Answer:
The system x = 4 and y = -x - 1 has one solution
Step-by-step explanation:
x = 4 and y = -x - 1 intersects only once on the graph
Answer:
The line x = 4 and y = - x - 1 has only one solution.
Step-by-step explanation:
Consider the provided graph.
The system of equation has the solution at the point where the line intersects.
Now consider the graph of the equation x = 4 and y = - x - 1
The graph of x = 4 is a vertical line.
From the graph it is clear that the line x = 4 and y = - x - 1 intersect at a point.
Now to calculate the number of solutions simply count the number of intersecting points.
By observing the graph it can be concluded that the graph of x = 4 and y = - x - 1 intersect only at one point i.e (4,-5).
Hence, the line x = 4 and y = - x - 1 has only one solution.
The shorter leg of a right triangle is 7ft shorter than the longer leg. The hypotenuse is 7ft longer than the longer leg. Find the side lengths of the triangle
The answers are:
[tex]Hypothenuse=28ft+7ft=35ft\\LongerLeg=28ft\\ShorterLeg=28ft-7ft=21ft[/tex]
Why?Since we are working with a right triangle, we can use the Pythagorean Theorem, which states that:
[tex]Hypothenuse^{2}=a^{2}+b^{2}[/tex]
Then, we are given the following information:
Let be "a" the shorter leg and "b" the the longer leg of the right triangle, so:
[tex](7ft+b)^{2}=(b-7)^{2}+b^{2}[/tex]
We can see that we need to perform the notable product, so:
[tex](7ft+b)^{2}=(b-7ft)^{2}+b^{2}\\\\7ft*7ft+2*7ft*b+b^{2}=b^{2}-2*7ft*b+7ft*7ft+b^{2}\\\\49ft^{2} +14ft*b+b^{2}=b^{2}-14ft*b+49ft^{2}+b^{2}\\\\49ft^{2} +14ft*b+b^{2}=-14ft*b+49ft^{2}+2b^{2}\\\\-14ft*b+49ft^{2}+2b^{2}-(49ft^{2} +14ft*b+b^{2})=0\\\\-28ft*b+b^{2}=0\\\\b(-28ft+b)=0[/tex]
We have that the obtained equation will be equal to 0 if: b is equal to 0 or b is equal to 28:
[tex]0(-28+0)=0[/tex]
[tex]28(-28+28)=28(0)=0[/tex]
So, since we are looking for the side of a leg, the result that we need its 28 feet.
Hence, we have that the answers are:
[tex]Hypothenuse=28ft+7ft=35ft\\LongerLeg=28ft\\ShorterLeg=28ft-7ft=21ft[/tex]
Have a nice day!
Answer:
Base = 21 ft
Height = 28 ft
Hypotenuse = 35 ft
Step-by-step explanation:
It is given that,the shorter leg of a right triangle is 7ft shorter than the longer leg. The hypotenuse is 7ft longer than the longer leg
Let longer leg = x then shorter leg = x - 7 and hypotenuse = x+ 7
To find the side lengths of triangle
Here Base = x-7
Height = x
Hypotenuse = x + 7
By using Pythagorean theorem we can write,
Base² + height² = Hypotenuse²
(x - 7)² + x² = (x + 7)²
x² -14x + 49 + x² = x² +14x + 49
x² - 14x = 14x
x² - 28x = 0
x(x - 28) = 0
x = 0 or x = 28
Therefore the value of x = 28
Base = x - 7 = 21
Height = 28
Hypotenuse = 28 + 7 = 35
Each of these equations holds true for one value of x from the set (5. 12, 15, 18). Arrange the equations in increasing order of the x-values that
make them true
5x - 3x = 10
2(2x - 1) = 46
6x - 15 = 75
x+(x - 10) = 26
Answer:
5x - 3x = 10
2(2x - 1) = 46
6x - 15 = 75
x+(x - 10) = 26
Step-by-step explanation:
5x - 3x = 10
2x = 10 Divide by 2
x=5
2(2x - 1) = 46 Distribute the 2
4x - 2 = 46 Add 2
4x = 48 Subtract by 4
x = 12
6x - 15 = 75 Add 15
6x = 90 Divide by 6
x=15
x + x - 10 =26 Add the x's together and the 10
2x = 36 Divide by 2
x = 18
Increasing order of the x-values that make them true are,
5x - 3x = 102(2x - 1) = 466x - 15 = 75x + (x - 10) = 26How to arrange the equations in increasing order of the x-values?Solve each equations,
5x - 3x = 10
Simplifying the equation, we get
2x = 10
(Divide by 2)
x = 10/2
x = 5
2(2x - 1) = 46
Divide both sides by 2
[tex]\frac{2(2 x-1)}{2}=\frac{46}{2}[/tex]
Simplify
[tex]$$2 x-1=23$$[/tex]
Add 1 to both sides
[tex]$$2 x-1+1=23+1$$[/tex]
Simplifying the equation, we get
[tex]$$2 x=24$$[/tex]
Divide both sides by 2
[tex]\frac{2 x}{2}=\frac{24}{2}[/tex]
Simplify
[tex]$$x=12$$[/tex]
6x - 15 = 75
Add 15 to both sides
[tex]$$6 x-15+15=75+15$$[/tex]
Simplifying the equation, we get
[tex]$$6x=90$$[/tex]
Divide both sides by 6
[tex]\frac{6 x}{6}=\frac{90}{6}[/tex]
Simplify
[tex]$$x=15$$[/tex]
x + x - 10 =26
Add similar elements:
x + x = 2x
[tex]$2 x-10=26$[/tex]
Add 10 to both sides
[tex]$2 x-10+10=26+10$[/tex]
Simplifying the equation, we get
[tex]$2 x=36$[/tex]
Divide both sides by 2
[tex]\frac{2 x}{2}=\frac{36}{2}[/tex]
Simplify
x = 18
Hence,
Increasing order of the x-values that make them true are,
5x - 3x = 102(2x - 1) = 466x - 15 = 75x + (x - 10) = 26To learn more about Equations in increasing order refer to:
https://brainly.com/question/14662181
#SPJ2
write the expression in complete factored form x(p-5) +a(p-5)
Jace wrote a sentence as an equation.
56 is 14 more than a number.
14+ = 56
Which statement best describes Jace's work?
Jace is not correct. The phrase more than suggests using the symbol > and Jace did not use that symbol.
Jace is not correct. He was correct to use addition, but the equation should be 56+ p = 14
Jace is not correct. The first number in the sentence is 56, so the equation should start with 56.
Jace is correct. The phrase more than suggests addition, so Jace showed that 14 plus a variable equals 56.
O
Answer: Fourth option is correct.
Step-by-step explanation:
Since we have given that
56 is 14 more than a number.
Let the number be 'p'.
So, the equation would be
[tex]14+p=56\\\\p=56-14\\\\p=42[/tex]
Jace is correct. The phrase more than suggests addition, so Jace showed that 14 plus a variable equals 56.
Hence, Fourth option is correct.
Answer: Jace is correct. The phrase more than suggests addition, so Jace showed that 14 plus a variable equals 56
__________________________________________________________
Hence, (d) is correct.
Step-by-step explanation:
edge2023
What is the vertex of (y+3)^2=12(x-1)
Answer:
The vertex is (1,-3)
Step-by-step explanation:
Just look for the numbers that make the inner parts 0. Here, x - 1 is 0 when x = 1 and y + 3 is 0 when y = -3.
Answer:
Step-by-step explanation:
Compare:
(y+3)^2=12(x-1)
(y - k)^2 = 12(x - h)
Here we see that k = -3 and h = 1. Thus, the vertex of this horiz. parabola is (1, -3). We know that this parabola is horiz. because it's y or y+3 that is squared, not x or x-1.
The length of a rectangle is three times its width. If the perimeter is at most 112 centimeters, what is its greatest possible value for width?
Final answer:
To find the greatest possible width of the rectangle, set up an equation based on the given information and solve for the width.
Explanation:
The greatest possible value for the width of the rectangle can be calculated by setting up an equation based on the given information.
Let the width be 'w'.
Since the length is three times the width, the length is '3w'.
The perimeter of a rectangle is twice the sum of its length and width. So, 2(3w + w) ≤ 112.
Solving this inequality gives the maximum width as 14 cm.
for which of the following sample sizes(n)and sample proportions(p) can a normal curve be used to approximate the binomial probability
histogram
Answer:
The answer isc
Step-by-step explanation:
C
Answer:
B. n = 65; p = 0.8
Step-by-step explanation:
Find the volume of the prism below. Thanks!!
Answer:
The correct answer option is D. 168 units³.
Step-by-step explanation:
We are given a prism with known side lengths and we are to find its volume.
We know that the volume of a prism is given by:
Volume of prism = area of base × height
Here the base is a triangle so the base area will be:
Base area = 1/2 × base × height = 1/2 × 6 × 8 = 24 units²
Volume of prism = 24 × 7 = 168 units³
For this case we have that by definition, the volume of a prism is given by:
[tex]V = A_ {b} * h[/tex]
Where:
[tex]A_ {b}:[/tex] It is the area of the base
h: It's the height
The base of the prism is a triangle, then:
[tex]A_ {b} = \frac {6 * 8} {2} = 24 \ units ^ 2[/tex]
Thus, the volume is:
[tex]V = 24 * 7\\V = 168 \ units ^ 3[/tex]
Now, the prism volume is [tex]168 \ units ^ 3[/tex]
Answer:
Option D
Which equation has the solution set x = (23) ?
3x = 0
(x-2)(x-3) = 0
(x + 2)(x+3)=0
(2x+3)2 = 0
Answer:
If you mean 2 and 3 it would be (x-2)(x-3)=0
Step-by-step explanation:
(x-2)=0
x-2=0 move the two on the other side to get positive
x=2
(x-3)=0
x-3=0 move the three on the other side to get positive
x=3
Which of the following lines is parallel to x = 7? (2 points) a 3y = 7 b y = 7 c x = y d x = 4
Answer:
Choice d. [tex]l:x = 7[/tex] is parallel to the line [tex]x = 4[/tex].
Step-by-step explanation:
Refer to the diagram attached. (Created with GeoGebra)
The line [tex]x = 7[/tex] is made of all the points on a cartesian plane that meet the requirement [tex]x = 7[/tex]. In other words, this line consists of points with x-coordinate [tex]7[/tex]. That includes:
[tex](7, -1)[/tex],[tex](7,0)[/tex], and[tex](7,1)[/tex].That line is perpendicular to the x-axis (the horizontal axis) and intersects the x-axis at the point [tex](7,0)[/tex].
Now, consider the lines in the choices.
The first line [tex]3y =7[/tex] requires only that the y-coordinates of its points be 7/3. This line accepts any x-values. Points on this line include:
[tex]\displaystyle \left(-1, \frac{7}{3}\right)[/tex],[tex]\displaystyle \left(0, \frac{7}{3}\right)[/tex], and[tex]\displaystyle \left(-1, \frac{7}{3}\right)[/tex].As a result, this line is parallel to the y-axis and is perpendicular to the line [tex]x = 7[/tex].
Similar to the first, the second line [tex]y = 7[/tex] is also parallel to the y-axis and is perpendicular to the line [tex]x = 7[/tex].
The third line [tex]x = y[/tex] requires that the x- and y- coordinates of all its points be equal. Points may include:
[tex](-1, -1)[/tex],[tex](0,0)[/tex], and[tex](1,1)[/tex].This line is slant.
The last line [tex]x = 4[/tex] is similar to the given line [tex]x = 7[/tex]. This line is also perpendicular to the x-axis. The difference is that this line is three units to the left of the line [tex]x = 7[/tex].
For what value of C will y = sin1/2(x - C) be an even function?
a. 2pi
b. pi
c. pi/2
Answer:
c. pi/2
Step-by-step explanation:
The answer is the option c. pi/2.
You must know that y = sin(x) is an odd function and also that y = cos(x) is an even function.
Also, you should know that sin(x + pi/2) = cos(x).
You can show it using the definition of the functions sine and cosine in the unit circle or using the formula of the sine of a sum: sin(A + B) = sin(A)*cos(B) + cos(A)*sin(B).
When you substitute B with pi/2 you get sin (A + pi/2) = sin(A)*0 + cos(A)*1 = cos(A).
Then, given that cos(A) is even sin(A+pi/2) is even.
Answer:
option b
Step-by-step explanation:
We are given that [tex]y=sin \frac{1}{2}(x-C)[/tex] be an even function
We have to find the value of C for which given function is even function
We know that sin x is odd function and cos is even function
Odd function : when f(x)[tex]\neqf(-x) [/tex] then the function is called an odd function.
Even function : When f(x)=f(-x) then the function is called an even function.
Sin(-x)=-Sin x
Cos (-x)= Cos x
When we take C=[tex]2\pi[/tex]
Then , y=Sin[tex]\frac{x}{2}-\frac{2\pi}{2}[/tex]
y=[tex]sin(\frac{x}{2}-\pi)[/tex]
[tex]y=-sin\frac{x}{2}[/tex] ( [tex]sin (x-\pi)=-sin x[/tex])
When x is replace by -x
Then, we get [tex]y=-sin(-\frac{x}{2})=sin\frac{x}{2}[/tex]
[tex]f(-x)\neq f( x)[/tex]
Hence, option a is false.
b.C=[tex]\pi[/tex]
[tex]y= sin (\frac{x}{2}-\frac{\pi}{2})[/tex]
[tex] y=-sin(\frac{\pi}{2}-\frac{x}{2})[/tex]
[tex]y=-cos \frac{x}{2}[/tex]
When x is replaced by -x then we get
[tex] y=-cos (-\frac{x}{2})=- cos \frac{x}{2}[/tex]
f(x)=f(-x) , Therefore, function is even,hence option b is true.
c.C=[tex]\frac{\pi}{2}[/tex]
[tex]y=sin (\frac{x}{2}-\frac{\pi}{4})[/tex]
[tex]Sin (A-B)=Sin A Cos B- Sin B Cos A[/tex]
[tex][y= sin \frac{x}{2} cos {\frac{\pi}{4}-cos\frac{x}{2} sin\frac{\pi}{4}[/tex]
[tex] sin\frac{\pi}{4}= cos \frac{\pi}{4}=\frac{1}{\sqrt2}[/tex]
[tex]y=\frac{1}{\sqrt2}(sin \frac{x}{2}- cos \frac{x}{2})[/tex]
When x is replaced by -x then we get
[tex]y=\frac{1}{\sqrt2}(-sin\frac{x}{2}-cos \frac{x}{2})[/tex]
[tex]f(x)\neq f(-x)[/tex]
Hence, function is odd .Therefore, option c is false.
By definition, present value is
A. future value minus interest.
B. future yalue plus interest.
C. principal times interest rate.
D. None of the above
Answer:
[tex]future \: value \: minus \: interest[/tex]
Present value is not equal to any of the given options. It is the current value of a future sum of money, considering the time value of money and interest rate.
Explanation:
The correct definition of present value is None of the above. Present value refers to the current value of a future sum of money, taking into account the time value of money and the interest rate. It is calculated using the formula: PV = FV / (1 + r)^n, where PV is the present value, FV is the future value, r is the interest rate, and n is the number of periods.
Learn more about Present value here:https://brainly.com/question/33200568
#SPJ2
Which is the graph of y=3x+1-2?
To graph the equation y = 3x + 1 - 2, find the slope and y-intercept. Plot the y-intercept and use the slope to find additional points. Connect the points to get the graph.
Explanation:To graph the equation y = 3x + 1 - 2, we need to find the slope and the y-intercept. The slope, represented by m, is 3 in this equation. The y-intercept, represented by b, is -1. We can plot the y-intercept on the graph first, which is the point (0, -1). From there, we can use the slope to plot additional points and draw a line through them. Since the slope is 3, we can move up 3 units on the y-axis and 1 unit to the right on the x-axis to find another point. By connecting these points, we will have the graph of y = 3x + 1 - 2.
Learn more about Graphing linear equations here:https://brainly.com/question/14240165
#SPJ12
Question 8/Multiple Choice Worth 5 points)
(06.02 MC)
The masses, in kg, of some bags on an airplane are shown below:
7,6.2, 6.1,6.8, 6.1,6.2, 6.8, 5.8, 6.2, 6.3
Jack made the following box plot to represent the masses: its the pic i uploaded
Which of the following did Jack show incorrectly on his box plot?
1. Median
2. Minimum
3. First quartile
4. Third quartile
Answer:
1. The median.
Step-by-step explanation:
First arrange in ascending order:
5.8 6.1 6.1 6.2 6.2 6.2 6.3 6.8 6.8 7
The median = 6.2. On the box plot the median is marked at 6.3 so that is incorrect. All the others are correct
answer please and how to do it
Answer:
D. The graph w(x) is 7 units to the right of the graph of f(x).Step-by-step explanation:
f(x) + n - shift the graph n units up
f(x) - n - shift the graph n units down
f(x + n) - shift the graph n units to the left
f(x - n) - shift the graph n units to the right
===================================
f(x) = x²
w(x) = (x - 7)² = f(x - 7) → shift the graph of f(x) 7 units to the right
Billy throws a ball out of a window at his house on accident. The height of the ball from the ground, h(t), over time, t, can be modeled by a quadratic function.
Each of the following functions is a different form of the quadratic model for the situation above. Which form would be the most helpful if attempting to determine the time required for the ball to hit the ground?
A. h(t) = -16(t - 3)(t + 1)
B. h(t) = -16(t - 1)2 + 64
C. h(t) = -16t2 + 32t + 48
D. h(t) = -16t(t - 2) + 48
Final answer:
The most helpful form to determine the time for the ball to hit the ground is Option A, h(t) = -16(t - 3)(t + 1), as it is already in factored form, making it easy to find the positive root, which represents the time when the ball would hit the ground.
Explanation:
When attempting to determine the time required for the ball to hit the ground in a quadratic model, we are essentially looking for the time when the height of the ball, h(t), is zero. To find this, we need to find the roots of the quadratic equation. Function A, h(t) = -16(t - 3)(t + 1), is already factored, which makes finding the roots straightforward. When dealing with quadratic equations, remember that negative time values do not make sense in this context, so we are only interested in the positive root.
The most helpful form for this task would therefore be Option A, h(t) = -16(t - 3)(t + 1), as the roots can be easily read from the factored form, which directly gives the times when the ball reaches the ground level without further calculation. In this case, the positive root t = 3 seconds represents the time when the ball would hit the ground. Ignoring the root t = -1 because time cannot be negative.
Round 0.625 to the nearest whole number
0.625 cannot be rounded to the nearest whole number.
However it may be round to the hundredth which in this case would be 0.62
If you want to round it to the tenth then you could round it to 0.6
The reason to why you cannot round 0.625 to the nearest whole number is because it is still a decimal and does not have a whole number to round up too.
Hope this helps! :3
The solution after round it to the nearest whole number is, 1
We have to given that,
A number is,
⇒ 0.625
Since, Rounding numbers refers to changing a number's digits such that it approximates a value. The provided number is more simply represented by this value.
Now, We can round it to the nearest whole number as,
⇒ 0.625
⇒ 1
Thus, The solution after round it to the nearest whole number is, 1
Learn more about the rounding number visit:
brainly.com/question/27207159
#SPJ6
which statement is true of the function f(x) = ^-3 sqr rt of X. check all that apply.
Answer:
The function has a domain of all real numbers.
The function is a reflection of y =³√x.
Step-by-step explanation:
1. The function is always increasing. - False
(Taking a cube root makes the number smaller so the domain of the function should be decreasing)
2. The function has a domain of all real numbers. - True
The cube root of real number is also real so the minus sign would not result in an imaginary number as it is outside the radical.
3. The function has a range of {y |– ∞ < y < ∞ }. - False
4. The function is a reflection of y =³√x. - True
5. The function passes through the point (3, –27). - False
(these coordinates do not satisfy the function)
What is the y-intercept of the function f(x) = -2/3x + 1/3
-2/9
-1/3
1/3
2/9
Answer:
1/3Step-by-step explanation:
[tex]\text{The slope-intercept form of an equation of a line:}\\\\y=mx+b\\\\m-slope\\b-y-intercept\\\\\text{We have the equation:}\ f(x)=-\dfrac{2}{3}x+\dfrac{1}{3}\to y=-\dfrac{2}{3}x+\dfrac{1}{3}\\\\the\ slope:\ m=-\dfrac{2}{3}\\\\the\ y-intercept:\ b=\dfrac{1}{3}[/tex]
What is the value of -2x2 + 8x
when x = -6?
Answer:
- 120
Step-by-step explanation:
-2 x² + 8 x = 0
x = - 6
Substitute x = - 6 into -2 x² + 8 x = 0
- 2 x² + 8 x = 0
- 2 × ( - 6² ) + 8 × ( - 6 ) = 0
( - 2 × 36 ) + ( 8 × -6) = 0
- 72 + ( - 48 ) = - 120
solve x - 5 < -2 solve as an equality
Answer:
x < 3
Step-by-step explanation:
Given
x - 5 < - 2 ( add 5 to both sides )
x < 3
Answer:
x < 3
Step-by-step explanation:
The points in inequalities like these is to get x by itself. This being said, since 5 is being subtracted from x, we need to add 5. Whenever you do this, you need to add to both sides. The 5 being added to the -5 will cancel out. -2+5 is 3. Now the equation remains as x < 3
Hope this helps!!!
To eliminate the y terms and solve for x in the fewest steps, by which constants should the equations be multiplied?
First equation: 4x − 3y = 34
Second equation: 3x + 2y = 17
Answer:
see explanation
Step-by-step explanation:
Given the 2 equations
4x - 3y = 34 → (1)
3x + 2y = 17 → (2)
Multiply (1) by 2 and (2) by 3 to eliminate the term in y
8x - 6y = 68 → (3)
9x + 6y = 51 → (4)
Adding (3) and (4) term by term allows x to be found
17x = 119 ⇒ x = 7
Answer:
the answer is C
Step-by-step explanation:
A toy rocket is launched straight up into the air with an initial velocity of 60 ft/s from a table 3 ft above the ground. If acceleration due to gravity is –16 ft/s2, approximately how many seconds after the launch will the toy rocket reach the ground?
h(t) = at2 + vt + h0
Answer:
it will take appr 3.8 seconds to hit the ground
Step-by-step explanation:
h = -16t^2 + 60t + 3
at ground level , h = 0
16t^2 - 60t - 3 = 0
t = (60 ± √3792)/32
t = 3.799.. or t = a negative
Answer:
it is in fact 3.80
Step-by-step explanation:
I know the other person said that but I was just backing them up
Which of the following has six faces?
Answer:
Cube
Step-by-step explanation:
Im not sure what the option choices are but a cube has 6 faces. :)
Answer:
hexahedron
Step-by-step explanation:
which system is the solution of the graph
Answer:
Step-by-step explanation:
b
Answer:
System a.Step-by-step explanation:
Remember that the solution of a linear system of equations is shown by the interception point between those lines.
In this case, the interception point is at (2,3).
Also, the horizontal line is [tex]y=3[/tex]. Notice that the solution are is below this line, that means the inequality that represents that part is [tex]y\leq 3[/tex].
Now, the other line has y-intercept at -1, that means [tex]b=-1[/tex].
Then, we use two points (0,-1) and (2,3) to find its slope.
[tex]m=\frac{3-(-1)}{2-0}=\frac{4}{2}=2[/tex]
So, the equation that represents that line is [tex]y=2x-1[/tex].
Notice that the area of solution is above this line, that means the inequality is
[tex]y>2x-1[/tex]
Therefore, the sytem that represents the graph is
[tex]y>2x-1\\y\leq 3[/tex]
Notice that we used [tex]\leq[/tex] for the solid line and [tex]>[/tex] for the not solid line.
Ella simplifies (3b+4r)+ (-2b-r) and says the result is b+ 5r. What error did Ella make?
Answer:
Elsa's error was adding (4r+r) instead of subtracting (4r-r)
Step-by-step explanation:
we have
[tex](3b+4r)+ (-2b-r)[/tex]
step 1
Eliminate the parenthesis
[tex]3b+4r-2b-r[/tex]
step 2
Group terms that contain the same variable
[tex]3b-2b+4r-r[/tex]
step 3
Combine like terms
[tex]b+3r[/tex]
therefore
Elsa's error was adding (4r+r) instead of subtracting (4r-r)
Answer:
Ella' s error was adding (4r+r) instead of subtracting (4r-r)
Step-by-step explanation:
How can the average rate of change be identified for a function?
Answer:
[tex]Rateofchange=\frac{f(x_2)-f(x_1)}{x_2-x_1}[/tex]
where x₁ and x₂ are values in the interval [x,y] respectively
Step-by-step explanation:
Well, first to determine the average rate of change of a function, you should have the interval of the values of x for the function.
So lets assume you have a function;
[tex]f(x)=x^3-4x[/tex]
And the interval as [1,3]
Then the average rate of change for the function f(x) will be;
[tex]=\frac{f(x_2)-f(x_1)}{x_2-x_1}[/tex]
where x₁ and x₂ are the interval coordinates x,y respectively. In this case x₁=1 and x₂=3
To find the average rate of change in this example will be;
[tex]=\frac{f(x_2)-f(x_1)}{x_2-x_1} \\\\=f(x_2)=f(3)=3^3-4(3)=27-12=15\\\\=f(x_1)=f(1)=1^3-4(1)=1-4=-3\\\\\\=x_2-x_1=3-1=2\\\\\\=\frac{15--3}{2} \\\\=\frac{18}{2} =9[/tex]
simplify sqaure root - 72
Answer:
[tex]\boxed{6\sqrt{2 i}}[/tex]
Explanation:
[tex]\sqrt{-72}=\sqrt{-1}=\sqrt{72}[/tex]
[tex]\sqrt{-1} \sqrt{72}[/tex]
Then you apply imaginary number rule.
[tex]\sqrt{72 i }[/tex]
[tex]\sqrt{72}=6\sqrt{2}[/tex]
[tex]\boxed{6\sqrt{2 i}}\checkmark[/tex], which is our final answer.
Hope this helps!
Thanks!
Have a nice day! :)
-Charlie
Explanation on how to simplify the square root of a negative number.
Simplify the square root of -72: To simplify the square root of a negative number like -72, first rewrite it as the square root of 72 times the square root of -1. The square root of 72 can be simplified as 6√2, making the final answer 6i√2.
Complete the table of values from left to right for the quadratic function
y = x + 4x +5.
х. 1 -2 -1 0 1
y.
OA) -7,0,5, 10
OB) 1, 2, 5, 10
OC) 9, 4, 5, 10
OD) -1,2,5, 10
Answer:
The values of y are 1 , 2 , 5 , 10 ⇒ answer B
Step-by-step explanation:
* We will use the substitution method to solve the problem
- The quadratic equation is y = x² + 4x + 5
- The values of x are -2 , -1 , 0 , 1
- We will substitute the values of x in the equation to find the
values of y
# At x = -2
∵ y = x² + 4x + 5
∵ x = -2
∴ y = (-2)² + 4(-2) + 5 = 4 - 8 + 5 = 1
∴ y = 1
# At x = -2
∵ y = x² + 4x + 5
∵ x = -1
∴ y = (-1)² + 4(-1) + 5 = 1 - 4 + 5 = 2
∴ y = 2
# At x = 0
∵ y = x² + 4x + 5
∵ x = 0
∴ y = (0)² + 4(0) + 5 = 0 + 0 + 5 = 5
∴ y = 5
# At x = 1
∵ y = x² + 4x + 5
∵ x = 1
∴ y = (1)² + 4(1) + 5 = 1 + 4 + 5 = 10
∴ y = 10
* The values of y are 1 , 2 , 5 , 10 ⇒ from left to right
Find the standard deviation of the binomial distribution for which n = 1000 and p = 0.94
The standard deviation of the binomial distribution with n = 1000 and p = 0.94 is calculated using the formula σ = √(npq) and turns out to be approximately 7.51.
Explanation:To calculate the standard deviation of a binomial distribution, we use the formula σ = √(npq), where n is the number of trials, p is the probability of success on a single trial, and q is the probability of failure (q=1-p).
Given the values of n = 1000 and p = 0.94, we can first calculate q:
q = 1 - p = 1 - 0.94 = 0.06.
Now, using the standard deviation formula:
σ = √(npq)
= √(1000 × 0.94 × 0.06).
We carry out the calculation:
σ = √(1000 × 0.94 × 0.06)
= √(56.4)
≈ 7.51.
Therefore, the standard deviation of the binomial distribution is approximately 7.51.