What are the counting numbers in base 6

Answers

Answer 1

In the base 6 number system, we would only use numerals from 0 to 5. The idea of base 6 is just like the normal base 10 system, however instead of using the numerals from 0 to 9, we use numerals from 0 to 5. And instead of having a ones digit, a tens digit, a hundreds digit and so on, we use a ones digit, a sixes digit, a thirty-sixes digit, and so on. Therefore in base 6, the number 321 means 1  one plus 2 sixes plus 3 thirty-sixes, or 121. So to count until 15 for example, we  would need:

 

Base 6                                                                   Base 10

 

1                                                                                  1   

2                                                                                  2

3                                                                                  3

4                                                                                  4

5                                                                                  5

10  (1 six plus 0 ones)                                                 6

11  (1 six plus 1 one)                                                   7

12  (1 six plus 2 ones)                                                 8

13                                                                                9

14                                                                              10

15                                                                              11

20  (2 sixes plus 0 ones)                                           12

21  (2 sixes plus 1 one)                                             13

22                                                                              14

23                                                                              15

Answer 2

Final answer:

The counting numbers in base 6 are represented using the digits 0 to 5, where each digit position represents a power of six. The sequence starts at 0, followed by 1, 2, 3, 4, 5, and then continues with 10 (which is 6 in decimal), 11 (7 in decimal), etc.

Explanation:

The counting numbers in base 6, also known as base-6 or hexadecimal numbers, consist of the digits 0, 1, 2, 3, 4, and 5. Just like in the decimal system (base 10) where the digits go from 0 to 9, in base 6 we only use the digits 0 to 5 for each place value, and each place is six times greater than the place to its right. After reaching 5, the next number in the sequence would be represented as 10 (base 6), which is equal to 6 in base 10. The sequence continues with 11 (base 6 equals 7 in base 10), 12 (base 6 equals 8 in base 10), and so on.

The concept of base systems is an important aspect of number theory in mathematics. In everyday life, we use the base 10 numbering system, mainly because humans have ten fingers. However, in computing and other scientific fields, different base systems like base 2 (binary) or base 16 (hexadecimal) are often used.


Related Questions

John’s gross pay for the week is $500. He pays 1.45 percent in Medicare tax, 6.2 percent in Social Security tax, 2 percent in state tax, 20 percent in federal income tax, and $20 as an insurance deduction. He does not have any voluntary deductions. What is John’s net pay for the week?

Answers

gross pay = 500

deductions :
medicare tax : 0.0145(500) = 7.25
S.S tax : 0.062(500) = 31.00
sales tax : 0.02(500) = 10.00
income tax : 0.2(500) = 100
insurance = 20
total deductions : 7.25 + 31 + 10 + 100 + 20 = 168.25

gross pay - deductions = net pay
500 - 168.25 = net pay
331.75 = net pay <===
Final answer:

John's net pay is calculated by subtracting deductions for Medicare, Social Security, state and federal taxes, and insurance from his gross pay of $500. The total deductions amount to $168.25, resulting in a net pay of $331.75.

Explanation:

Calculation of John's Net Pay

To calculate John's net pay, we need to subtract all the deductions from his gross pay. Since his gross pay is $500, we will apply the following deductions:

Medicare tax: 1.45% of $500 = $7.25

Social Security tax: 6.2% of $500 = $31.00

State tax: 2% of $500 = $10.00

Federal income tax: 20% of $500 = $100.00

Insurance deduction: $20.00

Add up all deductions: $7.25 (Medicare) + $31.00 (Social Security) + $10.00 (State Tax) + $100.00 (Federal Tax) + $20.00 (Insurance) = $168.25

John's net pay is therefore calculated by subtracting the total deductions from his gross pay: $500.00 - $168.25 = $331.75.

What is the value of x?

16
50
130
164
Please hurry !!!

Answers

c) 130 i hope this helps good luck 

Answer:

x = 16.

Step-by-step explanation:

Given : Transverse line b and parallel line e and f.

To find : What is the value of x.

Solution : We have given Transverse line b and parallel line e and f.

Corresponding angles : When two lines are crossed by another line the angles in matching corners are called corresponding angles.

corresponding angles are always equal.

2x + 18 = 4x - 14.

On subtracting both sides by 4x

2x -4x + 18 = -14.

- 2x + 18 = - 14 .

On subtracting both sides by 18

- 2x = - 14 -18 .

- 2x = - 32 .

On dividing both sides by -2 .

x = 16.

Therefore, x = 16.

which statements describe the function f(x)=2(x-4)^4

A) The left end of the graph of the function goes up, and the right end goes down
B) It has 3 zeros and at most 4 relative maximums or minimums
C) It has 4 zeros and at most 3 relative maximums or minimums
D) It is a translation of the parent function 4 units to the right
E) It is a translation of the parent function 4 units to the left
F) Both ends of the graph of the function go up

Answers

There was 3 answers.

Answer one is It has 4 zeros and at most 3 relative maximums or minimums.
Answer two is It is a translation of the percent function 4 units to the right.
Answer three is Both ends of the graph of the function go up.

:)

it is a transition of the parent function 4 units to the right, it has 4 zeros and at most 3 relative maximums and minimums, both ends of the graph of the function go up this is for apex

A salesperson sold a total of $6,400.00.If her rate of commission is 6%, what is her commission?

Answers

multiply 6400 x 6%

6% = 0.06

6400 x 0.06 = 384

 her commission was $384

Answer:

The commission amount of the salesperson is $384.

Step-by-step explanation:

A salesperson sold a total of $6,400.00.

The rate of commission is 6% or 0.06. Commissions are based on sales. These are some percentage of the sales amount.

So, here the amount will be = [tex]0.06\times6400=384[/tex] dollars

So, the commission amount of the salesperson is $384.

The quotient of (x4 + 5x3 – 3x – 15) and a polynomial is (x3 – 3). What is the polynomial?

Answers

Answer:

  (x +5)

Step-by-step explanation:

The problem statement is telling you that one factor of (x⁴ +5x³ -3x -15) is (x³ -3). It is asking for the other factor. Clearly, you can find the other factor by dividing the polynomial by the given factor.

That is ...

  (x⁴ +5x³ -3x -15) / (x³ -3) = (x +5)

so ...

  (x⁴ +5x³ -3x -15) / (x +5) = (x³ -3)

The divisor of interest is (x +5).

Answer:

(x+5)

The answer is c.

A spring is oscillating so that its length is a sinusoidal function of time. Its length varies from a minimum of 10 cm to a maximum of 14 cm. At t=0 seconds, the length of the spring was 12 cm, and it was decreasing in length. It then reached a minimum length at time t= 1.2 seconds. Between time t=0 and t=8 seconds, how much of the time was the spring longer than 13.5 cm?

Answers

Let the x(t) represent the motion of the spring as a function of time, t.

The length of the oscillating spring varies from a minimum of 10 cm to a maximum of 14 cm.
Therefore its amplitude is A = (14 - 10)/2 = 2.

When t = 0 s, x = 12 cm.
Therefore the function is of the form
x(t) = 2 sin(bt) + 12

At t=0, x(t) is decreasing, and it reaches its minimum value when t = 1.2 s.
Therefore, a quarter of the period is 1.2 s.
The period is given by
T/4 = 1.2
T = 4.8 s

That is,
b = (2π)/T = (2π)/4.8 = π/2.4 = 1.309

The function is
x(t) = 2 sin(1.309t) + 12
A plot of x(t) is shown below.

When x(t) = 13.5, obtain
2 sin(1.309t) + 12 = 13.5
sin(1.309t) = (13.5 - 12)/2 = 0.75
1.309t = sin⁻¹ 0.75 = 0.8481 or π - 0.8481
t = 0.8481/1.309 or t = (π - 0.8481)/1.309
  = 0.649 or 1.751
The difference in t is 1.751 - 0.649 = 1.1026.

This difference occurs twice between t=0 and t=8 s.
Therefore the spring length is greater than 13.5 cm for 2*1.1026 = 2.205 s.

Answer:
Between t=0 and t=8, the spring is longer than 13.5 cm for 2.205 s.

The graph below shows the fine that a college student pays to the library based on the number of minutes a loaner laptop is overdue:

A graph is shown. The values on the x axis are 0, 2, 4, 6, 8. The values on the y axis are 0, 0.70, 1.40, 2.10, 2.80. Points are shown on ordered pairs 0, 0 and 2, 0.70 and 4, 1.40 and 6, 2.10. These points are joined by a line. The label on the x axis is Minutes Overdue. The title on the y axis is Fine.

Which statement best describes the point (0, 0) on the graph?

Answers

Create a Cartesian plane with the x and y axes. Then, plot the given points on the plane: (0,0), (2,0.7), (4,1.4), (6,2.1). Lastly, connect these 4 data points to form a line. The x-axis represents minutes overdue and the y-axis represents the fine. The result is shown in the picture.

This graph shows an increasing linear trend. It shows that the fine is directly proportional with time. At time 0 minutes, the college student does not have to pay a fine because he hasn't even used the laptop yet. Therefore, the origin (0,0) signifies the starting point of the observation. But when he used 2 minutes of the time, he would pay $0.7. The trend goes on until he used up 6 minutes and paid a total of $2.1

Answer:

So the answer would be No fine is paid if the laptop is returned exactly at the time at which it is due

A 31-m tall building casts a shadow. The distance from the top of the building to the tip of the shadow is 37 m. Find the length of the shadow. If necessary, round your answer to the nearest tenth.

Answers

The length of the shadow is about 20.2( rounded to the nearest tenth), because the shadow and the building formed as a triangle, so uses the formula of Pythagorean theorem to solve this problem
if you draw the illustration of the problem, you can see that the building, the shadow, and the length of the shadow  to the tip of the building is forming a right triangle. We can use pythagoreans theorem stating that a^2 + b^2 = c^2. In this case your side b is missing its value. Therefore we can rearrange the equation then it becomes b= √(c^2-a^2 )

Given the following sequence, find the 23rd term: 10.5, 11, 11.5, 12, 12.5, . . .

Answers

10.5, 11, 11.5, 12, 12.5...this is an arithmetic sequence with a common difference of 0.5

an = a1 + (n - 1) * d
n = term to find = 23
a1 = first term = 10.5
d = common difference = 0.5

sub and solve

a(23) = 10.5 + (23 - 1) * 0.5
a(23) = 10.5 + 22 * 0.5
a(23) = 10.5 + 11
a(23) = 21.5 <===

Find a rational zero of the polynomial function and use it to find all the zeros of the function. f(x) = x4 + 3x3 - 5x2 - 9x - 2

Answers

Polynomials in the fourth degree are called quartic equations. In solving the roots of polynomials, there are techniques available. For quadratic equations, you use the quadratic formula. For cubic equations, you use the scientific calculator. But for quartic equations and higher, it is very complex. The method is very lengthy and can get very messy because you introduce a lot variables. So, I suggest you do the easiest method to estimate the roots.

Graph the equation by plotting arbitrary points. The graph looks like that in the figure. The points at which the curve passes the x-axis are the solution which are encircled in red.In approximation, the rational roots or zero's are -3.73, -1, -0.28 and 2.

The rational zero -1 is a root of f(x). Synthetic division yields [tex]\(x^3 + 2x^2 - 7x - 2\)[/tex]. Further factorization or testing other rational roots finds the remaining zeros.

To find a rational zero of the polynomial function [tex]\(f(x) = x^4 + 3x^3 - 5x^2 - 9x - 2\)[/tex], we can use the Rational Root Theorem. According to this theorem, any rational zero of the polynomial function must be of the form ±p/q, where p is a factor of the constant term (-2 in this case) and q is a factor of the leading coefficient (1 in this case).

The factors of -2 are ±1, ±2, and the factors of 1 are ±1. Therefore, the possible rational zeros are:

±1, ±2

We can try these values to see if they are roots of the polynomial.

Let's start by trying x = 1:

[tex]\[f(1) = (1)^4 + 3(1)^3 - 5(1)^2 - 9(1) - 2\]\[= 1 + 3 - 5 - 9 - 2\]\[= -12\][/tex]

So, x = 1 is not a root.

Next, let's try x = -1:

[tex]\[f(-1) = (-1)^4 + 3(-1)^3 - 5(-1)^2 - 9(-1) - 2\]\[= 1 - 3 - 5 + 9 - 2\]\[= 0\][/tex]

Therefore, x = -1 is a root of the polynomial.

To find the other zeros, we can perform polynomial division or synthetic division by dividing f(x) by (x + 1). Let's use synthetic division:

-1       1      3       -5       -9      -2  

         1      2       -7       -2      ↓

The result is [tex]\(x^3 + 2x^2 - 7x - 2\)[/tex]. Now, we can factor this cubic polynomial or continue using the Rational Root Theorem to find additional roots. Let's try x = 1 again:

[tex]\[f(1) = (1)^3 + 2(1)^2 - 7(1) - 2\]\[= 1 + 2 - 7 - 2\]\[= -6\][/tex]

x = 1 is not a root, so we continue to try the other possible rational zeros. However, to save time, let's check if any of the values of [tex]\(x = \pm 2\)[/tex] are roots using synthetic division:

For x = 2:

2     1      2        -7     -2

      1      4          1      ↓

For \(x = -2\):

-2     1      2      -7       -2

         1     0      -7        ↓

Since none of these values result in a remainder of 0, [tex]\(x = \pm 2\)[/tex] are not roots.

Therefore, the zeros of the polynomial function [tex]\(f(x) = x^4 + 3x^3 - 5x^2 - 9x - 2\) are \(x = -1\),[/tex] and the other zeros can be found by further factoring the reduced cubic polynomial.

Please hurry !!!

Which is an x-intercept of the graphed function?

A) 0,4
B)-1,0
C)4,0
D)0,-1

Answers

Well looking at the x line you see where the line falls on and looking at your options -1 is on the x line and the line falls on it so id say the answer is B

we know that

The x-intercept is the value of the coordinate x when the value of the function is equal to zero

so

In this problem we have that the x-intercepts of the graphs are the points

[tex](-2,0)\\(-1,0)\\(1,0)\\(2,0)[/tex]

therefore

the answer is the option

B)-1,0


Write an algebraic expression which represents the volume of a box whose width is 4y, height is 6y and length is 3y + 1.

Answers

The correct expression is: 72y^3

What does the value of the LCM represent

Answers

The LCM is Least Common Multiple, it is the product of the highest order of occurring primes in the numbers prime factorization...

please help me right now will give brainliest and offering 50 points





Above are two different models of the same hexagon. If the side length of the model on the left is in, what is the corresponding side length of the model on the right?

A. 10 1/4 in


B. 4 in


C. 5 in


D. 3 3/4 in


Answers

You didn't finish your question what exactly are you asking? What side? "If the side length of the model on the left is in" in what?

Answer:

The answer is 5 in.

Step-by-step explanation:

Since the scale for the model on the left is 1 in = 12 ft, and the scale for the model on the right is 1 in = 3 ft, the model on the right is 4 times larger than the model on the left.

Multiply the side length of the model on the left by 4 to find the side length of the model on the right.

Israel claims that all 45degree right triangles are similar. Is he correct? Explain.

Answers

alrity... well, a right triangle with a 45°, will also have a third angle of 45° , and thus all three angles will then be 45° , 45° and 90°, for all right-triangles, and they'd be similar by AA anyway.   So all right-triangles with a 45°, will have another 45° angle and a 90° one, and the three angles will then be the exact same value for all right-triangles with one 45°.  Thus all would then be similar by AA.

If thewronskian w of f and g is 3e4t,and if f(t) = e2t,find g(t).

Answers

[tex]W(f(x),g(x))=\begin{vmatrix}f(x)&g(x)\\f'(x)&g'(x)\end{vmatrix}=f(x)g'(x)-g(x)f'(x)[/tex]

We have [tex]f(t)=e^{2t}\implies f'(t)=2e^{2t}[/tex], so

[tex]W(f(t),g(t))=e^{2t}g'(t)-2e^{2t}g(t)=3e^{4t}[/tex]
[tex]\implies e^{-2t}g'(t)-2e^{-2t}g(t)=3[/tex]
[tex]\implies\dfrac{\mathrm d}{\mathrm dt}[e^{-2t}g(t)]=3[/tex]
[tex]\implies e^{-2t}g(t)=\displaystyle\int3\,\mathrm dt[/tex]
[tex]\implies e^{-2t}g(t)=3t+C[/tex]
[tex]\implies g(t)=3te^{2t}+Ce^{2t}[/tex]

where [tex]C[/tex] is any arbitrary constant.

What is the value of 3×5+6×2+1

Answers

Just do [tex]PEMDAS[/tex] 

[tex]Parentheses \\ Equations \\ Multiplication \\ Addition \\ Subtraction[/tex]

Looks like we're doing: [tex]multiplication [/tex] and [tex]addition [/tex]

[tex]3(5) + 6(2) + 1 \\ 3(5)= 15 \\ 15 + 6(2) = \\ 6(2) =12 \\ 15 + 12 = 27 \\ 27 + 1 = 28 \\ Answer: 28 [/tex]

~ [tex]MeIsKaitlyn :) [/tex]

                                 Good luck on your assignment and enjoy your day! 

A new bank account is opened on week 1 with a $200 deposit. After that first week, weekly deposits of $55 are made in the account. If y represents the total deposited into the account and x represents the number of weeks, which function rule describes this situation?

Answers

On week 1, we started with a deposit of $200. Every week from that point on, we place a deposit of $55.

We know y is total amount of money (deposits) in the bank account.
We also know x represents the number of weeks.

On week 1, we would have $200 in the back account.
On week 2, we would have $200 + $55 or $255 in the bank account.

So, we could build an expression of 55(x - 1) + 200 which is equal to y.

So, y = 55(x - 1) + 200 is the answer.

the quadratic formula gives which roots for the equation 2x^2+7x+-2

Answers

The quadratic expression is given [tex] 2x^{2} +7x-2[/tex] where the constants are

[tex]a=2[/tex]
[tex]b=7[/tex]
[tex]c=-2[/tex]

Quadratic formula to find the roots is given as

x₁,₂ = [-b plus minus √(b)²-4ac)] ÷ 2a

Substitute a, b, and c from our expression we have

x₁,₂ = [-7 plus minus √(7)²-(4×2×-2)] ÷ 2(2)
x₁,₂ = [-7 plus minus√65] ÷ 4

from here we'll work out x₁ and x₂ separately

x₁ = (-7+√65) ÷ 4 = 0.266 (round to 3 dp)
x₂ = (-7-√65) ÷ 4 = -3.766 (round to 3 dp)



The roots for the equation [tex]\(2x^2 + 7x = -2\)[/tex] are [tex]\(x = \frac{{-7 \pm \sqrt{65}}}{{4}}\).[/tex] So, option D is correct.

To find the roots of the quadratic equation [tex]\(2x^2 + 7x = -2\),[/tex] we can use the quadratic formula:

[tex]\[x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}\][/tex]

Here, [tex]\(a = 2\), \(b = 7\), and \(c = -2\).[/tex]

Substituting these values into the formula:

[tex]\[x = \frac{{-7 \pm \sqrt{{7^2 - 4 \cdot 2 \cdot (-2)}}}}{{2 \cdot 2}}\][/tex]

[tex]\[x = \frac{{-7 \pm \sqrt{{49 + 16}}}}{{4}}\][/tex]

[tex]\[x = \frac{{-7 \pm \sqrt{{65}}}}{{4}}\][/tex]

So, the correct answer is option D:

[tex]\[x = \frac{{-7 \pm \sqrt{{65}}}}{{4}}\][/tex]

Complete Question:

If a boatman rows his boat 35km up stream and 55km downstream in 12 hours and he can row 30km upstream and 44 km downstream in 10hr , then the speed of the stream and that of the boat in still water

Answers

To answer this item, we let x be the speed of the boat in still water. The speed of the current, we represent as y.

When the boat travels upstream or against the current, the speed is equal to x – y and x + y if it travels downstream or along with the current.

The time it takes for the an object to travel a certain distance is calculated by dividing the distance by the speed.

First Travel:    35 / (x – y)   + 55 / (x + y) = 12

Second travel: 30 / (x – y)   + 44 / (x + y) = 10

Let us multiply the two equations with the (x-y)(x+y)

This will give us,

              35(x + y) + 55(x – y) = 12(x-y)(x+y)

              30(x + y) + 44(x – y) = 10(x-y)(x+y)

Using dummy variables:

Let a = x + y and b be x – y

                35a + 55b = 12ab

                30a + 44b = 10ab

From the first equation,

                     b = 35a/(12a – 55)

Substituting to the second equation,

                30a + 44(35a/(12a – 55)) = 10a(35a/(12a-55))

The value of a is 11.

              b = 35(11)/(12(11) – 55))

              b = 5

Putting back the equations,

        x + y = 11

       x – y = 5

Adding up the equations give us,

  2x = 16

    x = 8 km/hr

The value of x, the speed of the boat in still water, is 8 km/hr. 

Answer:

speed of the stream = 3 km/hr

and speed of boat in still water= 8 km/hr

Step-by-step explanation:

Let s be the speed of the boat upstream

and s' be the speed of the boat downstream.

We know that:

[tex]Time=\dfrac{distance}{speed}[/tex]

Hence, we get:

  [tex]\dfrac{35}{s}+\dfrac{55}{s'}=12[/tex]

and

[tex]\dfrac{30}{s}+\dfrac{44}{s'}=10[/tex]

Now, let

[tex]\dfrac{1}{s}=a\ and\ \dfrac{1}{s'}=b[/tex]

Hence, we have:

[tex]35a+55b=12--------------(1)\\\\\\and\\\\\\30a+44b=10--------------(2)[/tex]

on multiplying equation (1) by 4 and equation (2) by 5 and subtract equation (1) from (2) we get:

[tex]a=\dfrac{1}{5}[/tex]

and by putting value of a in (2) we get:

[tex]b=\dfrac{1}{11}[/tex]

Hence, speed of boat in upstream= 5 km/hr

and speed of boat in downstream= 11 km/hr

and we know that:

speed of boat in upstream=speed of boat in still water(x)-speed of stream(y)

and speed of boat in downstream=speed of boat in still water(x)+speed of stream(y)

Hence, we get:

[tex]x-y=5\\\\\\and\\\\\\x+y=11[/tex]

Hence, on solving the equation we get:

[tex]x=8[/tex]

and y=3

Hence, we get:

speed of the stream = 3 km/hr

and speed of boat in still water= 8 km/hr

David wishes to accumulate $1 million by the end of 20 years by making equal annual end-of-year deposits over the next 20 years. if david can earn 10 percent on his investments, how much must he deposit at the end of each year? $50,000 $17,460 $14,900 $117,453

Answers

The formula of the future value of an annuity ordinary is
Fv=pmt [(1+r)^(n)-1)÷r]
Fv accumulated amount 1000000
PMT annual payment ?
R interest rate. 0.1
N time 20 years
Solve the formula for PMT
PMT=FV÷[(1+r)^(n)-1)÷r]
PMT=1,000,000÷(((1+0.1)^(20)−1)÷(0.1))
PMT=17,459.62 round your answer
PMT=17460

David must deposit approximately $16,150.01 at the end of each year to accumulate $1 million by the end of 20 years at a 10 percent interest rate.

To calculate the equal annual end-of-year deposits that David must make to accumulate $1 million in 20 years at a 10 percent interest rate, we can use the formula for the future value of an ordinary annuity.

The formula for the future value of an ordinary annuity is given by:

[tex]FV = P * ((1 + r)^n - 1) / r[/tex]

where:

FV is the future value of the annuity (the desired $1 million in this case)

P is the annual deposit (what we need to find)

r is the annual interest rate (10% or 0.10 as a decimal)

n is the number of years (20 years in this case)

Substituting the known values:

[tex]$1,000,000 = P * ((1 + 0.10)^{20} - 1) / 0.10[/tex]

Now, we can solve for P:

$1,000,000 = P * (6.1917364224) / 0.10

$1,000,000 = P * 61.917364224

P = $1,000,000 / 61.917364224

P ≈ $16,150.01

So, David must deposit approximately $16,150.01 at the end of each year to accumulate $1 million by the end of 20 years at a 10 percent interest rate.

To know more about deposit:

https://brainly.com/question/31164511

#SPJ2

A cone is placed inside a cylinder. The cone has half the radius of the cylinder, but the height of each figure is the same. The cone is tilted at an angle so its peak touches the edge of the cylinder’s base. What is the volume of the space remaining in the cylinder after the cone is placed inside it?

Answers

Answer:

Step-by-step explanation:

Given that A cone is placed inside a cylinder. The cone has half the radius of the cylinder, but the height of each figure is the same

Whatever position cone is placed, the space remaining will have volume as

volume of the cylinder - volume of the cone

Let radius of cylinder be r and height be h

Then volume of  cylinder  = [tex]\pi r^2 h[/tex]

The cone has height as h and radius as r/2

So volume of cone = [tex]\frac{1}{3} \pi (\frac{r}{2} )^2h\\=(\pi r^2 h)\frac{1}{24}[/tex]

the volume of the space remaining in the cylinder after the cone is placed inside it

=[tex]\pi r^2 h (1-\frac{1}{24} )\\=\frac{23 \pi r^2 h}{24}[/tex]

Answer:

11/12 pie r^2 h

Step-by-step explanation:

what is 1/3m-1-1/2n when m=21 and n=12

Answers

((1/3)(21)-1-(1/2)(12))=0

Answer:

Value of the expression is 0

Step-by-step explanation:

[tex]\frac{1}{3} m -1-\frac{1}{2} n[/tex]

Given the value of m and n

m= 21  and n= 12

We plug in the value of m  and n in the given expression

[tex]\frac{1}{3} m -1-\frac{1}{2} n[/tex]

[tex]\frac{1}{3}(21) -1-\frac{1}{2}(12)[/tex]

[tex]\frac{21}{3} -1-\frac{12}{2}[/tex]

[tex]7-1-6= 0[/tex]

So the value of given expression is 0 when we plug in the values of m  and n

Which algebraic expression shows the average melting points of helium, hydrogen, and neon if h represents the melting point of helium, j represents the melting point of hydrogen, and k represents the melting point of neon?

Answers

Given:
h = melting point of helium
j =  melting point of hydrogen
k = melting point of neon

Number of values = 3
Therefore, the average is
(Sum of values)/(Number of values) = (h+j+k)/3

Answer:
The average melting point of helium, hydrogen, and neon is
(h+j+k)/3

Final answer:

The algebraic expression for finding the average melting points of helium, hydrogen, and neon, using variables h, j, and k as their respective melting points, is (h + j + k) / 3.

Explanation:

The question asks for the algebraic expression that represents the average melting points of helium, hydrogen, and neon. The variables h, j, and k denote the individual melting points of these elements, respectively. To calculate the average melting point, you would add the melting points of each element and divide by the number of elements.

The algebraic expression for the average melting point is:

(h + j + k) / 3

What is the slope of a line that is perpendicular to the line whose equation is 0.5x−5y=9 0.5 x − 5 y = 9

Answers

i) one of the forms that we can write the equation of a line is 

y=mx+k

where m is the slope of the line.

ii)

given lines y=mx+k and y=nx+t, which are perpendicular to each other.

Then, m*n=-1


Now consider the line 0.5x−5y=9:

0.5x−5y=9

take -5y to the right side and 9 to the left side

0.5x-9=5y

switch sides

5y=0.5x-9

divide by 5

y=0.1x-9/5

so the slope of the line is m=0.1

let the slope of the line perpendicular to 0.5x−5y=9 be n, then

0.1*n=-1

n=-1/(0.1)=-10


Answer: -10

1) On average, Donna's Cafe has 42 customers, which represents 20% of the total approved occupancy by the fire department.
a) According to the fire department's occupancy approval, what percentage of the cafe is still available for customers?
b)According to the fire department's occupancy approval, how many seats are still available for customers?

Answers

Given that Donna's Cafe has 42 customers representing 20% of the total approved occupancy by the fire department.

a.) According to the fire department's occupancy approval, the percentage of the cafe still available for customers is 100% - 20% = 80%


b.) Given that 42 customers represent 20% of the total approved occupancy by the fire department.
Let the total approved occupancy be x, then 20% of x is 42
i.e.
[tex]0.2x=42 \\ \\ x= \frac{42}{0.2} =210[/tex]
i.e. the total approved occupancy is 210.

According to the fire department, the number of seats that are still available for customers is given by
[tex]80\% \ of \ x = 0.8 \times 210 = 168[/tex]

if the divisor is 40 what is the least 3 digit number dividend that would give a remainder of 4

Answers

The answer to this question is:

If the divisor is 40 what is the least 3 digit number dividend that would give a remainder of 4"124/40"

Hope this help, Lukifer677
Your Welcome :)
where the divisor is 40 ... 40 x 3 = 120, this is a 3 digit number and the least 3 digit number

Use the given degree of confidence and sample data to construct a confidence interval for the population proportion p. n = 195, x = 162; 95% confidence

Answers

Final answer:

To construct a 95% confidence interval for the population proportion, calculate the sample proportion p' and its complement q', determine the Z-score for 95% confidence, calculate the margin of error using the formula E = Z*sqrt((p'q')/n), and add/subtract E from p' to get the lower and upper bounds.

Explanation:

To construct a 95 percent confidence interval for the population proportion p using the given sample data, we must first calculate the sample proportion (p') and its complement, the estimated proportion of failures (q'). Using the formula p' = x/n, we find that p' = 162/195. Next, we determine q' by calculating q' = 1 - p'.

With the sample proportion and its complement, we can use the standard formula for a confidence interval for a population proportion: p' ± Z*sqrt((p'q')/n), where Z* is the Z-score corresponding to the given degree of confidence. For a 95% confidence level, the Z-score is approximately 1.96.

By substituting the values of p', q', n, and the Z-score into the formula, we calculate the margin of error (E) and then the lower and upper bounds of the 95 percent confidence interval.

Suppose p' is 0.83 and q' is 0.17 for n = 195 and the Z-score for a 95% confidence interval is 1.96. The margin of error (E) would then be 1.96 * sqrt((0.83*0.17)/195), and the confidence interval would be p' ± E, resulting in a specific numerical range which would constitute our 95% confidence interval for the true population proportion.

The 95% confidence interval for the population proportion [tex]\( p \)[/tex] is [tex]\( (0.7783, 0.8833) \)[/tex].

To construct a confidence interval for the population proportion [tex]\( p \),[/tex] we will use the given information: sample size [tex]\( n = 195 \)[/tex], number of successes [tex]\( x = 162 \),[/tex] and a confidence level of 95%.

The formula for the confidence interval for a population proportion [tex]\( p \)[/tex] is:

[tex]\[ \hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \][/tex]

where:

- [tex]\( \hat{p} \)[/tex] is the sample proportion [tex](\( \frac{x}{n} \)),[/tex]

- [tex]\( z^* \)[/tex] is the critical value from the standard normal distribution corresponding to the desired confidence level.

Calculate the sample proportion [tex]\( \hat{p} \):[/tex]

[tex]\[ \hat{p} = \frac{x}{n} = \frac{162}{195} \][/tex]

[tex]\[ \hat{p} \approx 0.8308 \][/tex]

For a 95% confidence level, the critical value [tex]\( z^* \)[/tex] can be found using the standard normal distribution table or a calculator. It corresponds to the middle 95% of the distribution, which leaves 2.5% in each tail.

The critical value [tex]\( z^* \)[/tex] for a 95% confidence level is approximately 1.96.

Calculate the standard error [tex]\( SE \):[/tex]

[tex]\[ SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\ SE = \sqrt{\frac{0.8308 \cdot (1-0.8308)}{195}} \\ SE \approx \sqrt{\frac{0.8308 \cdot 0.1692}{195}} \\ SE \approx \sqrt{\frac{0.1405}{195}} \\ SE \approx \sqrt{0.0007205} \\ SE \approx 0.0268 \][/tex]

Now, we can construct the 95% confidence interval for [tex]\( p \):[/tex]

[tex]\[ \hat{p} \pm z^* \cdot SE \][/tex]

[tex]\[ 0.8308 \pm 1.96 \cdot 0.0268 \][/tex]

Calculate the margin of error:

[tex]\[ 1.96 \cdot 0.0268 \approx 0.0525 \][/tex]

So, the confidence interval is:

[tex]\[ 0.8308 \pm 0.0525 \][/tex]

Finalize the interval: [tex]\[ (0.7783, 0.8833) \][/tex]

The 95% confidence interval for the population proportion [tex]\( p \)[/tex] is approximately [tex]\( (0.7783, 0.8833) \)[/tex]. This means we are 95% confident that the true population proportion [tex]\( p \)[/tex] lies between 0.7783 and 0.8833.

A supply company manufactures copy machines. The unit cost C (the cost in dollars to make each copy machine) depends on the number of machines made. If x machines are made, then the unit cost is given by the function
C (x) = 0.8x ^ 2 - 256x +25,939 . How many machines must be made to minimize the unit cost? Do not round your answer.
Number of copy machines:

Answers

To minimize unit cost, 160 machines must be made.

Step-by-step explanation:

Find the first derivative of the cost function:  C'(x) = 1.6x - 256.

Set the derivative equal to 0 and solve for x to find the critical point: 1.6x - 256 = 0. x = 160.

Check the nature of the critical point using the second derivative test to confirm that x = 160 gives the minimum cost.

Therefore, the number of machines that must be made to minimize the unit cost is 160 machines.

The number of machines that must be made to minimize the unit cost is 160.

To find the number of machines that must be made to minimize the unit cost, we need to find the minimum point of the function [tex]\(C(x) = 0.8x^2 - 256x + 25,939\).[/tex]

The function \(C(x)\) represents a quadratic equation, and the vertex of a quadratic equation represents its minimum or maximum point. The x-coordinate of the vertex of a quadratic function in the form [tex]\(ax^2 + bx + c\) is given by \(-\frac{b}{2a}\).[/tex]

[tex]For the function \(C(x) = 0.8x^2 - 256x + 25,939\), we have \(a = 0.8\) and \(b = -256\).Now, let's calculate the x-coordinate of the vertex:\[ x_{\text{vertex}} = -\frac{b}{2a} = -\frac{-256}{2 \times 0.8} = -\frac{-256}{1.6} = 160 \][/tex]

So, the number of machines that must be made to minimize the unit cost is 160.

The circumference of a coin is 8π What is the radius? What is the diameter?

Answers

Find the radius first.
Circumference of a circle:
[tex]=2 \pi r[/tex]
[tex]8 \pi =2 \pi r[/tex][tex] \frac{8 \pi }{2 \pi } = r[/tex]
r=4

diameter = radius x 2
4x2 = 8
The constant π is defined as C/d, meaning pi is the constant when the circumference of a circle is divided by the diameter of that circle.  Anyway:

πd=C  divide both sides by π

d=C/π, if C=8π then

d=8π/π

d=8

So the diameter is 8 units.
Other Questions
A scientist wished to carry out a chemical reaction in which two moles of aluminum combine with three moles of sulfur. He has 2.70 g of aluminum to react. How many grams of sulfur must he take to satisfy all the aluminum atoms?1.51 g2.14 g3.41 g4.81 g Which point represents a solution to the system y (1)/(5)x y > 4x-3 select all that apply (5,1)(0,0) (-2,-3)(2,5) can you help me with this question and explain how you got the answer please and thank you ! this is very important !!!!!!!!! After an accident, a doctor finds damage to the white outer areas of the patient's brain. Which of the following are damaged? Saac halley grant is at a baseball game and wants to buy as many $3-hot dogs and $4-sodas as he can. if grant has $38 and wants to buy as many sets of one hot dog and one soda as he can, how many can he buy? To be effective issuing and investing in bonds knowledge of their terminology, characteristics, and features is essential the contract that describes the term of a borrowing arrangement between a firm that sells a bond issue and the investors who purchase the bonds is called The economy of the Gilded Age was characterized by A food handler who is throwing out garbage in an outdoor dumpster must f f(x)=2(x)^2+5 sqrt (+2) complete the following statement: The domain for f(x) is all real numbers greater than or equal to _____. What is a substance? Which of the following should not be capitalized each time it is used?AndersonStoreFriday A continuous, uncontrollable anxiety or worry that occurs almost on a daily basis during a period of six months and that is not due to any physical causes such as disease, drugs, or drinking too much coffee is called ________. "according to the interest rate effect, an increase in the price level" causes people to _____ their money holdings, which _____ interest rates and _____ investment spending.: READ THE PASSAGE.It was noon. The sky that had earlier been bright was now hazy and yellowed. The heavy air hung on our shoulders, bringing with it the scent of magnolias and mildew. The light breeze brought no relief.Which of the following best summarizes the passage?A. Midday is the hottest part of the dayB. The lack of wind made the day seem hotter than it wasC. Air is heavier when the temperature is hotD. It was noon on a hot, humid day. The answer is D. Revenge, power, ethnicity, and beliefs all contribute to war; these are known as ________ that feed an antagonistic situation The key to the partial report method of sperling's study of sensory memory was to _________. Which macronutrient is vital for every function of the body Having reviewed dod wireless stig (ver6, release 1), sarah learns she may only utilize secnet 54 and ______________ for transmitting classified information up to top secret. PLEASE HELP GIVING BRAINLIESTWhen writing an analysis, it is important to remember _______.The character is the center of the action.The writer is the creator of all meaning and action.Readers construct a unique meaning to a text.Characters motives must be examined. 100 POINTS!!!! Create a table of values for a linear function. A drone is in the distance, flying upward in a straight line. It intersects the rainbow at two points. Choose the points where your drone intersects the parabola and create a table for at least four values for the function. Remember to include the two points of intersection in your table. Can you just give me the X and Y values? In the sentence, wetlands are very useful to remove pollution, because the soils and plants can filter away poisons, which adverb modifies an adjective? Steam Workshop Downloader