula, 'Eff = 1 - (Tc/Th)', we can rearrange this to find 'Th = Tc / (1 - Eff) = 283.15 K / (1 - 0.445) = 510.72 K'. Hence, the temperature of the high-temperature reservoir is approximately 510.72 K.

The power produced is the difference between the energy added and the energy rejected, so Power = Qh - Qc = 40 kW - 22.22 kW = 17.78 kW.

Learn more about Carnot Engine here:

https://brainly.com/question/14680478

#SPJ3

The chief physicist in charge of the manhattan project was _____. wernher von braun j. robert oppenheimer albert einstein leslie groves

Answers

it was J. Robert Oppenheimer

J. Robert Oppenheimer

The finding that attention can spread within an object, thereby, enhancing detection at other places within the object is referred to as _____.

a. ?spatial drift

b. ?spreading activation

c. ?same-object advantage

d. ?object location invariance

Answers

The finding that attention can spread within an object, thereby, enhancing detection at other places within the object is referred to as same-object advantage effect (SOA). The effect is that the performance of observers who are judging two targets is better (faster and/or more accurately) when they are from the same object than when they are from different objects.

Final answer:

The phenomenon where attention can enhance detection within other parts of the same object is known as the same-object advantage (option c), based on multisensory integration patterns where multisensory enhancement is more likely when stimuli are related spatially and temporally.

Explanation:

The finding that attention can spread within an object, thereby, enhancing detection at other places within the object is referred to as same-object advantage (option c). This concept implies a form of multisensory integration where sensory processing is enhanced for different parts of a single object when compared to processing parts of different objects. This pattern is based on the principle that multisensory enhancement occurs when the sources of stimulation are spatially and temporally related to one another, contributing to the ability to detect stimuli more efficiently when they occur within the same object.

Energy that is associated with the position or composition of an object is called

Answers

That is potential energy.
Final answer:

Potential energy is the type of energy associated with the position or composition of an object. It's the stored energy that can be fully recovered.

Explanation:

The energy that is associated with the position or composition of an object is called potential energy. This is a type of energy that is stored and can be completely recoverable. Energy comes in different forms and potential energy is one type due to an object's relative position, composition or condition. An object could possess this energy because of its place within a system. For instance, water at the top of a waterfall has potential energy due to its position; when it flows downwards, it has kinetic energy that can be used to produce electricity in a hydroelectric plant. Similarly, a battery has potential energy because the chemicals within it can produce electricity that can perform work.

Learn more about Potential Energy here:

https://brainly.com/question/24284560

#SPJ3

In order to be considered a semi-conductor the material must
have insulator and conductor properties.
resist electron flow.
have ions that are negative and accept charges.
easily accept electron flow.

Answers

First one, for instance they become conductors or insulators depending on the temperature!

Answer:

<<<<Have insulator and conductor properties.

>>>>>is your answer

Explanation:

i just take the quiz

Other Questions
Which of the following have numerous hair-like projections from their flagella?diatomsgolden algaewater moldsall of the above What is the temperature in mars ? Alcohol use, for either the driver or the pedestrian, was reported in almost __________ of all traffic crashes involving pedestrian fatalities. HELP PLEASEEE I WILL GIVE BRAINLIEST ANSWER!!!!!!!!!! The dot plot shows how many attempts it took for each student to complete a puzzle:Is the median or the mean a better measure of center for these data and why?Mean, because the data are skewed and there are outliers Mean, because the data are symmetric and there are no outliers Median, because the data are skewed and there are outliersMedian, because the data are symmetric and there are no outliers Luisa knit a rectangular scarf that measures 4 feet by 1 foot. She wants to use the remaining 6 square feet of fabric to create a border around the scarf.Which equation can she use to find the required width of the border x? Your goal is to save at least $240.00 over the next 4 week. How much money must you save each week in order to meet that goal? Write and solve an inequality The idea that love conquers all is an example of a An object floats on water with 80% of its volume below the surface. the same object when placed in another liquid floats on that liquid with 72% of its volume below the surface. determine the density of the unknown fluid. Why is world population distribution uneven what factors contribute to this uneven distribution? Jagged, uneven phrases, wide melodic leaps, great rhythmic variety, and an extended role for the soloist are typical of what idiom? The main purpose of a service panel in a house is to A. keep the meter working correctly. B. connect the service drop to the house. C. provide automatic circuit protection and prevent fires. D. keep electrical hazards localized. The silica tetrahedron that forms the backbone of all the silicate minerals is composed of silicon and what other element? Which equation represents a linear function that has a slope of 4/5 and a y-intercept of 6? Select the word missing to complete the sentence: Jai un _________ ami.A)nouvellesB)nouveauC)nouvelD)nouvelle he time spent dancing (minutes) and the amount of calories burned can be modeled by the equation c = 5.5t. Which table of values matches the equation and includes only viable solutions? Image for option 1 Image for option 2 Image for option 3 One way your family can be a positive influence on your mental and emotional health is by helping you _____. A.steal from a store B.telling you to drive over the speed limit C.complete your schoolwork D.by arguing with you about who you date The relationship between feet and inches is described by the equation y = 12x, where x = a given length in feet and y = the equivalent length in inches. If a table is 7.25 feet long, what is its length in inches? A.84 inches B.87 inches C.81 inches D.90 inches What should you do first when a vessel capsizes? Forty percent of all high school graduates work during the summer to earn money for college tuition for the upcoming fall term. assuming a binomial distribution, 10 students are selected at random, what is the probability that only one has a summer job? Divide the decimal numbers 12.0126 Steam Workshop Downloader