Unpolarized light passes through two polarizers whose transmission axes are at an angle of 30.0 degrees with respect to each other. What fraction of the incident intensity is transmitted through the polarizers?a.) 0.750b.) 0.866c.) 0.375d.) 0.627

Answers

Answer 1

Answer:

a) 0.750

Explanation:

When the unpolarized light passes through the first polarizer, it becomes polarized along the axis of transmission of the polarizer itself.

Then, the light passes through the second polarizer, whose axis of transmission is inclined by an angle [tex]\theta[/tex] with respect to the direction of polarization of the light.

Calling [tex]I_0[/tex] the initial intensity of the light, the intensity of light passing through the second filter is

[tex]I=I_0 cos^2 \theta[/tex]

where

[tex]\theta=30^{\circ}[/tex]

Solving the formula for [tex]\frac{I}{I_0}[/tex], which is the fraction of the incident intensity transmitted through the second polarizer, we find

[tex]\frac{I}{I_0}=cos^2 \theta = cos^2 30^{\circ}=0.750[/tex]

Answer 2
Final answer:

When unpolarized light passes through two polarizers whose transmission axes are at an angle of 30.0 degrees with respect to each other, the fraction of the incident intensity transmitted through the polarizers is 0.75.

Explanation:

When unpolarized light passes through two polarizers whose transmission axes are at an angle of 30.0 degrees with respect to each other, the fraction of the incident intensity transmitted through the polarizers can be calculated using Malus' Law.

Malus' Law states that the intensity of the transmitted light is equal to the initial intensity multiplied by the square of the cosine of the angle between the transmission axes of the polarizers.

In this case, the angle between the transmission axes is 30.0 degrees, so the fraction of the incident intensity transmitted through the polarizers is (cos(30.0))² = 0.75.


Related Questions

A car of 1000 kg with good tires on a dry road can decelerate (slow down) at a steady rate of about 5.0 m/s2 when braking. If a car is initially traveling at 20 m/s (45 mi/h), (a) How much time does it take the car to stop? (b) What is its stopping distance? (c) What is the deacceleration? (d) How big is the net force to be applied to stop this car? (e) Calculate the work done by this force (Work = Force * distance). (f) During the stopping process, what happens to the car's kinetic energy?

Answers

(a) 4.0 s

The acceleration of the car is given by

[tex]a=\frac{v-u}{t}[/tex]

where

v is the final velocity

u is the initial velocity

t is the time interval

For this car, we have

v = 0 (the final speed is zero since the car comes to a stop)

u = 20 m/s is the initial velocity

[tex]a=-5.0 m/s^2[/tex] is the deceleration of the car

Solving the equation for t, we find the time needed to stop the car:

[tex]t=\frac{v-u}{a}=\frac{0-(20 m/s)}{-5.0 m/s^2}=4 s[/tex]

(b) 40 m

The stopping distance of the car can be calculated by using the equation

[tex]v^2 - u^2 = 2ad[/tex]

where

v = 0 is the final velocity

u = 20 m/s is the initial velocity

a = -5.0 m/s^2 is the acceleration of the car

d is the stopping distance

Solving the equation for d, we find

[tex]d=\frac{v^2-u^2}{2a}=\frac{0^2-(20 m/s)^2}{2(-5.0 m/s^2)}=40 m[/tex]

(c) [tex]-5.0 m/s^2[/tex]

The deceleration is given by the problem, and its value is [tex]-5.0 m/s^2[/tex].

(d) 5000 N

The net force applied on the car is given by

[tex]F=ma[/tex]

where

m is the mass of the car

a is the magnitude of the acceleration

For this car, we have

m = 1000 kg is the mass

[tex]a=5.0 m/s^2[/tex] is the magnitude of the acceleration

Solving the formula, we find

[tex]F=(1000 kg)(5.0 m/s^2)=5000 N[/tex]

(e) [tex]2.0\cdot 10^5 J[/tex]

The work done by the force applied by the car is

[tex]W=Fd[/tex]

where

F is the force applied

d is the total distance covered

Here we have

F = 5000 N

d = 40 m (stopping distance)

So, the work done is

[tex]W=(5000 N)(40 m)=2.0\cdot 10^5 J[/tex]

(f) The kinetic energy is converted into thermal energy

Explanation:

when the breaks are applied, the wheels stop rotating. The car slows down, as a result of the frictional forces between the brakes and the tires and between the tires and the road. Due to the presence of these frictional forces, the kinetic energy is converted into thermal energy/heat, until the kinetic energy of the car becomes zero (this occurs when the car comes to a stop, when v = 0).

A car traveling along the highway needs a certain amount of force exerted on it to stop it in a
certain distance. More stopping force is required when the car has
A) more mass.
B) more momentum.
C) less stopping distance.
D) all of these
E) none of these

Answers

A car traveling along the highway needs a certain amount of force exerted on it to stop it in a  certain distance.

More stopping force is required when the car has  more mass, or more momentum, or less stopping distance.  (D)

Answer:

More stopping force is required when the car has D) all of these.

Explanation:

Let's explain some equations and concepts in order to answer the question:

The second law of Newton states that a force exerted on an object is directly proportional to the mass of the object and the acceleration of the object. Mathematically, we can write the following equation :

[tex][/tex]

[tex]F=m.a[/tex] (I)

Where ''F'' is the force

Where ''m'' is the mass

And where ''a'' is the acceleration.

Now, we can define the momentum as :

[tex]p=m.v[/tex] (II)

The momentum ''p'' is a vector magnitude.

''m'' is the mass of the object

And ''v'' is the velocity vector.

Finally, let's explain the following motion equation :

[tex]Vf=Vi-a.t[/tex] (III)

Vf is final speed

Vi is initial speed

''a'' is the acceleration of the object.

Notice that we write a ''-'' in the ''a.t'' term because we assume that the object is stopping. Therefore, its acceleration is negative. ''t'' is the time in which the object will stop.

Let's proceed analyzing each option :

A) more mass

If the car has more mass, therefore by looking at the equation (I), the stopping force will be greater.

B) more momentum

By looking the equation (II), if the car has more momentum therefore it has more mass or more speed (or both).

If it has more mass the stopping force required must be greater.

Otherwise, if it has more speed, by looking at the equation (III) and assuming that Vf = 0 (because we need the car to stop)

[tex]0=Vi-a.t[/tex]

[tex]Vi=a.t[/tex]

If  [tex]Vi[/tex] is greater and assuming that time must be the same, therefore the acceleration will be greater. So, if acceleration increases, the stopping force increases (looking at equation (I) ).

Finally, C) less stopping distance

If the car has less stopping distance, therefore the magnitude of the acceleration vector must be greater (in order to stop the car faster). By looking the equation (I) we conclude that the stopping force will be greater.

The correct option is D) all of these

Why is it important to have a control setup in an experiment?

Answers

Explanation:

A control is important for an experiment because it allows the experiment to minimize the changes in all other variables except the one being tested.

The reflective quality of a surface is known as its

Answers

Answer: Albedo

The albedo is an amount that expresses the percentage of radiation a surface reflects with respect to the incident radiation.

In other words:

This amount allows us to know the level of radiation that reflects a surface compared to the total radiation it receives.

According to this, light surfaces such as snow covered ground or white sand will have a higher albedo than dark surfaces such as carbon covered ground. It is also important to note, the albedo will be higher on glossy surfaces than on matte surfaces.

It should be noted that the albedo of the Earth is on average about [tex]37\%[/tex], which means that part of the radiation received by the Sun is absorbed and another part reflected back to space.

A Carnot Engine operates between a hot reservoir temperature of 215 degrees C and a cold reservoir temperature of 20 degrees C. If the engine draws 1000 J from the hot reservoir per cycle, how much work will it do per cycle?

a, 1000 J
b, 100 J
c, 400 J
d, 600 J
e, 900 J

Answers

Answer:

c. 400 J

Explanation:

The efficiency of a Carnot Engine is given by:

[tex]\eta = 1 - \frac{T_C}{T_H}[/tex]

where in this case we have

[tex]T_C = 20^{\circ} +273 =293 K[/tex] is the temperature of the cold reservoir

[tex]T_H = 215^{\circ} +273 =488 K[/tex] is the temperature of the hot reservoir

Substituting into the equation,

[tex]\eta = 1 - \frac{293 K}{488 K}=0.40[/tex]

But the efficiency can also be written as

[tex]\eta = \frac{W_{out}}{Q_{in}}[/tex]

where

[tex]W_{out}[/tex] is the useful work in output

[tex]Q_{in}[/tex] is the heat absorbed by the hot reservoir

Here,

[tex]Q_{in} = 1000 J[/tex]

So solving the formula for [tex]W_{out}[/tex] we find

[tex]W_{out} = \eta Q_{in} = (0.40)(1000 J)=400 J[/tex]

Final answer:

The Carnot Engine absorbs 1000 Joules from the hot reservoir and has an efficiency of 0.4. The work done by the engine per cycle is the product of the absorbed heat and the efficiency, which equates to 400 Joules.

Explanation:

The efficiency of a Carnot Engine is determined by the temperatures of the hot and cold reservoirs. Specifically, efficiency (η) = 1 - (Tc/Th), where Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir. Note that these temperatures must be in Kelvin for the formula to work properly.

In this case, we need to convert the temperatures from degrees Celsius to Kelvin: Th = 215°C + 273.15 = 488.15 K and Tc = 20°C + 273.15 = 293.15 K. We then substitute these values into the formula to get the efficiency: η = 1 - (293.15 K /488.15 K) ≈ 0.4

The work done by the engine (W) is the product of the heat (Q) absorbed from the hot reservoir and the efficiency: W = η x Q. Substituting the given heat of 1000 Joules and the calculated efficiency, we get W = 0.4 x 1000 Joules = 400 Joules. Therefore, the amount of work done per cycle by the engine is 400 Joules (Option c).

Learn more about Carnot Engine here:

https://brainly.com/question/14680478

#SPJ11

Watt which is a unit of power is equal to

Answers

Answer:

A joule divided by a second

Explanation:

i googled it m8 wasnt that hard to find

Answer:   a joule divided by a second

Explanation:

Determine the wavelength of light having energy of 2.25 × 10−19 j.

Answers

Answer:

[tex]8.84\cdot 10^{-7} m[/tex]

Explanation:

The energy a single photon of an electromagnetic wave is given by

[tex]E=\frac{hc}{\lambda}[/tex]

where

h is the Planck constant

c is the speed of light

[tex]\lambda[/tex] is the wavelength of the photon

In this problem, we have

[tex]E=2.25\cdot 10^{-19} J[/tex] is the energy of the photon

So we can re-arrange the equation to find the wavelength:

[tex]\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{2.25\cdot 10^{-19} J}=8.84\cdot 10^{-7} m[/tex]

By what mechanism is a person injured when he or she falls from a significant height? Select one: a. Kinetic energy is converted to potential energy; the potential energy is then converted into the work of bringing the body to a stop. b. As the person falls, the amount of kinetic energy is converted into work; work is then converted to kinetic energy upon impact. c. Potential energy is created as the person is falling; the potential energy is then converted into kinetic energy upon impact. d. Potential energy is converted to kinetic energy; the kinetic energy is then converted into the work of bringing the body to a stop.

Answers

Answer:

d. Potential energy is converted to kinetic energy; the kinetic energy is then converted into the work of bringing the body to a stop.

Explanation:

- At the beginning of the falls, when the person is still at a certain height h, the person has gravitational potential energy:

U = mgh

where m is the mass of the person, g the acceleration due to gravity, h the height above the ground.

- As the person falls down, h decreases, so the potential energy decreases; according to the law of conservation of energy, potential energy is converted into kinetic energy, since the speed of the person increases:

[tex]K=\frac{1}{2}mv^2[/tex]

where v is the speed.

- Just before hitting the ground, all the potential energy has been converted into kinetic energy

- When the person hits the ground, he/she comes to a stop: so work is done by the ground on the person, because the ground applied a force required to stop the person, and the kinetic energy "lost" by the person is equal to the work done by the ground to bring the body to a stop.

1. Provide one example of an area with high ecosystem diversity and one example of an area with low ecosystem diversity.

Answers

Explanation:

An example of a high ecosystem diversity is a rainforest or seashore.

An example of a low ecosystem diversity is a desert or farmland.

The rainforests are considered as an example of high ecosystem diversity and on the other hand, typical deserts and farmlands are considered as low ecosystem diversity.

What is an ecosystem?

A geographical area where one can observe plants, animals, and other living organisms to reside, forming a part of a complete landscape, is known as an ecosystem.

An example of a high ecosystem diversity is a rainforest or seashore. As one in the Amazon basin in South America, rainforests provide varieties of biodiversity like coral reefs, species of snakes, fishes, monkeys, and many others.

An example of a low ecosystem diversity is a desert or farmland. These parts of land generally have only two to three varieties of grasses, some dandelion flowers, and few inhabitants.

Thus, we can conclude that the rainforests are considered as an example of high ecosystem diversity and on the other hand typical deserts and farmlands are considered as low ecosystem diversity.

Learn more about the ecosystem here:

https://brainly.com/question/1673533

Other Questions
please help ASAP! will give brainlist.Your friend George is 6 feet tall and his shadow is 10 feet long. At the same time, the shadow of the flagpole was 85 feet long. What is the height of a flagpole?A. 141.6 feet.B. 51 feet.C. 1.4 feet.D. 60 feet. On the planet Susru, there are three types of bears; those who like honey-nut cheerios, those who like multi-grain, and those who like plain cheerios. The phenotype is determined in an epistatic way by two loci: HNNT, with alleles H (dominant) and h (recessive), and MLTGRN, with alleles M (dominant) and m (recessive). In a cross of a HHMM bear and an hhmm bear, and the F1s like honey-nut. A cross of two F1 bears produces the following sums two-locus genotype counts: All F2 bears with at least one H allele: 1300. All F2 bears with at least one M allele but no H alleles: 325. What number of F2 bears with the hhmm genotype would produce an F2 data set that is consistent with a dominant mode of inheritance at the 1% level of significance (Hint: Think Chi-square)? What value is equivalent to 8 9 2 5? Identify, graph, and state the symmetries for the polar equation r=2+2sintheta.Which are the critical points in the graph? please help The South Pole of a compass magnet point towards____ A.magnetic south B.geographic south C.geographic north D.magnetic north How did Welles react to the panic caused by his radio broadcast The War of the Worlds?A. He was happy that so many people had heard the broadcast.B. He was sad that people had been hurt in the panic.C. He was angry that the public hadn't read the book.D. He was confused and stunned by the public's reaction. What is NOT true of copyrighted material? Select all that apply. a.The copyright notice looks like this: . b.Anytime you see a copyright symbol, it means you may not sell or publish the source's information. c.When you see that something is copyrighted, it means that you may not cite it in an academic paper. Id.If you'd like to use copyrighted material in anything other than an academic project, you must ask for permission. e.All of the above are true of the copyrighted material. Which statement is true about the differences between dramatic literature and fiction? A. Only fiction has plot elements like rising action. B. Only dramatic literature has characters. C. Only dramatic literature has stage directions. D. Only dramatic literature has dialogue. Identify the volume and surface area of the sphere in terms of . HELP PLEASE!! What is the pH of a 1.0 molar solution of HCl? Which function has only one x-intercept at (-6, 0)?f(x) = x(x - 6)Of(x) = (x - 5)(x-6)f(x) = (x + 6)(x - 6)f(x) = (x + 6) (x + 6) You have free speech but government can _____ ______ profane or threatening speech. the base and hight is 5 and 5Tariq also designs hot tubs. The diameter of the hot tub is 3 meters. What is the area of the deck that surrounds the hot tub? If necessary, round to the nearest tenth.3.3 m27.1 m217.9 m218.8 m2 Who was buried with a bottle of jack daniels whiskey? help quick. One car traveled 220 miles and drove 10 mph hour slower than a second car which drove 260 miles. If the cars were traveling for the same time, how fast was the first car traveling?65 mph75 mph55 mph85 mph The graph on the left shows the heights of a population of penguins. The graph on the left shows heights of the population five years later. What happened to the population of penguins? What is assumed mean What contribution did Johannes Gutenberg make to European history? help 24 pts please no copying answers I really need to pass my historyMany European countries competed with each other to add new territory to their empires in the late nineteenth and early twentieth centuries. Most of the land they took was in Asia and Africa. Describe the effects of the new imperialism on the peoples of the conquered territories. Give at least three specific examples. Beth is making fruit salad. She adds 5 grapes for every 2 strawberries. If she uses 16 strawberries, how many grapes will she use? A. 10 B. 160 C. 80 D. 40 Steam Workshop Downloader