The top of a swimming pool is at ground level. If the pool is 3.00 m deep, how far below ground level does the bottom of the pool appear to be located for the following conditions? (The index of refraction of water is 1.333.)

(a) The pool is completely filled with water.
______m below ground level

(b) The pool is filled halfway with water.
______m below ground level

Answers

Answer 1

Answer:

a) 2.25 m

b) 2.625 m

Explanation:

Refraction is the name given to the phenomenon of the speed of light changing the the boundary when it moves from one physical medium to the other.

Refractive index is the ratio of the speed of light in empty vacuum (air is an appropriate substitution) to the speed of light in the medium under consideration.

In terms of real and apparent depth, the refractive index is given by

η = (real depth)/(apparent depth)

a) Real depth = 3.00 m

Apparent depth = ?

Refractive index, η = 1.333

1.333 = 3/(apparent depth)

Apparent depth = 3/1.3333 = 2.25 m.

Hence the bottom of the pool appears to be 2.25 m below the ground level.

b) Real depth = 1.5 m

Apparent depth = ?

Refractive index, η = 1.333

1.3333 = 1.5/(apparent depth)

Apparent depth = 1.5/1.3333 = 1.125 m

But the pool is half filled with water, there is a 1.5 m depth on top of the pool before refraction starts.

So, apparent depth of the pool = 1.5 + 1.125 = 2.625 m below the ground level

Answer 2
Final answer:

The apparent depth of a swimming pool is measured by considering the water's refractive index. With the pool completely filled, the bottom appears to be 2.25m deep. When halfway filled, the pool appears to be 2.625m deep.

Explanation:

When light travels from a medium with a high refractive index to one with a lower refractive index, the light is refracted, or bent, making objects appear closer than they actually are. We can calculate this apparent depth by using the formula d' = d / n, where d' is the apparent depth, d is the actual depth, and n is the refractive index.

(a) If the pool is completely filled with water, for a person looking from above ground, the bottom of the pool appears to be closer than it actually is. Substituting the given values into the formula, we get the apparent depth: d' = 3.00m / 1.333 = 2.25 m below ground level.

(b) If the pool is halfway filled with water, the apparent depth of the water is calculated in the same way. However, the depth beneath the water is below the refractive index border and is not subject to refraction. Therefore, the apparent total depth of the partially filled pool is the sum of the actual depth of the air part (1.50m) and the apparent depth of the water part (1.50m / 1.333 = 1.125m). This gives us 2.625m.

Learn more about Refraction and Apparent Depth here:

https://brainly.com/question/32255407

#SPJ3


Related Questions

An ambulance is traveling north at 60.3 m/s, approaching a car that is also traveling north at 33.4 m/s. The ambulance driver hears his siren at a frequency of 696 Hz. Ambulance 60.3 m/s 33.4 m/s Car What is the wavelength at any position in front of the ambulance for the sound from the ambulance’s siren? The velocity of sound in air is 343 m/s. Answer in units of m.

Answers

Answer:

0.44999 m

Explanation:

f = Actual wavelength = 696 Hz

v = Speed of sound in air = 343 m/s

[tex]v_o[/tex] = Velocity of observer = 33.4 m/s

[tex]v_s[/tex] = Velocity of source = 60.3 m/s

From Doppler's effect we have

[tex]f_o=f\left(\dfrac{v-v_o}{v-v_s}\right)\\\Rightarrow f_o=696\left(\dfrac{343-33.4}{343-60.3}\right)\\\Rightarrow f_o=762.22709\ Hz[/tex]

Wavelength is given by

[tex]\lambda=\dfrac{v}{f}\\\Rightarrow \lambda=\dfrac{343}{762.22709}\\\Rightarrow \lambda=0.44999\ m[/tex]

The wavelength at any position in front of the ambulance for the sound from the ambulance’s siren is 0.44999 m.

You give a crate a push to set it in motion. After the push is over, the crate skids to a stop on a rough, level floor. Describe the energy changes after the push (with the crate as the system).

Answers

Answer: potential to kinetic and then potential energies

Explanation:

Answer:

KE₁ = PE₂

Explanation:

From the principle of conservation of energy we know that

KE₁ + PE₁ = KE₂ + PE₂

where KE is the kinetic energy and PE is potential energy  

KE = ½mv²

PE = mgd

Initially, you gave a push to crate and it started moving with some velocity

KE₁ = ½mv₁²

Initially, the potential energy is zero since it didnt cover any distance

PE₁ = mgd₁ = 0

At the final state, the crate stopped and its finally velocity become zero, therefore, the kinetic energy is zero.

KE₂ = ½mv₂² = 0

At the final state, the crate covered some distance and the final potential energy is

PE₂ = mgd₂

Therefore, the energy relation becomes

KE₁ + PE₁ = KE₂ + PE₂

KE₁ + 0 = 0 + PE₂

KE₁ = PE₂

Hence, the initial kinetic energy of the system is converted to final potential energy of the system.

. A light bulb glows because of it’s resistance, and the brightness of the bulbincreases with the electrical power delivered to it from the circuit. In the circuitbelow, the two bulbs are identical. Compared to bulb A, does bulb B glow morebrightly, less brightly or equally bright (when the bulbs are both in the circuit on theleft)?

Answers

Complete Question

The complete question is shown in the first uploaded image

Answer:

a

When the both bulb are in the circuit  bulb B glows equally brighter to bulb A

This because the power delivered to the both bulb are equal

b

The bulb A on the right will glow brighter than the bulb A on the left due to the fact that the power supplied to bulb A on the right is higher than that gotten by bulb A on the left.

Explanation:

From the question we are been told that the two bulbs are identical

So their resistance denoted by R is the same

Considering the left circuit  where the two bulbs are connected in series which mean that the same current is passing through them

               [tex]R_A =R_B =R[/tex]

                [tex]i_A = i_B =i[/tex]

               [tex]R_{eq} = R_1 +R_2 = 2R[/tex]

                       [tex]i = \frac{V}{2R}[/tex]  

The power that is been deposited on the circuit is evaluated as

                   [tex]P_A = i^2R[/tex]

                   [tex]P_A = \frac{V^2}{4R}[/tex]

                  [tex]P_B = i^2R[/tex]

                   [tex]P_B = \frac{V^2}{4R}[/tex]

For the fact that the power deposited on the bulbs are the same they will glow equally

When B is now removed and only A is left

                [tex]R_{eq} = R_A = R[/tex]

                   [tex]i = \frac{V}{R}[/tex]

                   [tex]P'_A = i^2R[/tex]

                    [tex]P'_A = \frac{V^2}{R}[/tex]

For the fact that its only bulb A that is on that right circuit the power delivered  to it would be greater compared to the left circuit bulb A

4.77 Augment the rectifier circuit of Problem 4.70 with a capacitor chosen to provide a peak-to-peak ripple voltage of (i) 10% of the peak output and (ii) 1% of the peak output. In each case: (a) What average output voltage results? (b) What fraction of the cycle does the diode conduct? (c) What is the average diode current? (d) What is the peak diode current?

Answers

Final answer:

To augment the rectifier circuit with a capacitor, connect it in parallel with the load resistor. Calculate the capacitor value to achieve the desired ripple voltage. Determine the average output voltage, fraction of cycle during diode conduction, average diode current, and peak diode current using the ripple voltage and peak output voltage.

Explanation:

To augment the rectifier circuit with a capacitor, we need to connect the capacitor in parallel with the load resistor. The peak-to-peak ripple voltage depends on the value of the capacitor. To calculate the average output voltage, we need to consider the ripple voltage and the peak output voltage. The fraction of the cycle during which the diode conducts, average diode current, and peak diode current can also be determined using the ripple voltage and peak output voltage.

(a) To achieve a peak-to-peak ripple voltage of 10% of the peak output, we can calculate the capacitor value using the equation Vr = (1/2πfc) * (Id / Ic) * Vp, where Vr is the ripple voltage, Id is the diode current, Ic is the capacitor current, Vp is the peak output voltage, f is the frequency, and c is the capacitor value. With the calculated capacitor value, we can find the average output voltage.

(b) The fraction of the cycle during which the diode conducts can be calculated by dividing the time during which the diode conducts by the total time of the cycle.

(c) The average diode current can be calculated by dividing the total charge passing through the diode by the total time period of the cycle.

(d) The peak diode current can be calculated by multiplying the average current by the diode conduction time.

Learn more about Rectifier circuit with a capacitor here:

https://brainly.com/question/34856250

#SPJ12

The gravitational force of attraction between two students sitting at their desks in physics class is 2.59 × 10−8 N. If one student has a mass of 31.9 kg and the other has a mass of 30.0kg, how far apart are the students sitting? The universal gravitational constant is 6.673 × 10−11 N · m2/kg^2.

Answers

The distance between students is 2.46 m

Explanation:

The force of attraction due to Newton's gravitation law is

F = [tex]\frac{Gm_1m_2}{r^2}[/tex]

Here G is the gravitational constant

m₁ is the mass of one student

m₂ is the mass of second student .

and r is the distance between them

Thus r = [tex]\sqrt{\frac{Gm_1m_2}{F} }[/tex]

If we substitute the values in the above equation

r = [tex]\sqrt{\frac{6.673x10^-^1^1x31.9x30.0}{2.59x10^-^8} }[/tex]

= 2.46 m

Answer:1.57x10^(-8)m

Explanation:

Force(f)=2.59 x 10^(-8)N

Mass1(M1)=31.9kg

Mass2(M2)=30kg

Gravitational constant(G)=6.673x10^(-11)

Distance apart(d)=?

F=(GxM1xM2)/d^2

2.59x10^(-8)=(6.673x10^(-11)x31.9x30)/d^2

2.59x10^(-8)=(6.39x10^(-8))/d^2

d^2=(6.39x10^(-8))/(2.59x10^(-8))

d^2=2.47x10^(-16)

d=√(2.47x10^(-16))

d=1.57x10^(-8)m

As an object moves from point A to point B only two forces act onit: one force is nonconservative and does -30 J of work, the otherforce is conservative and does +50 J of work. Between A andB,

a. the kineticenergy of object increases, mechanical energydecreases.
b. the kineticenergy of object decreases, mechanical energydecreases.
c. the kineticenergy of object decreases, mechanical energyincreases.
d. the kineticenergy of object increases, mechanical energyincreases.
e. None of theabove.

Answers

To solve this problem we will apply the principles of energy conservation. On the one hand we have that the work done by the non-conservative force is equivalent to -30J while the work done by the conservative force is 50J.

This leads to the direct conclusion that the resulting energy is 20J.

The conservative force is linked to the movement caused by the sum of the two energies, therefore there is an increase in kinetic energy. The decrease in the mechanical energy of the system is directly due to the loss given by the non-conservative force, therefore there is a decrease in mechanical energy.

Therefore the correct answer is A. Kintetic energy increases and mechanical energy decreases.

Based on the given question, we can infer that a. the kinetic energy of object increases, mechanical energy decreases.

What is Kinetic Energy?

This refers to the form of energy which makes use of the motion of an object to move.

Hence, we can see that based on the principles of energy conservation, we can see that the work done by the non-conservative force is equivalent to -30J while the work done by the conservative force is 50J.

With this in mind, we can see that the resulting energy is 20J.

Read more about conservation of energy here:

https://brainly.com/question/166559

A dockworker applies a constant horizontal force of 90.0Nto a block of ice on a smooth horizontal floor. The frictional force is negligible. The block starts from rest and moves a distance 12.0min a time of 5.20s.If the worker stops pushing after 5.20s, how far does the block move in the next 5.30s

Answers

Answer:

Distance traveled in the next 5.30 seconds is 24.454 meters.

Explanation:

Considering the block moves with a constant acceleration when the force is applied, the average speed would be half of the speed at the end of 5.20 seconds of acceleration.

This means:

Average Speed = Total distance / Time

Average Speed = 12 / 5.20 = 2.307 m/s

Speed at end of 5.20 seconds = 2 * Average Speed

Speed at end of 5.20 seconds = 2 * 2.307

Speed at end of 5.20 seconds = 4.614 m/s

Now that we have the speed at which the block is traveling, and there is no friction to reduce or change the speed, we can solve for the distance covered in the next 5.30 seconds in the following way:

Distance traveled in the next 5.30 seconds:

Distance = Speed * Time

Distance = 4.614 * 5.30

Distance = 24.454 meters

When the temperature of 2.35 m^3 of a liquid is increased by 48.5 degrees Celsius, it expands by 0.0920 m^3. What is its coefficient of volume expansion?

Answers

Answer:

a liquid is increased by 48.5 degrees Celsius, it expands by 0.0920 m^3. Explanation:

The coefficient of volume expansion is [tex]0.000810 \, \text{per} \, ^\circ\text{C}.[/tex]

The coefficient of volume expansion (\(\beta\)) can be calculated using the formula:

[tex]\[\Delta V = V_0 \beta \Delta T\][/tex]

where:

- [tex]\(\Delta V\)[/tex] is the change in volume,

- [tex]\(V_0\)[/tex] is the initial volume,

- [tex]\(\beta\)[/tex] is the coefficient of volume expansion,

- [tex]\(\Delta T\)[/tex] is the change in temperature.

We need to solve for [tex]\(\beta\):[/tex]

[tex]\[\beta = \frac{\Delta V}{V_0 \Delta T}\][/tex]

Substituting the given values:

[tex]\[\beta = \frac{0.0920 \, \text{m}^3}{2.35 \, \text{m}^3 \times 48.5 \, ^\circ\text{C}}\][/tex]

First, calculate the denominator:

[tex]\[2.35 \, \text{m}^3 \times 48.5 \, ^\circ\text{C} = 113.575 \, \text{m}^3 \cdot ^\circ\text{C}\][/tex]

Now, calculate [tex]\(\beta\)[/tex]:

[tex]\[\beta = \frac{0.0920 \, \text{m}^3}{113.575 \, \text{m}^3 \cdot ^\circ\text{C}}\][/tex]

[tex]\[\beta \approx 0.000810 \, \text{per} \, ^\circ\text{C}\][/tex]

Therefore, the coefficient of volume expansion is approximately [tex]\[\beta \approx 8.10 \times 10^{-4} \, ^\circ\text{C}^{-1}\][/tex].

Suppose you hit a 0.058-kg tennis ball so that the ball then moves with an acceleration of 10 m/s2. If you were to hit a basketball of mass 0.58 kg with the same force, what would the acceleration a of the basketball be?

Answers

Answer:

1 m/s²

Explanation:

Force = mass × acceleration

F = ma ............ Equation 1

Where F = force, m = mass, a = acceleration.

Given: m = 0.058 kg, a = 10 m/s²

Substitute into equation 1

F = 0.058(10)

F = 0.58 N.

If the same force was used to hit the baseball,

F = m'a

a = F/m'.............. Equation 2

Where M' = mass of the baseball.

Given: F = 0.58 N, m' = 0.58 kg.

Substitute into equation 2

a = 0.58/0.58

a = 1 m/s²

Answer:

1 m/s^2.

Explanation:

Note:

Force = mass x acceleration. 

Given:

mass = 0.058 kg

acceleration = 10 m/s2

Therefore, force = 0.058 x 10

= 0.58 N.

Since the same force is to be used, this same value is used for the other condition.

mass = 0.58 kg

Force = 0.58 N

F = m × a

a = 0.58/0.58

= 1 m/s^2.

A steam stream of 400 m3 /s, standard (standard cubic meter per second) is cooled by adding 7 m3 /s cold water. The fluid leaving the system is liquid water. The crosssectional area of the outlet port is 0.5 m2 . What is the velocity of the leaving water stream? (Hint: steam is a gas. Its specific gravity is about 18/29.)

Answers

Answer: 510 m/s

Explanation: specific gravity of steam is 18/29 = 0.620

It is the ratio of the density of steam over density of water

400m3/s of steam =

400m3ms * 0.620 of water

= 248m3/s of water

Total flow rate Q = 248 + 7 = 255m3/s

Using Q = AV

Where A is area and V is velocity

V = Q/A

V = 255/0.5 = 510m/s

An Atwood machine is constructed using a hoop with spokes of negligible mass. The 2.3 kg mass of the pulley is concentrated on its rim which is a distance 23.5 cm from the axle. The mass on the right is 1 kg and on the left is 1.65 kg.

What is the magnitude of the linear acceleration a of the hanging masses?

Answers

Final answer:

The magnitude of the linear acceleration of the hanging masses in the given Atwood machine is approximately 2.69 m/s².

Explanation:

An Atwood machine is a system comprised of two different masses connected by a string passing over a pulley. In this case, we have a pulley with a mass of 2.3 kg. The radius of the pulley is given as 23.5 cm.

To find the linear acceleration of the hanging masses, we use the equation:

a = (m1 - m2) * g / (m1 + m2 + m_pulley)

Substituting the given values, we have:

m1 = 1 kg m2 = 1.65 kg m_pulley = 2.3 kg g = 9.8 m/s²

Calculating the value of a, we get:

a = (1 - 1.65) * 9.8 / (1 + 1.65 + 2.3)

a ≈ -2.69 m/s²

Learn more about Atwood machine here:

https://brainly.com/question/35614060

#SPJ12

A pile driver drives posts into the ground by repeatedly dropping a heavy object on them. Assume the object is dropped from the same height each time. By what factor does the energy of the pile driver-Earth system change when the mass of the object being dropped is tripled?

Answers

Answer:Three times

Explanation:

The change in the energy of pile driver-Earth system is given by change in Potential energy

Potential energy is given by

[tex]P.E.=mgh[/tex]

where m=mass of object

g=acceleration due to gravity

h=height from which object is dropped

When mass of object being dropped is tripled then Potential energy is tripled

i.e. [tex]P.E.=3\times mgh[/tex]

Thus energy is multiplied by a factor of 3

When the mass of the object being dropped by a pile driver is tripled, the potential energy of the pile driver-Earth system is also tripled, given that it's dropped from the same height.

The question asks by what factor does the energy of the pile driver-Earth system change when the mass of the object being dropped is tripled, assuming it is dropped from the same height each time. The energy in question here is gravitational potential energy (PE), which is given by the formula PE = mgh, where m is mass, g is the acceleration due to gravity (9.8 m/s2), and h is height. As the acceleration due to gravity and the height from which the object is dropped remain constant, if the mass is tripled, the potential energy of the system is effectively tripled as well. Therefore, the factor by which the energy of the pile driver-Earth system changes when the mass is tripled is 3.

As part of your daily workout, you lie on your back and push with your feet against a platform attached to two stiff springs arranged side by side so that they are parallel to each other. When you push the platform, you compress the springs. You do an amount of work of 79.0 J when you compress the springs a distance of 0.190 m from their uncompressed length.(a) What magnitude of force must you apply to hold the platform in this position?

Answers

Explanation:

The given data is as follows.

         Work done by the force, (W) = 79.0 J

         Compression in length (x) = 0.190 m

So, formula for parallel combination of springs  equivalent is as follows.

           [tex]k_{eq} = K_{1} + K_{2}[/tex]

                    = 2k

Hence, work done is as follows.

             W = [tex]\frac{1}{2}k_{eq} \times x^{2}[/tex]

           [tex]k_{eq} = \frac{2W}{x^{2}}[/tex]

                       = [tex]\frac{2 \times 79}{(0.19)^{2}}[/tex]

                       = [tex]\frac{158}{0.0361}[/tex]

                       = 4376.73 N/m

Hence, magnitude of force required to hold the platform is as follows.

               F = [tex]k_{eq}x[/tex]

                  = [tex]4376.73 N/m \times 0.19 m[/tex]

                  = 831.58 N

Thus, we can conclude that magnitude of force you must apply to hold the platform in this position is 831.58 N.

Consider a laser pointer that emits red light with wavelength 650 nm. This light is used for a photoelectric effect experiment where the anode in the evacuated glass tube is made up of a material that has work function equal to 1 eV. 1. What is the energy of an individual photon that comes out of the laser pointer?

Answers

Answer:

The energy of an individual photon that comes out of the laser pointer is 1.91 eV

Explanation:

The energy of a photon can be obtained using the expression below

E = hc/λ

where E is the energy;

h is the Planck's constant  = 6.626 x 10-34 Js;

c is the speed of light = 3.00 x [tex]10^{8}[/tex] m/s (speed of light);

λ is the wavelength = 650 nm =650 x [tex]10^{-9}[/tex] m.

E = (6.626 x 10-34 Js) x (3.00 x [tex]10^{8}[/tex] m/s) /650 x [tex]10^{-9}[/tex] m

E = 3.058 x [tex]10^{-19}[/tex] J

1 joule = 6.242 x [tex]10^{18}[/tex] eV

3.058 x [tex]10^{-19}[/tex] J = 3.058 x [tex]10^{-19}[/tex] J x 6.242 x [tex]10^{18}[/tex] eV = 1.91 eV

Therefore the energy of an individual photon that comes out of the laser pointer is 1.91 eV

Which most simplified form of the law of conservation of energy describes the motion of the block as it slides on the floor from the bottom of the ramp to the moment it stops?

Answers

Final answer:

The principle of mechanical energy conservation describes the motion of the block as it slides on the floor from the bottom of the ramp to the moment it stops.

Explanation:

The most simplified form of the law of conservation of energy that describes the motion of the block as it slides on the floor from the bottom of the ramp to the moment it stops is the principle of mechanical energy conservation. This principle states that the total mechanical energy of a system remains constant as long as no external forces do work on the system. In this case, as the block slides, the potential energy it loses due to its change in height is transformed into kinetic energy until the block stops and all of its energy is in the form of kinetic energy.

Learn more about Conservation of Energy here:

https://brainly.com/question/13345660

#SPJ3

P7.16 A thin flat plate 55 by 110 cm is immersed in a 6-m/s stream of SAE 10 oil at 20C. Compute the total friction drag if the stream is parallel to (a) the long side and (b) the short side.

Answers

Answer:

a

The total friction drag for the long side of the plate is 107 N

b

The total friction drag for the long side of the plate is 151.4 N

Explanation:

The first question is to obtain the friction drag when the fluid i parallel to the long side of the plate

The block representation of the this problem is shown on the first uploaded image  

Where the U is the initial velocity = 6 m/s

    So the equation we will be working with is

               [tex]F = \frac{1}{2} \rho C_fAU^2[/tex]

    Where [tex]\rho[/tex] is the density of SAE 10W = [tex]870\ kg/m^3[/tex] This is obtained from the table of density at 20° C

                [tex]C_f[/tex] is the friction drag coefficient

   This coefficient is dependent on the Reynolds number if the Reynolds number is less than [tex]5*10^5[/tex] then the flow is of laminar type and

          [tex]C_f[/tex]  = [tex]\frac{1.328}{\sqrt{Re} }[/tex]

But if the Reynolds number is greater than [tex]5*10^5[/tex] the flow would be of Turbulent type and

         [tex]C_f = \frac{0.074}{Re_E^{0.2}}[/tex]

Where Re is the Reynolds number

   To obtain the  Reynolds number  

                                      [tex]Re = \frac{\rho UL}{\mu}[/tex]

          where L is the length of the long side = 110 cm = 1.1 m

 and [tex]\mu[/tex] is the Dynamic viscosity of SAE 10W oil [tex]= 1.04*10^{-1} kg /m.s[/tex]

  This is gotten from the table of Dynamic viscosity of oil

  So        

                    [tex]Re = \frac{870 *6*1.1}{1.04*10^{-1}}[/tex]

                          [tex]= 55211.54[/tex]

Since            55211.54 < [tex]5.0*10^5[/tex]

Hence

                    [tex]C_f = \frac{1.328}{\sqrt{55211.54} }[/tex]

                          [tex]= 0.00565[/tex]

                 [tex]A[/tex] is the area of the plate  = [tex]\frac{ (110cm)(55cm)}{10000}[/tex] =[tex]0.55m^2[/tex]

Since the area is immersed totally it should be multiplied by 2 i.e the bottom face and the top face are both immersed in the fluid

                [tex]F = \frac{1}{2} \rho C_f(2A)U^2[/tex]

                [tex]F =\frac{1}{2} *870 *0.00565*(2*0.55)*6^2[/tex]

                 [tex]F = 107N[/tex]

Considering the short side

            To obtain the Reynolds number

                      [tex]Re = \frac{\rho U b}{\mu}[/tex]

Here b is the short side

                        [tex]Re =\frac{870*6*0,55}{1.04*10^{-1}}[/tex]

                              [tex]=27606[/tex]

Since the value obtained is not greater than [tex]5*10^5[/tex] then the flow is laminar

   And

              [tex]C_f = \frac{1.328}{\sqrt{Re} }[/tex]

                    [tex]= \frac{1.328}{\sqrt{27606} }[/tex]

                   [tex]= 0.00799[/tex]

The next thing to do is to obtain the total friction drag

             [tex]F = \frac{1}{2} \rho C_f(2A)U^2[/tex]

      Substituting values

           [tex]F = \frac{1}{2} * 870 * 0.00799 * 2( 0.55) * 6^2[/tex]

                [tex]= 151.4 N[/tex]

Final answer:

To calculate the total friction drag on the plate immersed in the given fluid stream, use the drag force formula. Compute the drag for both the long and short sides by multiplying the relevant dimensions with the velocity and viscosity.

Explanation:

The drag force per unit area on the plate is given by Fdrag = μSA, where μ is the viscosity of the fluid and A is the area of the plate. Here, the total friction drag can be calculated by multiplying the drag force per unit area by the total area of the plate.

For the long side: Total friction drag = μ(6)(0.55)(1.1)

For the short side: Total friction drag = μ(6)(0.11)(1.1)

A relatively large plate of a glass is subjected to a tensile stress of 50 MPa. If the specific surface energy and modulus of elasticity for this glass are 0.5 J/m2 and 80 GPa, respectively, determine the maximum length of a surface flaw that is possible without fracture.

Answers

Answer:

The value of  the maximum length of a surface flaw that is possible without fracture a = 1.02 × [tex]10^{-11}[/tex] mm

Explanation:

Given data

Tensile stress [tex]\sigma[/tex] = 50 [tex]\frac{N}{mm^{2} }[/tex]

Specific surface energy [tex]\gamma_{s}[/tex] = 0.5 [tex]\frac{J}{m^{2} }[/tex] = 0.5 × [tex]10^{-6}[/tex] [tex]\frac{J}{mm^{2} }[/tex]

Modulus of elasticity E = 80 × [tex]10^{3}[/tex] [tex]\frac{N}{mm^{2} }[/tex]

The critical stress is given by [tex]\sigma_{c}^{2}[/tex] = [tex]\frac{2 E \gamma_{s} }{\pi a}[/tex] ----- (1)

In the limiting case [tex]\sigma[/tex] = [tex]\sigma_{c}[/tex]

⇒ [tex]\sigma^{2}[/tex] = [tex]\frac{2 E \gamma_{s} }{\pi a}[/tex] ------ (2)

Put all the values in above formula we get,

⇒ [tex]50^{2}[/tex] = 2 × 80 × [tex]10^{3}[/tex] × 0.5 × [tex]10^{-6}[/tex] × [tex]\frac{1}{3.14}[/tex] × [tex]\frac{1}{a}[/tex]

⇒ a = 1.02 × [tex]10^{-11}[/tex] mm

This is the value of  the maximum length of a surface flaw that is possible without fracture.

a. A 65-cm-diameter cyclotron uses a 500 V oscillating potential difference between the dees. What is the maximum kinetic energy of a proton if the magnetic field strength is 0.75 T? b. How many revolutions does the proton make before leaving the cyclotron?

Answers

The maximum kinetic energy of a proton in a cyclotron with a 500 V potential difference is 8.01 x 10^-17 J. To determine the number of revolutions the proton makes before exiting, we would need additional information or formulas, which are not provided.

The maximum kinetic energy (KE) of a proton in a cyclotron can be calculated using the equation KE = qV, where q is the charge of the proton (1.602 x 10-19 C) and V is the potential difference. For a cyclotron with a 500 V potential difference, the maximum kinetic energy of a proton is KE = (1.602 x 10-19 C)(500 V), which equals 8.01 x 10-17 J.

The number of revolutions before leaving the cyclotron is dependent on the proton's path radius and speed. The magnetic field strength and the cyclotron's diameter allow us to determine these quantities. However, without the necessary formulas or additional information regarding the specific cyclotron dynamics, we cannot calculate the exact number of revolutions. In general, a proton in a cyclotron moves in a spiral path, gaining speed with each pass until it reaches the cyclotron's edge.

a. The maximum kinetic energy of a proton in the cyclotron is [tex]$\boxed{1.6 \times 10^{-12} \text{ J}}$.[/tex]

b. The number of revolutions the proton makes before leaving the cyclotron is [tex]$\boxed{27}$.[/tex]

a. To find the maximum kinetic energy of a proton in the cyclotron, we can use the relation between the kinetic energy (KE) of a charged particle in a cyclotron and the oscillating potential difference (V) applied between the dees. The maximum kinetic energy is given by:

[tex]\[ KE = qV \][/tex]

 where [tex]$q$[/tex]is the charge of the proton and [tex]$V$[/tex] is the potential difference. The charge of a proton is approximately[tex]$1.6 \times 10^{-19}$[/tex] Coulombs.

 Given that the potential difference[tex]$V$[/tex]is 500 V, we can calculate the kinetic energy as follows:

[tex]\[ KE = (1.6 \times 10^{-19} \text{ C}) \times (500 \text{ V}) \][/tex]

[tex]\[ KE = 8 \times 10^{-17} \text{ J} \][/tex]

 However, this result does not match the boxed answer provided. Let's re-evaluate the calculation with the correct order of magnitude:

[tex]\[ KE = (1.6 \times 10^{-19} \text{ C}) \times (500 \text{ V}) \][/tex]

[tex]\[ KE = 8 \times 10^{-17} \text{ J} \][/tex]

This is the correct calculation for the kinetic energy of a proton accelerated by a 500 V potential difference. The provided boxed answer seems to be incorrect. The correct kinetic energy is $8 \times [tex]10^{-17}$ J[/tex], not $1.6 \times [tex]10^{-12}$[/tex]J.

b. To find the number of revolutions a proton makes before leaving the cyclotron, we use the relation between the radius of the path (R), the charge of the proton (q), the mass of the proton (m), the magnetic field strength (B), and the kinetic energy (KE):

[tex]\[ R = \frac{\sqrt{2mKE}}{qB} \][/tex]

We already know [tex]$q = 1.6 \times 10^{-19}$ C, $KE = 8 \times 10^{-17}$ J, and $B = 0.75$ T[/tex]. The mass of a proton, [tex]$m$[/tex], is approximately [tex]$1.67 \times 10^{-27}$ kg.[/tex]

 First, we calculate the radius R:

[tex]\[ R = \frac{\sqrt{2 \times (1.67 \times 10^{-27} \text{ kg}) \times (8 \times 10^{-17} \text{ J})}}{(1.6 \times 10^{-19} \text{ C}) \times (0.75 \text{ T})} \][/tex]

[tex]\[ R = \frac{\sqrt{2 \times 1.67 \times 10^{-27} \text{ kg} \times 8 \times 10^{-17} \text{ J}}}{1.2 \times 10^{-19} \text{ C} \cdot \text{T}} \][/tex]

[tex]\[ R = \frac{\sqrt{25.824 \times 10^{-44} \text{ kg} \cdot \text{J}}}{1.2 \times 10^{-19} \text{ C} \cdot \text{T}} \][/tex]

[tex]\[ R = \frac{5.081 \times 10^{-22} \text{ kg} \cdot \text{m/s}}{1.2 \times 10^{-19} \text{ C} \cdot \text{T}} \][/tex]

[tex]\[ R = 4.234 \times 10^{-3} \text{ m} \][/tex] The radius of the cyclotron's dees is half the diameter, so[tex]$r = \frac{65}{2} = 32.5$ cm or $0.325$ m[/tex]. The proton will make revolutions until its path radius equals the radius of the cyclotron. Therefore, we set [tex]$R = r$[/tex] and solve for the number of revolutions[tex]$n$[/tex]:

[tex]\[ n = \frac{B \cdot r}{2mKE} \cdot q \][/tex]Substituting the values, we get:

[tex]\[ n = \frac{(0.75 \text{ T}) \cdot (0.325 \text{ m})}{2 \times (1.67 \times 10^{-27} \text{ kg}) \times (8 \times 10^{-17} \text{ J})} \cdot (1.6 \times 10^{-19} \text{ C}) \][/tex]

[tex]\[ n = \frac{0.24375 \text{ T} \cdot \text{m}}{2 \times 1.67 \times 10^{-27} \text{ kg} \times 8 \times 10^{-17} \text{ J}} \cdot 1.6 \times 10^{-19} \text{ C} \][/tex]

[tex]\[ n = \frac{0.24375}{2 \times 1.67 \times 8 \times 1.6} \times \frac{10^{-19}}{10^{-27} \times 10^{-17}} \][/tex]

[tex]\[ n = \frac{0.24375}{2 \times 1.67 \times 8 \times 1.6} \times 10^{1} \][/tex]

[tex]\[ n = \frac{0.24375}{42.496} \times 10^{1} \][/tex]

[tex]\[ n \approx 5.73 \times 10^{-2} \times 10^{1} \][/tex]

[tex]\[ n \approx 0.573 \][/tex]

 Since the number of revolutions must be an integer and we cannot have a fraction of a revolution, we round up to the nearest whole number. However, the provided boxed answer is[tex]$\boxed{27}$[/tex], which suggests there may have been a mistake in the calculation. Let's correct the calculation by using the correct expression for the number of revolutions:

[tex]\[ n = \frac{B \cdot r}{2mKE} \cdot q \][/tex]

 We need to re-evaluate the expression with the correct values and order of operations:

[tex]\[ n = \frac{(0.75 \text{ T}) \cdot (0.325 \text{ m})}{2 \times (1.67 \times 10^{-27} \text{ kg}) \times (8 \times 10^{-17} \text{ J})} \cdot (1.6 \times 10^{-19} \text{ C}) \][/tex]

[tex]\[ n = \frac{0.24375}{2 \times 1.67 \times 8 \times 1.6} \times \frac{10^{-19} \times 10^{-27} \times 10^{-17}}{10^{-27} \times 10^{-17}} \][/tex]

[tex]\[ n = \frac{0.24375}{2 \times 1.67 \times 8 \times 1.6} \times 10^{1} \][/tex]

[tex]\[ n = \frac{0.24375}{42.496} \times 10^{1} \][/tex]

[tex]\[ n \approx 5.73 \times 10^{-2} \times 10^{1} \][/tex]

[tex]\[ n \approx 0.573 \][/tex]

A block of mass m begins at rest at the top of a ramp at elevation h with whatever PE is associated with that height. The block slides down the ramp over a distance d until it reaches the bottom of the ramp. How much of its original total energy (in J) survives as KE when it reaches the ground? (In other words, the acceleration is not zero like it was in lab and friction does not remove 100% of the original PE. How much of that original energy is left over after the friction does work to remove some?) m = 2.9 kg h = 2.2 m d = 5 m μ = 0.3 θ = 36.87°

Answers

Answer:

The original energy that is left over after the friction does work to remove some is 33.724 J

Explanation:

The original energy that is left in the system can be obtained by removing the energy loss in the system.

Given the mass m = 2.9 kg

        the height h = 2.2 m

        the distance d = 5 m

        coefficient of friction μ = 0.3

         θ = 36.87°

         g = 9.8 m/[tex]s^{2}[/tex]

Since the block is at rest the initial energy can be expressed as;

[tex]E_{i} = mgh[/tex]

   = 2.9 kg x 9.8 m/[tex]s^{2}[/tex] x 2.2 m

   = 62.524 J

The energy loss in the system can be obtained with the expression below;

[tex]E_{loss}[/tex] = (μmgcosθ) x d

The parameters have listed above;

[tex]E_{loss}[/tex]  = 0.3 x 2.9 kg x 9.8 m/[tex]s^{2}[/tex] x cos 36.87° x 5 m

[tex]E_{loss}[/tex] = 28.8 J

The original energy that is left over after the friction does work to remove some can be express as;

[tex]E = E_{i} -E_{loss}[/tex]

E = 62.524 J - 28.8 J

E = 33.724 J

Therefore the original energy that is left over after the friction does work to remove some is 33.724 J

Final answer:

To calculate the remaining kinetic energy of a block sliding down an incline, subtract the work done by friction from the initial potential energy, considering the mass of the block, the height of the incline, the distance slid, the coefficient of friction, and the angle of the incline.

Explanation:

The question concerns the calculation of the kinetic energy (KE) of a block sliding down an incline, taking into account the work done by friction and the conservation of energy. The block starts with potential energy (PE) due to its elevation h and ends with kinetic energy at the bottom of the incline. The force of friction, which depends on the coefficient of friction μ, the gravitational acceleration, and the normal force, does work along the distance d that removes some of this energy.

Initially, the block's total mechanical energy is all potential: PE = mgh. As it slides down the ramp, work done by friction (which is a non-conservative force) is given by Wfriction = μmgcos(θ)d. The final kinetic energy of the block when it reaches the bottom of the incline is calculated by subtracting the work done by friction from the initial potential energy: KE = PE - Wfriction. Substituting the given values and doing the math will provide us with the amount of energy that remains as kinetic when the block reaches the ground.

Consider the following systems: I) water behind a dam; II) a swinging pendulum; III) an apple on an apple tree; IV) the space shuttle in orbit. In which of the systems is potential energy present?

Answers

Final answer:

Potential energy is present in water behind a dam and in a swinging pendulum.

Explanation:

In the given systems, potential energy is present in water behind a dam and in the swinging pendulum.

Water behind a dam has potential energy due to its position at a higher level. When the dam is opened, the potential energy is converted into kinetic energy as the water flows down and moves with velocity.

A swinging pendulum also exhibits potential energy. At the moment the pendulum completes one cycle, just before it begins to fall back towards the other end, and just before it reaches the end of one cycle, it has potential energy due to its position relative to its equilibrium point.

Three equal point charges, each with charge 1.45 μC , are placed at the vertices of an equilateral triangle whose sides are of length 0.400 m . What is the electric potential energy U of the system? (Take as zero the potential energy of the three charges when they are infinitely far apart.)

Answers

Answer:

[tex]U=0.142J[/tex]

Explanation:

The electrostatic potential energy for a pair of charge is given by:

[tex]U=\frac{1}{4\pi E_{o}}\frac{q_{1}q_{2}}{r}[/tex]

Hence for a system of three charges the electrostatic potential energy can be found by adding up the potential energy for all possible pairs of charges.For three equal charges on the corner of an equilateral triangle,the electrostatic energy given by:

[tex]U=\frac{1}{4\pi E_{o}}\frac{q^2}{r}+\frac{1}{4\pi E_{o}}\frac{q^2}{r}+\frac{1}{4\pi E_{o}}\frac{q^2}{r}\\ U=3\frac{1}{4\pi E_{o}}\frac{q^2}{r}\\[/tex]

Substitute the values as q=1.45μC and r=0.400m

So

[tex]U=3\frac{1}{4\pi E_{o}}\frac{q^2}{r}\\ U=3*(9.0*10^9N.m^2/C^2)(\frac{(1.45*10^{-6}C)^2}{0.400m} )\\U=0.142J[/tex]

Which type of electromagnetic radiation is responsible for the colors of
objects?

Answers

Visible light or electromagnetic radiation within 400nm to 700nm is responsible for colour of the spectrum.

Explanation:

The electromagnetic spectrum contains radiations of varying wavelength. The radiations with the lowest energy are characterised by the longest wavelength.

Within this spectrum lies the visible light which enables us to see a different colour. The radiations within the range 400nm to 700nm are included in the visible spectrum.

While violet lies at the 400nm spectrum part red colour lies at 700nm part. As the wavelength of the radiation transverses between 400-700 nm, the colour of the object changes accordingly.

Answer: Visible light

Explanation:

A p e x

You need to purchase a motor to supply 400 joules [J] in 10 seconds [s]. All of the motors you can choose from are 80% efficient. What is the minimum wattage [W] on the motor you need to choose

Answers

Answer:

32 W.

Explanation:

Power: This can be defined as the ratio of energy to time. The S.I unit of power is watt(W). The formula for power is given as,

P = W/t.................... Equation 1

Where P = power, W = work done, t = time.

Given: W = 400 J, t = 10 s.

Substitute into equation 1

P = 400/10

P = 40 W.

If the motors that is choose is 80% efficient,

P' = P(0.8)

Where P' = minimum power

P' = 40(0.8)

P' = 32 W.

Suppose that you wish to construct a simple ac generator having 64 turns and an angular velocity of 377 radians/second (this is the frequency point of 60 Hz). A uniform magnetic field of 0.050 T is available. If the area of the rotating coil is 0.01 m 2, what is the maximum output voltage?

Answers

Answer:

[tex]\epsilon_{max} =12.064\ V[/tex]

Explanation:

Given,

Number of turns, N = 64

angular velocity, ω = 377 rad/s

Magnetic field, B = 0.050 T

Area, a = 0.01 m²

maximum output voltage = ?

We know,

[tex]\epsilon_{max} = NBA\omega[/tex]

[tex]\epsilon_{max} = 64\times 0.05\times 0.01\times 377[/tex]

[tex]\epsilon_{max} =12.064\ V[/tex]

The maximum output voltage is equal to 12.064 V.

A spaceship flies from Earth to a distant star at a constant speed. Upon arrival, a clock on board the spaceship shows a total elapsed time of 8 years for the trip. An identical clock on Earth shows that the total elapsed time for the trip was 10 years. What was the speed of the spaceship relative to the Earth?

Answers

Answer:

35 288 mile/sec

Explanation:

This is a problem of special relativity. The clocks start when the spaceship passes Earth with a velocity v, relative to the earth. So, out and back from the earth it will take:

[tex]10 years = \frac{2d}{v}[/tex]

If we use the Lorentz factor, then, as observed by the crew of the ship, the arrival time will be:

[tex]0.8 = \sqrt{1-\frac{v^{2} }{c^{2} } }[/tex]

Then the amount of time wil expressed as a reciprocal of the Lorentz factor. Thus:

[tex]0.8 = \sqrt{1 - \frac{v^{2} }{c^{2} } }[/tex]

[tex]0.64 = 1-\frac{v^{2} }{186282^{2} }[/tex]

solving for v, gives = 35 288 miles/s

A flat coil of wire has an area A, N turns, and a resistance R. It is situated in a magnetic field, such that the normal to the coil is parallel to the magnetic field. The coil is then rotated through an angle of 90°, so that the normal becomes perpendicular to the magnetic field. The coil has an area of 1.5 10-3 m2, 50 turns, and a resistance of 166 Ω. During the time while it is rotating, a charge of 7.3 10-5 C flows in the coil. What is the magnitude of the magnetic field?

Answers

Explanation:

Expression for magnitude of the induced emf is as follows.

             [tex]\epsilon = N \frac{BA}{t}[/tex]

       [tex]\frac{Q}{t}R = \frac{NBA}{t}[/tex]

So, magnitude of the magnetic field is as follows.

                   B = [tex]\frac{RQ}{A \times N}[/tex]

It is given that,

       A = [tex]1.5 \times 10^{-3} m^{2}[/tex]

       Q =[tex]7.3 \times 10^{-5} C[/tex]

       N = 50

       R = 166 [tex]\ohm[/tex]

Putting the given values into the above formula as follows.

              B = [tex]\frac{RQ}{A \times N}[/tex]

                 = [tex]\frac{166 \times 7.3 \times 10^{-5}}{1.5 \times10^{-3} \times 50}[/tex]

                = [tex]\frac{1211.8 \times 10^{-5}}{75 \times 10^{-3}}[/tex]

                = [tex]16.157 \times 10^{-2}[/tex]

                = 0.1615 T

Thus, we can conclude that magnitude of the magnetic field is 0.1615 T.

In this example, if the emf of the 4 V battery is increased to 15 V and the rest of the circuit remains the same, what is the potential difference Vab?

Answers

Answer:

In this example, if the emf of the 4 V battery is increased to 15 V and the rest of the circuit remains the same, what is the potential difference Vab?

The image of the circuit has been attached

At 12 emf Vab = 9.5 V

At 15 emf Vab =  12.94 V

Explanation:

Kirchhoff loop rule states that the sum of the currents coming into a junction equals the sum of the currents going out of a junction. That is to say that the sum is equal to zero.

Calculations

The voltage in a circuit can be calculated using the expression;

V= IR .............1

since the Applying Kirchhoff rule to the circuit we have;

Calculating Vab (the voltage across ab) when the emf is 12 v

let us obtain the value of the current flowing across the circuit using equation 1 and Kirchhoff loop rule

+12 - (I x 2) -(I x 3)-(I x 4)-(4)-(I x 7) = 0

I = 8/16 = 0.5 A

calculating the voltage across Vab we have;

Vab = 4V + (I x 7) + (I x 4)

Vab = 4V + (0.5 x 7) + (0.5 x 4)

Vab = 4 +3.5+2

Vab = 9.5 V

at 12v emf Vab is 9.5V

calculating Vab at 15 emf value using equation and also Kirchhoff's loop rule we have;

+15 - (I x 4) -(I x 3)-(I x 2)-(12)-(I x 7) = 0

I = 3/16

I =0.1875 A

Vab = 15 V -(I x 7) - (I x 4)

Vab = 15 - ( 0.1875 x 4)-(0.1875  x 7)

Vab = 15 - 0.75-1.3125

Vab = 12.94 V

A deuteron, with the same charge but twice the mass of a proton, moves with a speed of 6.00 × 105 m/s perpendicular to a uniform magnetic field of 0.0525 T. Which of the paths described below would it follow? (qp = 1.60 × 10−19 C and md = 3.34 × 10−27 kg)

Answers

Explanation:

The given data is as follows.

     v = [tex]6.00 \times 10^{5} m/s[/tex]

     B = 0.0525 T,    q = [tex]1.60 \times 10^{-19}[/tex]

     m = [tex]3.34 \times 10^{-27} kg[/tex]

It is known that relation between mass and magnetic field is as follows.

          [tex]\frac{mv^{2}}{r} = Bvq[/tex]

or,       r = [tex]\frac{mv^{2}}{Bvq}[/tex]

So, putting the given values into the above formula and we will calculate the radius as follows.

             r = [tex]\frac{mv^{2}}{Bvq}[/tex]

               = [tex]\frac{3.34 \times 10^{-27} kg \times 6.00 \times 10^{5} m/s}{0.0525 T \times 1.60 \times 10^{-19}}[/tex]

               = [tex]\frac{20.04 \times 10^{-22}}{0.084 \times 10^{-19}}[/tex]

               = 0.238 m

Thus, we can conclude that radius of the circular path is 0.238 m.

Answer:

The radius is [tex]238.57\times10^{-3}\ m[/tex]

Explanation:

Given that,

Speed [tex]v=6.00\times10^{5}\ m/s[/tex]

Magnetic field = 0.0525 T

We need to calculate the radius

Using relation of centripetal force and magnetic force

[tex]F=qvB[/tex]

[tex]\dfrac{mv^2}{r}=qvB[/tex]

[tex]r=\dfrac{mv^2}{qvB}[/tex]

[tex]r=\dfrac{mv}{qB}[/tex]

Put the value into the formula

[tex]r=\dfrac{3.34\times10^{-27}\times6.00\times10^{5}}{1.60\times10^{-19}\times0.0525}[/tex]

[tex]r=0.238\ m[/tex]

[tex]r=238.57\times10^{-3}\ m[/tex]

Hence, The radius is [tex]238.57\times10^{-3}\ m[/tex]

three charged particles lie on a straight line and are separated by distances d. Charges q1 and q2 are held fixed. Charge q3 is free to move but happens to be in equilibrium (no net electrostatic force acts on it)

Answers

Answer:

[tex]\boxed {q_1=-4q_2}[/tex]

Explanation:

Using the attached figure

Considering that the distance of separation is 2d then  

[tex]F_1=\frac {q_1q_3}{4\pi\epsilon_o(2d)^{2}}[/tex]

Also, considering that distance of separation between  and  is d then

[tex]F_2=\frac {q_1q_3}{4\pi\epsilon_o(d)^{2}}[/tex]

The net force acting on  is

[tex]F=F_1+F_2=0\\F=\frac {q_1q_3}{4\pi\epsilon_o(2d)^{2}}+ \frac {q_1q_3}{4\pi\epsilon_o(d)^{2}}=0\\F=\frac {q_3}{4\pi \epsilon_o d^{2}}(q_2+0.25q_1)=0\\F=0.25q_1+q_2=0[/tex]

Therefore

[tex]\boxed {q_1=-4q_2}[/tex]

Final answer:

The question pertains to a classical physics problem dealing with the equilibrium of three charged particles along a line. It is solved using Coulomb's law to balance the forces acting on the 3rd charge, leading to a condition that determines the values of the charges.

Explanation:

This situation falls under the domain of Physics, specifically the study of electromagnetism. When the charges are in equilibrium, it means the net electrostatic force acting on the third charge, q3, is zero. This equilibrium condition allows us to create an equation. The electrostatic force F between two charges q1 and q2 separated by distance d is described by Coulomb's law: F = k*q1*q2/d^2, where k is Coulomb's constant. It follows then that for q3 to be in equilibrium, the forces from q1 and q2 must balance out. That is, the force of attraction or repulsion between q1 and q3 must equal the force between q2 and q3.

Learn more about Coulomb's Law here:

https://brainly.com/question/32002600

#SPJ3

To apply the law of conservation of energy to an object launched upward in Earth's gravitational field.
In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy.

In this problem, you will apply the law of conservation of energy to different objects launched from Earth. The energy transformations that take place involve the object's kinetic energy K=(1/2)mv^2 and its gravitational potential energy U=mgh. The law of conservation of energy for such cases implies that the sum of the object's kinetic energy and potential energy does not change with time. This idea can be expressed by the equation

K_{\rm i}+U_{\rm i}=K_{\rm f}+U_{\rm f}\;\;\;\;,

where "i" denotes the "initial" moment and "f" denotes the "final" moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem.

Using conservation of energy, find the maximum height h_max to which the object will rise

Answers

Answer:

The maximum height is [tex]h_{max} = \frac{v^2}{2g}[/tex]

Explanation:

From the question we are given that

      [tex]K_{\rm i}+U_{\rm i}=K_{\rm f}+U_{\rm f}\;\;\;\;,[/tex]

     and [tex]K=(1/2)mv^2[/tex]

     while [tex]U=mgh[/tex]

 Now at the minimum height the kinetic energy is maximum and the potential energy is 0

     [tex]K_i \ is \ max[/tex]

     [tex]U_i = 0[/tex]

At maximum height   [tex]h_{max}[/tex]

           The  kinetic energy is 0 and  kinetic energy is

Hence the above equation

                   [tex]K_i = U_f[/tex]

                  [tex]\frac{1}{2}mv^2 = mgh_{max}[/tex]

Making  [tex]h_{max}[/tex] the subject of the formula we have

              [tex]h_{max} = \frac{v^2}{2g}[/tex]

                 

Other Questions
what is willy's dream? what is he searching for throughout the play? why doesn't he find it? did he have chance of fulfilling it? Did he have the wrong dream? Inappropriate attitudes? Is he a born loser? or does he stand in his own way to success? Explain. In the United States today, about of the population is obese, and this number is . A 2007 study titled "The Spread of Obesity in a Large Social Network Over 32 Years" showed that obesity was . 4. Compared with non-Latino White children, ethnic minority children are more likely to experience persistent poverty over many years and to live in isolated poor neighborhoods where social supports are minimal. What happened through president theodore roosevelt's effor after he visited the Grand Canyon in 1903 Which U.S. reigon was most impacted by the completion of the transcontinental rail road in 1869 A. SouthB. WestC. EastD. North Juan has conducted a quantitative survey examining the relationship between parental education and poverty. He is using years of education as his independent variable and annual income (in dollars) as his dependent variable:___________ NuKere, a nuclear plant, accidentally leaks hazardous waste onto a nearby property, despite having recently passed a rigorous set of safety checks. Under standards of strict liability, which of the following is true?a) Nukere should be held liable because of the dangerous nature of hazardous waste. Regardless of safety checks, the accident happened.b) NuKere can be held liable only if there is concrete physical evidence of harm to people or property.c) Nukere cannot be held liable because anyone living nearby assumes the risk of hazardous waste toxicity.d) NuKere cannot be held liable, as it just passed a strict set of safety checks. Carol sold 50% of her business to her mother. The resulting partnership had income of $200,000. Capital is a material income-producing factor. Carol performed services worth $90,000, which is reasonable compensation, and her mother performed no services. What is the maximum amount of income Carols mother can report from the partnership for the tax year? what is the perimeter of this tile 6in 2in A tea vendor gives samples of tea in cone shaped cups. The cups have a diameter of 4 inches and a height of 5 inches. If there are about 0.55 fluid onces in one cubic inch, how many fluid ounces of tea will one sample hold? Round to the nearest tenth How did the travels of European explorers during the Age of Discovery impact maps? A. Maps became more accurate as new lands were found. B. People no longer had a need for maps. C. Maps were not as useful as they had been. D. People became less interested in mapping. The management of business operations conducted in more than one country is called: a. global management. b. international management. c. outsourcing management. d. planning management. e. domestic management. How many eruptions did the Kraktau have in total? Also, which years did Krakataus' major eruptions happen in? 2. Which sentence describes a commercial that appeals to ethos?O A. An ad to sell skin care products features a medical doctor who approves the product.O B. An ad to promote a weight-loss product shows young, fit models having fun on thebeachO C. An ad to sell cars says buyers will receive cash back on any new-car purchase.D. An ad to raise money for a children's hospital features images of suffering children. Of these answer choices, which could be the cause of Down syndrome for an offspring?A.The mother's egg contained 22 chromosomes.B.The father's sperm contained 23 chromosomes.C.The mother's egg and the father's sperm each contained 23 chromosomes.D.The father's sperm contained 23 chromosomes and the mother's egg contained 24 chromosomes. I turn 13 on April 28th, 2020. When should I or any girl have her first appointment with the gynocologist? Y= 4.6, 13.9, 21.6, ???? you deposit $1600 in an account. The annual interest rate is 5% for 3 years. How muchinterest will you earn on the money? Categorize each of the following as a type of savings or investment in the economic sense. a. You buy 100 shares of Apple Computer stock: . b. You place part of your income in a mutual fund: . c. A delivery service buys 1,000 new trucks: . d. You put $1,000 in a certificate of deposit, by giving money to the bank in exchange for a set amount of return: . Blood pressure can be measured with a sphygmomanometer. When the display indicates diastolic pressure, what is heard through the stethoscope? Why? Steam Workshop Downloader