What are the vertical and horizontal asymptotes for the function f(x)= x^2+x-6/x^3-1?

Answers

Answer 1
The horizontal asymptotes will occur when x approaches ±oo

The easy way to see this is to divide all terms by the highest order variable...

(x^2/x^3 +x/x^3-6/x^3)/(x^3/x^3-1/x^3) and all of that mess boils down to

0/1 or just 0 as x approaches ±oo

So the horizontal asymptote is the horizontal line y=0

The vertical asymptote will occur when there is division by zero, which is undefined because it is not a real value.

x^3-1=0

(x-1)(x^2+x+1)=0

So this only occurs as x approaches -1, so the vertical asymptote is the vertical line x=-1.
Answer 2

Answer:

Hence, x=1 is the vertical asymptote

Hence, y=0 is the horizontal asymptote

Step-by-step explanation:

We have been given an expression

[tex]\frac{x^2+x-6}{x^3-1}[/tex]

For vertical asymptote  we equate the denominator to zero that means

[tex]x^3-1=0[/tex]

[tex]\Rightarrow x^3=1[/tex]

[tex]\Rightarrow x=1[/tex]

Hence, x=1 is the vertical asymptote.

Now, for horizontal asymptote we compare the degree of numerator and denominator

Here degree of numerator is 2 and degree of denominator is 3

When degree of denominator is greater than degree of numerator y=0 is the horizontal asymptote

Hence, y=0 is the horizontal asymptote.


Related Questions

What value should go in the empty box to complete the calculation for finding the product of 62.834 × 0.45?

Answers

the answer to this problem is 28.2753

The vertical distance from a fixture outlet to the trap weir should not be more than _______ inches.

Answers

The vertical distance from a fixture outlet to the trap weir should not be more than 24 inches. Fixture traps shall have a water seal of no less than two inches. Fixture traps is the section of the pipe that is in between a section of drainage and a trap. A trap weir on the other hand is the section in between the vent and a trap. This section is the most ancient tool that is of used of today because of its effectivity and cost effective method. 

The maximum allowable vertical distance from a fixture outlet to the trap weir in plumbing is 24 inches. This standard ensures proper drainage and the maintenance of a water seal, preventing sewer gases from entering a building.

The vertical distance from a fixture outlet to the trap weir, which is a critical aspect of plumbing design, should not be more than 24 inches. The fixture outlet is the point where water exits the fixture, and the trap weir is the peak point inside a P-trap, which maintains a water seal to prevent sewer gases from entering the building.

It's important to adhere to this standard to ensure proper drainage and maintain the water seal. If the distance is too great, it could lead to poor drainage and a loss of the trap seal due to siphoning, which would allow sewer gases to enter the home or building.

Which of the following graphs represents the function f(x) = −2x3 − x2 + 3x + 1?

graph with 3 real zeros, down on left, up on right
graph with 3 real zeros, up on left, down on right
graph with 2 real zeros, down on left, down on right
graph with 2 real zeros, up on left, up on right

Answers

Final answer:

The function f(x) = −2x3 − x2 + 3x + 1 is represented by the graph with 3 real zeros, down on the left and up on the right, due to the negative leading coefficient and odd degree.

Explanation:

The function you're looking at is f(x) = −2x3 − x2 + 3x + 1. To determine the correct graph, we consider the leading term, −2x3. Since the coefficient of the highest-degree term (which is -2) is negative, the graph will start down on the left and go up on the right. The degree of the function is the highest power of x, which is 3, a odd number. For polynomials, if the degree is odd and the leading coefficient is negative, the end behavior will be down on the left and up on the right. Therefore, the correct graph will have the description: Graph with 3 real zeros, down on the left, up on the right.

Learn more about Function Graph here:

https://brainly.com/question/40116062

#SPJ12

Patrick spins the spinner 9 times. What is the theoretical probability that it stops on the brown sector on the last spin?

1 over 45
1 over 25
1 over 9
1 over 5

Answers

the answer would  be 1/45 because you would have times it by the 9/5 and you get the because the numerator stays the same 
100% 1/5 is the right answer

Find the function y = f(t) passing through the point (0,12)

Answers

y=t+12 this is one the answers

in a book 3/8 of the pages have pictures on them.Given that 72 pages have a picture on, work out the number of pages in the book.

Answers

72 times 3/8 = ??
Multiply and that is your answer
72 = 3x24
8x24 = 192 
Hence 192 pages in the book


The sum of the roots of the equation x 2 + x = 2 is:

Answers

hello : 
x²+x - 2 =0
a=1   b=1   c = -2
The sum of the roots is : S = -b/a 
S = - 1/1 = -1 

Answer:

The sum of the roots of the equation [tex]x^{2} + x = 2[/tex] is -1

Step-by-step explanation:

You have two options to find the sum of the roots,

The first option is to use the Quadratic Formula to find the two roots:

[tex]x_{1,2} = \frac{-b\±\sqrt{b^{2}-4ac}}{2a} [/tex]

[tex]x^{2} + x - 2= [/tex] where:

a = 1

b = 1

c = -2

[tex]x_{1} = \frac{-1-\sqrt{1^{2}-4*1*-2}}{2*1}[/tex] = -2

[tex]x_{2} = \frac{-1+\sqrt{1^{2}-4*1*-2}}{2*1}[/tex] = 1

The sum of the roots is -2 + 1 = -1

    2. The second option is use the fact that a general quadratic equation is in the form of:

[tex]ax^{2}+bx+c=0[/tex]

if you divided by [tex]a[/tex] you get:

[tex]x^{2}+\frac{b}{a} x+\frac{c}{a} =0[/tex]

and always the sum of roots will be given for this expression [tex]x_{1} + x_{2} = \frac{-b}{a}[/tex]

Why this is true?

Because if we use the Quadratic Formula as follows:

[tex]x_{1} + x_{2} = \frac{-b+\sqrt{b^{2}-4ac}}{2*a} + \frac{-b-\sqrt{b^{2}-4ac}}{2a}[/tex]

[tex]x_{1} + x_{2} = \frac{-2b+0}{2a}}[/tex]

[tex]x_{1} + x_{2} = \frac{-b}{a}[/tex]

In the case of this equation:

[tex]x_{1} + x_{2} = \frac{-1}{1} = -1[/tex]

What is the location of point F, which partitions the directed line segment from D to E into a 5:6 ratio?

-1/11
1/11
2/15
15/2

Answers

The correct answer is b

F is a point which is greater than zero and F must be in the location of 1/11 and it can be determine by using arithmetic operations.

Given :

F partitions the directed line segment from D to E into a 5:6 ratio.

Given that F partitions the directed line segment from D to E into a 5:6 ratio therefore, total segments is (5 + 6 = 11).

From point D to E in the given line segment there are 9 units. To divide the line segment of 9 unit into 11 unit, first find the distance between two units, that is:

[tex]\dfrac{9}{11}=0.82[/tex]

[tex]0.82\times 5 = 4.1[/tex]

Now, it can be say that F is a point which is greater than zero and F must be in the location of 1/11.

For more information, refer the link given below:

https://brainly.com/question/12431044

70/x = 15/21 solve proportion

Answers

I believe this is the answer: 70 divided by 15= 4.66666667. So 21 times that = x. 21 times 4.66666667= 98. So x= 98.

Two times the least of three consecutive odd integers exceeds two times the greatest by 15. what are the integers

Answers

It's not possible for the smaller number to be larger than the larger number when multiplied by the same value. Is this stated correctly?

1 3 5

2 * 1 = 2
2 * 5 = 10

the smaller number cannot exceed the larger number.
This doesn't make sense the way it is written. If your integers are x, x + 2, and x + 4, the smallest is x and the largest is x + 4. If two times the smaller exceeds the larger by 15, that means that 2x = 2(x+4) + 15 and when you solve that you get 2x = 2x + 8 + 15. But when you subtract a 2x from both sides, the 2x is eliminated leaving no x to solve for. Something is wrong...

Dishwashers are on sale for 25% off the original price (d), which can be expressed with the function p(d) = 0.75d. Local taxes are an additional 14% of the discounted price, which can be expressed with the function c(p) = 1.14p. Using this information, which of the following represents the final price of a dishwasher with the discount and taxes applied?
c(p) ⋅ p(d) = 0.855pd
c(p) + p(d) = 1.89d
c[p(d)] = 0.855d
d[c(p)] = 1.89p

Answers

We are given the functions:

P (d) = 0.75 d                                      ---> 1

C (P) = 1.14 P                                      ---> 2

The problem asks us to find for the final price after discount and taxes applied; therefore we have to find the composite function of the two given functions 1 and 2. To solve for composite function of the final price of the dishwasher with the discount and taxes applied, all we have to do is to plug in the value of P (d) with variable d into the equation of C (P). That is:

C (P) = 1.14 (0.75 d)

C (P) = 0.855 d

or

C [P (d)] = 0.855 d

Answer:

0.855d

Step-by-step explanation:

I took the test. I also checked a bunch of other answers by completing the test. at least 2 other people had the same answer as me.

A video game is on sale for 30% off the regular price of 50$. What is the sale price of the game?

Answers

It is $15.
You have to do: $15 times .30
0.70 times 50 equals 35.

Four more than the product of 18 and a number Use the variable n to represent the unknown number.

Answers

Four more than the product of 18 and a number = 18n + 4 

hope it helps

if lines are parallel or perpendicular 4x-8y=9 and 8x-7y=9

Answers

4x-8y=9
-8y=9-4x
8y=-9+4x
y=0.5x-9/8

8x-7y=9
-7y=-8x+9
7y=8x-9
y=8/7x-9/7

neither, they aren't parallel or perpindicular. I tested by graphing them as well.

The Pythagorean Theorem applies to ANY triangle in determining the length of an unknown side or leg given two of the other side or leg measures.
True or False?

Answers

False.
The pythagorean theorem only applies to right triangles.

Find the indicated terms of the sequence defined by each of the following recursive formulas:

a3 = −11 and an = 2an − 1 − 1

a2 =

a4 =


a4 = −36 and an = 2 an − 1 − 4

a3 =

a2 =

Answers

Answer:

1.

Given the recursive formula:

[tex]a_3 = -11[/tex] and

[tex]a_n = 2a_{n-1} -1[/tex]

For n = 3:

[tex]a_3=2a_2 -1[/tex]

Substitute [tex]a_3 = -11[/tex] we have;

[tex]-11=2a_2 -1[/tex]

Add 1 to both sides we have;

[tex]-10 = 2a_2[/tex]

Divide both sides by 2 we have;

[tex]-5 = a_2[/tex]

or

[tex]a_2 = -5[/tex]

For n = 4, we have;

[tex]a_4=2a_3 -1[/tex]

Substitute [tex]a_3 = -11[/tex] we have;

[tex]a_4 = 2 \cdot -11 -1 = -22-1 = -23[/tex]

⇒[tex]a_4 = -23[/tex]

2.

Given:

[tex]a_4 = -36[/tex] and [tex]a_n = 2a_{n-1} -4[/tex]

For n = 4, we have;

[tex]a_4=2a_3 -4[/tex]

Substitute [tex]a_4 = -36[/tex] we have;

[tex]-36 = 2a_3 -4[/tex]

Add 4 to both sides we have;

[tex]-32 = 2a_3[/tex]

Divide both sides by 2 we have;

⇒[tex]a_3 =-16[/tex]

For n = 3:

[tex]a_3=2a_2 -4[/tex]

Substitute [tex]a_3 = -16[/tex] we have;

[tex]-16=2a_2 -4[/tex]

Add 4 to both sides we have;

[tex]-12 = 2a_2[/tex]

Divide both sides by 2 we have;

[tex]-6 =a_2[/tex]

or

⇒[tex]a_2 = -6[/tex]

The indicated terms of the sequence defined by each of the following recursive formulas are as follows:

[tex]\mathbf{a_{2} = -5}[/tex][tex]\mathbf{a_4 = -23}[/tex][tex]\mathbf{{a_3}=-16}[/tex][tex]\mathbf{{a_2}=-6}[/tex]

What are recursive formulas?

A recursive formula is one that describes each term in a series in terms of the term before it. The general term for an arithmetic sequence by using a recursive formula is [tex]\mathbf{a_n = a_{n-1} + d}[/tex]

From the given information:

[tex]\mathbf{a_3 = -11}[/tex]     [tex]\mathbf{a_n = -2a_{n-1} -1}[/tex]

Now, when n = 3

[tex]\mathbf{a_3 = -2a_{3-1} -1}[/tex]

[tex]\mathbf{-11= -2a_{2} -1}[/tex]

[tex]\mathbf{2a_{2} = -10}[/tex]

[tex]\mathbf{a_{2} = -5}[/tex]

When n = 4

[tex]\mathbf{a_4= -2a_{4-1} -1}[/tex]

[tex]\mathbf{a_4 = 2(-11) -1}[/tex]

[tex]\mathbf{a_4 = -23}[/tex]

Second Part:

[tex]\mathbf{a_4 = -36}[/tex][tex]\mathbf{a_n = 2_{an-1}-4}[/tex]

When n = 4

[tex]\mathbf{a_4 = 2_{a4-1}-4}[/tex]

[tex]\mathbf{a_4= 2_{a3}-4}[/tex]

[tex]\mathbf{-36+4= 2_{a_3}}[/tex]

[tex]\mathbf{2_{a_3}=-32}[/tex]

[tex]\mathbf{{a_3}=-16}[/tex]

When n = 3

[tex]\mathbf{a_3= 2_{a3-1}-4}[/tex]

[tex]\mathbf{a_3= 2_{a2}-4}[/tex]

[tex]\mathbf{-16= 2_{a_2}-4}[/tex]

[tex]\mathbf{2_{a_2}=-12}[/tex]

[tex]\mathbf{{a_2}=-6}[/tex]

Learn more about recursive formulas here:

https://brainly.com/question/1275192

Given a soda can with a volume of 15 and a diameter of 2, what is the volume of a cone that fits perfectly inside the soda can? (Hint: only enter numerals in the answer blank).

Answers

the volume of the cone will be 1/3  of the can .

that is 5 

Answer:

5 cubic units.    

Step-by-step explanation:

We have been given that a can soda can has a volume of 15 cubic units and a diameter of 2.

First of all let us find the height of cylinder using volume of cylinder formula.

[tex]\text{Volume of cylinder}=\pi r^2 h[/tex], where,

r = radius of cylinder,

h = Height of cylinder.

Now let us divide our diameter by 2 to get the radius of cylinder.

[tex]\text{radius of cylinder}=\frac{2}{2}=1[/tex]

Let us substitute our given values in volume of cylinder formula to get the height of cylinder.

[tex]15=\pi*1^2*h[/tex]

[tex]15=\pi*h[/tex]

[tex]\frac{15}{\pi}=\frac{\pi*h}{\pi}[/tex]

[tex]\frac{15}{\pi}=h[/tex]

Now we will use volume of cone formula to find the volume of our given cone inscribed inside cylinder.

[tex]\text{Volume of cone}=\frac{1}{3}\pi*r^2h[/tex]

Since the height and radius of the largest cone that can fit inside the can will be equal to height and radius of can, so we will substitute [tex]\frac{15}{\pi}=h[/tex] and [tex]r=1[/tex] in the volume formula of cone.

[tex]\text{Volume of cone}=\frac{1}{3}\pi*1^2*\frac{15}{\pi}[/tex]

[tex]\text{Volume of cone}=\frac{1}{3}*1*15[/tex]

[tex]\text{Volume of cone}=5[/tex]

Therefore, volume of our given cone will be 5 cubic units.

Find the solution of this system of equations.
Separate the x- and y-values with a comma.
x= 5 + y
28x – 9y= -12

Answers

x= 5 + y
28x – 9y = -12

substitute x= 5 + y into 28x – 9y = -12

28x – 9y= -12
28(5 + y) – 9y = -12
140 + 28y - 9y = -12
19y = -152
    y = -8

x = 5 + y
x = 5 - 8
x = -3

solution (-3, -8)



A small school has 110 students who occupy three classrooms: a, b, and

c. after the first period of the school day, half the students in room a move to room b, one-fifth of the students in room b move to room c, and one-third of the students in room c move to room

a. nevertheless, the total number of students in each room is the same for both periods. how many students occupy each room?

Answers

There are 20, 50 and 30 in each room respectively.

What is equation?

An equation is a mathematical statement that shows that two mathematical expressions are equal.

Given that, there are 110 students in total in all the class.

According to question,

a+b+c = 110

After the room changes, we have

a/2 + c/3 = a

4b/5 + a/2 = b

2c/3 + b/5 = c

or,

a/2 = c/3

a/2 = b/5

b/5 = c/3 = a/2

so, substituting in,

a + 5a/2 + 3a/2 = 110

2a + 5a + 3a = 220

a = 22

b = 55

c = 35

Hence, there are 20, 50 and 30 in each room respectively.

For more references on equation, click;

https://brainly.com/question/29657992

#SPJ5

what is the solution to the equation 4(3x - 11) + 23 = 5x - 14 ?

Answers

Hello there!

4(3x - 11) + 23 = 5x - 14

Apply the distributive property to 4(3x - 11)
4(3x) + 4(-11)
12x - 44

We now have:
12x - 44 + 23 = 5x - 14
Combine like-terms on the left-hand side of the equation.
-44 + 23 = -21

12x - 21 = 5x - 14
Get x on one side by subtracting 5x from both sides..
12x - 5x = 7x
5x - 5x = 0

7x - 21 = -14
Add 21 to both sides to isolate 7x.
-21 + 21 = 0
-14 + 21 = 7

7x = 7
Divide both sides by 7 to solve for x.
7x / 7 = x
7 / 7 = 1

We are now left with the following solution:
x = 1

I hope this helps!

Please Help! Given that line s is perpendicular to line t, which statements must be true of the two lines? Check all that apply.
a.Lines s and t have slopes that are opposite reciprocals.
b.Lines s and t have the same slope.
c.The product of the slopes of s and t is equal to -1
d.The lines have the same steepness.
e.The lines have different y intercepts.
f.The lines never intersect.
g.The intersection of s and t forms right angle.
h.If the slope of s is 6, the slope of t is -6

Remember, it is check all that apply, so there will be multiple answers.

Answers

lines s and t have slopes that are opposite reciprocals.
the products of the slopes of s and t is equal to -1
they have different y int's


Final answer:

In geometry, when line s is perpendicular to line t, statements a, c, and g are true: Lines s and t have slopes that are opposite reciprocals, the product of the slopes of s and t equal -1, and the intersection of s and t forms a right angle.

Explanation:

In geometry, if line s is perpendicular to line t, several facts about these two lines can be stated:

a. Lines s and t have slopes that are opposite reciprocals. This is true. If the slope of one line is m, the slope of the line perpendicular to it is -1/m.b. Lines s and t have the same slope. This is false as orthogonal lines have slopes that are negative reciprocals of each other.c. The product of the slopes of s and t is equal to -1. This is true. When two lines are perpendicular, the product of their slopes is -1.d. The lines have the same steepness. This is false because perpendicular lines have different slopes.e. The lines have different y intercepts. This assertion is not necessarily true. Perpendicular lines may or may not have different y-intercepts.f. The lines never intersect. This is false. Perpendicular lines intersect once, forming a 90 degrees angle.g. The intersection of s and t forms a right angle. This is true. The definition of perpendicular lines states that they intersect at a right angle.h. If the slope of s is 6, the slope of t is -6. This is false. If the slope of s is 6, the slope of t, being a negative reciprocal, would be -1/6, not -6.

Learn more about Perpendicular Lines here:

https://brainly.com/question/18271653

#SPJ2

What time is 5 3/4 hours after 9:22 PM?

Answers

9 + 5 = 14 
3/4 hours = 45 minutes
22 + 45 = 67 = 1 hrs 7 minutes 
15 hrs 7 minuts = 3:07 AM

How far away can a boy ride on a bicycle if he rides away at 10 kilometers per hour and returns at 9 kilometers per hour? The entire trip takes 9.5 hours.

Answers

alright, so he went the same distance there and back, but at different speeds

hmm

d=st
d/s=t

total time is 9.5hr

alright

so distance there=distance back we will call both of them d

so

speed there is 10
speed back is 9
total time is 9.5

so
d/sthere+d/sback=totaltime
d/10+d/9=9.5
times both sides by 90
9d+10d=855
19d=855
divide both sides by 19
d=45

he can ride 45mi away

Solve the inequality. 8x-5>_27. A.x>_4. B.x>_11/4. C.x<_4. D.x<_11/4

Answers

8x - 5 ≥ 27
8x ≥ 32 <-- Add 5 to both sides
x ≥ 4 <-- Divide both sides by 8

So, to be in solution set, x has to be greater or equal to 4.

In interval notation: [4, ∞)

In a set builder notation: {x | x ∈ R, x ≥ 4}

The solution for the inequality  8x - 5 ≥ 27 can be written as x [4, ∞) or x ≥ 4, so option A is correct.

What is inequality?

An inequality is a relation that compares two numbers or other mathematical expressions in an unequal way. It is most frequently used to compare the sizes of two numbers on the number line.

Given:

8x - 5 ≥ 27

Solve the above inequality as shown below,

Add 5 to both sides of an inequality,

8x - 5 + 5 ≥ 27 + 5

8x ≥ 32

Divide both sides by 8,

8x / 8  ≥ 32 / 8

x ≥ 4

x [4, ∞)

Thus, x can be any real number greater than 4 or equal to four.

To know more about inequality:

https://brainly.com/question/2038369

#SPJ5

Using the parkland formula, calculate the hourly rate of fluid replacement with lactated ringerâs solution during the first 8 hours for a client weighing 75 kg with total body surface area (tbsa) burn of 40%. record your answer using a whole number.

Answers

The Parkland formula is
V = 4mA
where
V = volume of replacement fluid (mL) required within the first 24 hours after a burn injury,
m = body mass, kg
A = percent of body surface area covered with burns.
The first half of the fluid should be delivered in the first 8 hours.

Because we are concerned with fluid replacement within the first 8 hours, the Parkland formula is valid to be used.
 
Given:
m = 75 kg
A = 40%

Therefore
V = 4*75*40 = 12,000 mL = 12 L
This is the fluid replacement required in the first 24 hours.

Because half of this amount should be delivered in the first 8 hours, the amount of fluid replacement is
6,000 mL in 8 hours, or
6000/8 = 750 mL per hour.

Answer:  750 mL every hour



Identify the x-intercept and y-intercept of the line 2x−5y=20.

Select one:
a. The x-intercept is (2, 0) and the y-intercept is (0, -5).
b. The x-intercept is (10, 0) and the y-intercept is (0, -4).
c. The x-intercept is (0, -4) and the y-intercept is (10, 0).
d. The x-intercept is (0, 10) and the y-intercept is (-4, 0).

Answers

x intercept y = 0 ; 2x=20 then x = 10
y intercept x = 0; −5y=20 then y = -4

x intercept (10,0), y intercept (0,-4)

answer 
b. The x-intercept is (10, 0) and the y-intercept is (0, -4).

A cone-shaped paper drinking cup is to be made to hold 33 cm3 of water. find the height and radius of the cup that will use the smallest amount of paper. (round your answers to two decimal places.)

Answers

Final Answer:

To minimize the paper used for a cone-shaped drinking cup holding 33 cm³ of water, the optimal dimensions are a radius of approximately 1.65 cm and a height of around 3.30 cm.

Explanation:

To minimize the paper required for the cone-shaped cup, we must consider its volume, which is given as 33 cm³. The formula for the volume of a cone is V = (1/3)πr²h, where r is the radius and h is the height. To find the dimensions that minimize paper usage, we can use calculus and optimization techniques.

The first step involves expressing the volume formula in terms of a single variable, either r or h. In this case, expressing it in terms of h is preferable. Then, taking the derivative and setting it equal to zero helps find critical points. The second derivative test can determine whether these points are minima.

Once we find the critical points, substituting them back into the original volume formula gives us the optimal dimensions. In this context, the optimal radius is approximately 1.65 cm, and the optimal height is around 3.30 cm. These dimensions ensure the cone holds 33 cm³ of water while minimizing the surface area of the paper, thus reducing material usage and waste.

In conclusion, by applying calculus and optimization principles, we determine that a cone with a radius of 1.65 cm and a height of 3.30 cm uses the smallest amount of paper to hold 33 cm³ of water.

The height and radius of the cup that will use the smallest amount of paper, rounded to two decimal places, are:

[tex]\[ \boxed{h \approx 6.04 \text{ cm}} \][/tex]

[tex]\[ \boxed{r \approx 3.02 \text{ cm}} \][/tex]

These are the dimensions of the cone-shaped cup that will minimize the amount of paper used while still holding [tex]33 cm^3[/tex] of water.

To find the height and radius of the cone-shaped paper drinking cup that will use the smallest amount of paper, we need to minimize the surface area of the cone. The surface area [tex]\( A \)[/tex] of a cone consists of the base area and the lateral surface area, which can be expressed as:

[tex]\[ A = \pi r^2 + \pi r l \][/tex]

where [tex]\( r \)[/tex] is the radius of the base of the cone, and [tex]\( l \)[/tex] is the slant height of the cone. The slant height can be found using the Pythagorean theorem:

[tex]\[ l = \sqrt{r^2 + h^2} \][/tex]

where [tex]\( h \)[/tex] is the height of the cone. The volume [tex]\( V \)[/tex] of the cone is given by:

[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

We are given that the volume [tex]\( V \)[/tex] is [tex]33 cm^3[/tex]. We can use this to express [tex]\( h \)[/tex] in terms of [tex]\( r \)[/tex]:

[tex]\[ h = \frac{3V}{\pi r^2} \][/tex]

Substituting the volume into the equation, we get:

[tex]\[ h = \frac{3 \times 33}{\pi r^2} \][/tex]

Now, we substitute [tex]\( h \)[/tex] into the expression for [tex]\( l \)[/tex]:

[tex]\[ l = \sqrt{r^2 + \left(\frac{3 \times 33}{\pi r^2}\right)^2} \][/tex]

Substituting [tex]\( l \)[/tex] back into the surface area equation, we have [tex]\( A \)[/tex] as a function of [tex]\( r \)[/tex] :

[tex]\[ A(r) = \pi r^2 + \pi r \sqrt{r^2 + \left(\frac{3 \times 33}{\pi r^2}\right)^2} \][/tex]

To find the minimum surface area, we need to take the derivative of [tex]\( A \)[/tex] with respect to [tex]\( r \)[/tex] and set it equal to zero:

[tex]\[ \frac{dA}{dr} = 0 \][/tex]

Solving this equation will give us the value of [tex]\( r \)[/tex] that minimizes the surface area. Once we have [tex]\( r \)[/tex], we can substitute it back into the equation for [tex]\( h \)[/tex] to find the height that corresponds to the minimum surface area.

After performing the differentiation and solving for [tex]\( r \)[/tex], we find that the radius that minimizes the surface area is approximately 3.02 cm. Substituting this value into the equation for [tex]\( h \)[/tex], we find that the corresponding height is approximately 6.04 cm.

Find the value of each variable.

A. a = 15, b = 5, c = 8, d = 4

B. a = 15, b = 4, c = 8, d = 5

C. a = 14.5, b = 5, c = 6, d = 4

D. a = 14.5, b = 4, c = 6, d = 5

Answers

i'm pretty sure its A

Answer:

(A)

Step-by-step explanation:

From the figure, since RT is parallel to QU, therefore ΔSQU is similar to ΔSRT, thus using the basic proportionality theorem, we get

[tex]\frac{SR}{SQ}=\frac{ST}{SU}[/tex]

[tex]\frac{c}{12+c}=\frac{10}{25}[/tex]

[tex]25c=120+10c[/tex]

[tex]15c=120[/tex]

[tex]c=8[/tex]

Also, QU is parallel to PV, therefore from ΔPVS and ΔSRT, we have

[tex]\frac{SR}{SP}=\frac{ST}{SV}[/tex]

[tex]\frac{c}{c+12+d}=\frac{10}{30}[/tex]

[tex]\frac{8}{20+d}=\frac{1}{3}[/tex]

[tex]24=20+d[/tex]

[tex]d=4[/tex]

Now, from ΔSRT and SQU, we have

[tex]\frac{RT}{QU}=\frac{ST}{SU}[/tex]

[tex]b=\frac{10{\times}12.5}{25}[/tex]

[tex]b=5[/tex]

Also, from ΔSQU and SPV,

[tex]\frac{12.5}{a}=\frac{25}{30}[/tex]

[tex]a=15[/tex]

Thus, value of a,b,c and d are 15,5,8 and 4 respectively.

What is the slope of the graph of 2y – 5x = 14?

Answers

Solving for y, we add 5x to both sides to get 2y=14+5x, and divide by 2 to get 
y=2.5x+7. The slope is the coefficient of x, which is 2.5

the fraction 6/9 produces a repeating decimal 0.6 ?
true or false

Answers

6/9 = 0.66 with a line over the 66 because it does repeat...u r correct
True.  n/9, for integers n=[1,9] produce decimals 0.n bar.
Other Questions
During activity and at rest, which type of body tissue burns the most calories? A common stockholder has no guarantee of receiving any cash inflows, but receives what is left after all other claims on the firm's income and assets have been satisfied. a. True b. False The human body can protect itself from infection. the ability to resist infection related to the height of an object dropped from the top of a 320-meter building is given by h(t)= -5t^2+320. how long will it take the object to hit the ground Margaret leased her life estate in the family home to her grandson, jeff, for six years. margaret, the governing life of the life estate, died prior to the expiration of the six-year lease. upon margarets death, what is the status of jeff's lease When photons with a wavelength of 310. nm strike a magnesium plate, the maximum velocity of the ejected electrons is 3.45 105 m/s. calculate the binding energy of electrons to the magnesium surface? Three words that describe Hermione Granger A student has some 1 and 5 bills in his wallet. he has a total of 14 bills that are worth 50 how many of each type of bill does he hae As people age there are changes in cognitive function, personality, social relationships, and other areas. ____________ use life milestones, membership in cohorts, and exposure to historical events to understand aging. How many lines of symmetry does the figure have?0123 An illness that affects the brain and reduces a person's ability to cope, to adjust to every day life changes, or to get along with others is called a(n) A comma may be used correctly to do any of the following Except blank.A.) Join sentences when used with a conjunctionB.) Set off introductory word, clause, or phraseC.) Set off interrupting words or expressionsD.) Call attention to what follows it If the exact terms of the listing agreement are met, the listing broker is entitled to a commission, even if the: Pathogens can be transmitted through contact with surfaces like doorknobs and countertops. Please select the best answer from the choices provided. T or F qu es ms importante para ti, tener la tecnologa ms avanzada o conservar el medio ambiente? which description matches the transformations y=cosx undergoes to produce y= -2cos3xA. Horizontal compression by factor 1/3, vertical stretch by factor 2, then a reflection through the x-axisB. reflection through the y-axis, vertical shift of 2 units, horizontal shift right by 3 unitsC.Horizontal shift 2 units, then vertical shift up by 3 unitsD.Horizontal stretch by factor 2, reflection through the x-axis, then the vertical stretch by factor 3 g(a) = 3^3a-2 . Find g(1) what conclusion did rutherford draw from this experiment? You are treating a middle-aged man with chest discomfort. he has a history of three previous heart attacks and takes nitroglycerin as needed for chest pain. you have standing orders to administer aspirin to patients with suspected cardiac-related chest pain or discomfort. while your partner is preparing to give oxygen to the patient, you should: need help with this inequality Steam Workshop Downloader