This is a chemical change as the products have very different property as compared to reactant not only physically but also chemically. Therefore option c is correct option
What is chemical change?
Chemical change is a reaction in which breaking and forming of new bonds take place. One molecule completely converted to totally different molecule. The number of atoms remains same
One famous example of chemical change is the rusting of iron. In our case tip of match is ignited as it is struck against the matchbox, so here combustion reaction is taking place, Red phosphorous is burning in presence of oxygen. The color, odor and arrangements of atoms in products are very much different from reactant.
Therefore, the tip of the match is flammable and is set on fire is the correct one . The correct option is option C
Learn more about the chemical change, here:
https://brainly.com/question/16279122
#SPJ5
Chromium has four naturally occurring isotopes; Cr-50, Cr-52, Cr-53, and Cr-54. If the average atomic mass of chromium is 51.996 amu, which isotope of chromium is found in the greatest abundance?
A) Cr-50
B) Cr-52
C) Cr-53
D) Cr-54
Answer:
51.996 amu
B) 52.000 amu
C) 52.191 amu
D) 52.25 amu
Explanation:
Which one would it be on here?
What is the density (in g/L) of a gas with a molar mass of 70.49g/mol at 0.874atm and 389K?
Explanation:
According to the ideal gas law, PV = nRT
where, n = number of moles
Also, density = [tex]\frac{mass}{volume}[/tex]
Since, n = [tex]\frac{mass}{\molar mass}[/tex]
Therefore, ideal gas equation can also be written as follows.
PV = nRT
PV = [tex]\frac{mass}{\text{molar mass}} \times RT[/tex]
[tex]P \times \text{molar mass}[/tex] = dRT
Hence, putting the given values into the above formula as follows.
[tex]0.874 atm \times 70.49 g/mol = d \times 0.0821 Latm/mol K \times 389 K[/tex]
6.161 atm g/mol = [tex]d \times 31.94 Latm/mol[/tex]
d = 0.193 g/L
Thus, we can conclude that density of the given gas is 0.193 g/L.
The density of a gas with a molar mass of 70.49 g/mol at 0.874 atm and 389 K is calculated using the Ideal Gas Law and is approximately 1.928 g/L.
To calculate the density of a gas with a molar mass of 70.49 g/mol at 0.874 atm and 389 K, we can use the Ideal Gas Law, which states PV = nRT. Here, density (d) is equivalent to the mass (m) of the gas divided by its volume (V), and the number of moles (n) can be found by dividing the mass (m) by the molar mass (M). We then rearrange the Ideal Gas Law to solve for n/V, which gives us the formula for density (d = PM/RT).
Using the provided gas conditions and the Ideal Gas constant (R = 0.0821 L·atm/mol·K), we can perform the following calculation:
First, convert the pressure from atm to the unit matching the gas constant: P = 0.874 atm.
Now, insert all values into the density formula: d = (P × M) / (R × T) = (0.874 atm × 70.49 g/mol) / (0.0821 L·atm/mol·K × 389 K).
Perform the multiplication and division to find the density: d ≈ (61.60826 g·atm/mol·K) / (31.9589 L·atm/mol·K) ≈ 1.928 g/L.
explain how the nettle is adapted for defence and protection
Answer:
In biology, adaptation has three related meanings. The definition that relates most to this question is given below:
Adaptation is the dynamic evolutionary process that fits organisms to their environment, enhancing their evolutionary fitness.
A Nettle plant also known as common nettle, stinging nettle nettle leaf, or just a nettle or stinger, is a herbaceous perennial flowering plant in the family Urticaceae with the ability to sting.
Explanation:
One of the biological traits that the nettle has is its ability to produce inflammatory effect (that is a burning stinging sensation on the skin known as "contact urticaria"). This unpleasant effect is achieved by impaling the skin of the animal via spicules. The spicules cause mechanical irritation.
The stinging effect is also achieved by the introduction of biochemical irritants such as histamine, serotonin and choline among other chemicals into the skin.
This sort of defence or protection mechanisam keeps animals away from the nettle.
Cheers!
desides the hurricane force winds and roads filling with snow, what other hazards do you think the blizzard caused?
Blizzards pose hazards beyond hurricane-force winds and snow-filled roads, including infrastructure failures leading to fatalities, potential health issues like respiratory ailments, injuries due to hazardous conditions, and significant economic impacts.
Explanation:Beyond the direct impact of hurricane-force winds and snow-filled roads, blizzards can cause various other hazards that affect both people and the environment. Critical infrastructure can fail, as seen in the south Texas freeze, where electrical capacity faltered leading to widespread blackouts. The lack of power in freezing temperatures can lead to fatalities and other severe consequences, including the inability to heat homes, frozen and burst water pipes, and the loss or contamination of the water supply.
Another major hazard caused by blizzards is the health impact on individuals. This includes conditions like 'dust pneumonia,' especially among those vulnerable such as children and the elderly, due to prolonged exposure to dust and soot inhalation. In addition, extreme weather conditions can lead to a higher incidence of injuries and exacerbate chronic health conditions, including respiratory diseases. Moreover, the economic damage from such a storm can be immense, disrupting local economies and livelihoods long after the storm has passed.
the fuel tank of an automobile has a capacity of 14.8 gallons. if the density of gasoline is 42.0 lb/ft^3, what us the mass of fuel in kilograms when the tank is full?
The valence electrons of an atom of which element would feel a smaller effective nuclear charge than the valence electrons of a calcium (Ca) atom?
Final answer:
Potassium (K) is an example of an element whose valence electrons feel a smaller effective nuclear charge than the valence electrons of a calcium (Ca) atom due to potassium's lower number of protons in the nucleus and similar shielding effect.
Explanation:
The concept of effective nuclear charge (Zeff) is important to understand why valence electrons in some elements feel a weaker nuclear pull compared to calcium (Ca). Effective nuclear charge essentially means the net positive charge experienced by valence electrons, after accounting for the shielding effect of the inner electrons. Calcium is a Group 2 element with a 4s2 valence electron configuration. A good example of an element whose valence electrons would feel a smaller effective nuclear charge than those of calcium would be potassium (K).
Potassium, being in the same period but belonging to Group 1, has one valence electron in its 4s orbital. Due to the lower nuclear charge (less protons in the nucleus) and similar shielding by inner electrons, potassium's single valence electron feels less pull from its nucleus compared to a calcium's two valence electrons. Moreover, when potassium forms a cation by losing its valence electron, the remaining electrons are still shielded by the same number of inner electrons, but now there is one less proton in the nucleus to exert a pull. Consequently, the valence electron in a potassium atom would experience a lower effective nuclear charge compared to the valence electrons in a calcium atom.
Which factor causes a decrease in the rate of dissolution?
Answer: Size of Solute and Surface area
Explanation: Rate of dissolution is the speed at which the given solute gets dissolved in the given solvent.
Now this rate of dissolution depends on may factors like-
a) Size of Solute - If the solute size is bigger then it will take much more time to get dissolved. Thus smaller size solute are easily dissolved in the solvent.
b) Surface area - If the surface area of the solvent is larger, then the collision between the solute and solvent will be much higher and thus rate of dissolution will increase.
Thus decreasing the surface area of solute will lead to decrease in the rate of dissolution.
Pleasssssssssssssssssss help me in this 4 question
For the following experiment, write a possible hypothesis, and then identify the independent variable, dependent variable, and controlled variables. Susan wants to find the fastest route to drive to youth group. She can take the freeway, arterials, or residential roads on her way to youth group.
We discussed the importance of having only one independent variable, but trying to test more than one independent variable is an error many people make. In the following experiment, identify the errors that the experimenter made and summarize a valid way to test his research question: What cooking spray best keeps food from sticking to a pan? In the morning, Dan uses grapeseed oil to cook eggs for breakfast; for lunch, he uses vegetable oil spray to coat a muffin tray and cooks cornbread to eat with his chili; for dinner, he uses olive oil to pan cook a hamburger patty.
Design a simple experiment that you could conduct at home. What is your hypothesis? What are the independent, dependent, and…
Give the number of significant figures: 0.011 cm
Significant figures:
Answer:
Significant figures: 2
Explanation:
There are 2 significant figures since the zeros at the left side don’t count and the number can be expressed in its scientific notation as 11x10-3 cm
list the major points in daltons atomic theory
Dalton's atomic theory proposed that elements are made of atoms, which are indivisible and have specific mass and properties for each element. His theory also stated that atoms combine in fixed ratios to form compounds and cannot be created or destroyed in chemical reactions. Modifications have been made to this theory, as atoms can be divided and isotopes and nuclear reactions exist.
Dalton's Atomic Theory
John Dalton's atomic theory was a groundbreaking attempt to explain the nature and behavior of atoms. The main points of Dalton's atomic theory include:
Elements are composed of extremely small particles called atoms.
Atoms of a given element are identical in size, mass, and other properties; atoms of different elements differ in these properties.
Atoms cannot be subdivided, created, or destroyed in chemical reactions.
Atoms of different elements can combine in whole number ratios to form chemical compounds.
In chemical reactions, atoms are rearranged, combined, or separated.
Despite its success, modifications to Dalton's atomic theory have been made. We now know that atoms can be divided into subatomic particles (electrons, protons, and neutrons), isotopes of elements can have different masses, and atoms can be transformed via nuclear reactions.
What does a mineral's streak tell you, and how do you test for it?
Answer: Mineral's streak tells us about the color of the mineral when crushed into powdered form.
Explanation:
Mineral's Streak : Streak of a mineral is a color of a mineral in powdered form. sometimes color of the powder differ from the color of the mineral's specimen.
This test is performed by rubbing a mineral on a un-glazed porcelain tile known as streak plate. By rubbing the mineral on streak plate small amount powder is produced on the surface of the which color can be easily seen with help of eyes.
A block has sides that are 2cm long, 3 cm wide, and 2cm high. What is the volume ?
Identify a chemical reagent used in this experiment that can be used to distinguish solid CaCl2 (soluble) from solid CaCO3 (insoluble). What is the distinguishing observation?
Answer: Silver nitrate is the chemical reagent used to distinguish.
Explanation:
Dissolve both compounds in water. And add silver nitrate to that solution.
1. In case of calcium chloride
The calcium chloride is soluble in water and thus forms ions in aqueous solution.The chloride ions present in the solution react with silver ions of silver nitrate to give white color precipitate of silver chloride.
[tex]2AgNO_3+CaCl_2\rightarrow 2AgCl(white)+Ca(NO_3)_2[/tex]
2. in case of calcium carbonate.
The calcium carbonate is poorly soluble in water. Since, it doesn't get dissolved in water.
When silver nitrate is added there will be no formation of any precipitate.
On Earth, the mass of one of the lunar landing modules used to explore the moon was measured to be about 4,200 kg. The acceleration due to gravity on the moon is about one-sixth that of Earth. What is the lunar landing module’s weight on Earth? N What is the mass of the lunar landing module on the moon? kg The weight of the lunar landing module on the moon is its weight on Earth. The calculated weight of the lunar landing module on the moon is N.
Answer:
41,160 is the first
4,200 is the second
less than is the third
6,860 is the last one
Explanation:
The weight of the Lunar Landing module on Earth is 41202 N
The mass of the lunar landing module on the moon is 4200 N
The weight of the lunar landing module on the moon is less than its weight on Earth.
The calculated weight in the moon is 6867 N
What is Lunar Landing Module?
A lunar landing module is a lunar landing designed to enable astronauts to travel via a spacecraft in a lunar orbit as well as the lunar surface.
From the given parameters:
mass of the lunar landing module on earth = 4200 kgacceleration on moon = 1/6th of earth's accelerationThe weight of the Lunar Landing module on Earth is:
Weight on Earth = mass (m) × acceleration due to gravity (g)
Weight on Earth = 4200 kg × 9.81 m/s²
Weight on Earth = 41202 N
The mass of the Lunar Landing module on the Moon is calculated by using the formula:
Weight on Moon = mass (m) × acceleration in the moon
Where;
acceleration on moon = 1/6 ×9.81 m/s² = 1.635 m/s²Since mass on earth = mass in the moon;
The mass of the lunar landing module on the moon is 4200 NThe weight of the lunar landing module on the moon is less than its weight on Earth.
The calculated weight in moon = 4200 × 1.635 m/s²
The weight in moon = 6867 N
Learn more about Lunar Landing Module here:
https://brainly.com/question/13633842
Chopping wood is an example of a physical change. Burning wood logs in a fire is a chemical change.
What distinguishes the chemical change from the physical change?
A. The chemical change takes away weight.
B. The chemical change creates something new.
C. The chemical change makes the wood smaller.
D. The chemical change makes the wood change shape.
Different material do not form compounds in mixtures. True or false
science question below fast answer please
science question down below
Which of the following is a unit of volume in the English system of measurement? A. Meters B. Gallons C.liters per cubic gram D. Kilograms per cubic centimeter
Answer : The correct option is, (B) Gallons
Explanation :
English system : It is defined as the measurement system that is used in many countries including the United States.
The English system measured the things in feet, inches and mile for length, ounce, ton, pint and gallons for volume.
As per question, we conclude that the unit of volume in the English system of measurement is gallons.
Hence, the correct option is (B) Gallons
How many kilograms of the rock must be processed to obtain 2.0 kg of Pb ?
A sample of a substance that has a density of 0.824 g/mL has a mass of 0.451g. Calculate the volume of the sample.
The volume of the substance can be calculated by dividing the given mass (0.451g) by the density (0.824 g/mL). Therefore, the volume equals approximately 0.547 mL.
Explanation:The subject of this question is the calculation of volume using the given mass and density of a substance. The density is defined as mass per unit volume. Thus, you can calculate volume by dividing the mass by the density.
For this specific question, the given mass of the substance is 0.451g and the density is 0.824 g/mL. To calculate volume, divide the mass by the density. So, Volume = mass/density = 0.451g / 0.824 g/mL = 0.547 mL.
Learn more about Volume calculation here:https://brainly.com/question/33318354
#SPJ12
science question down below
What is the formula for germicide that is sufficient to kill blood-borne pathogens?
How might a hurricane in Florida cause anomalous nest data
why is the principle about the relationship between mass volume always true of substances , but not always true for mixtures
For pure substances, the mass and volume will always be the same or will always change the same way because all substance are the same throughout.
While for mixtures, you can have varying amount of each component therefore mass and volume will not change the same way for substances.
Vanessa jogged 8 miles in 2 hours. What was her average speed?
2 miles per hour
8 miles per hour
16 miles per hour
4 miles per hour
[tex]\text{Hey there!}[/tex]
[tex]\text{Vanessa jogged 8 miles in 2 hours. What was her average speed?}[/tex]
[tex]\text{First,, highlight/ underline your key-terms. Then solve it from there!}[/tex]
[tex]\text{Key term 1: \underline{8 miles}}\\\text{Key term 2: \underline{ in 2 hours}}[/tex]
[tex]\text{Now we have to find her average speed. }[/tex]
[tex]\text{Formula: }\dfrac{\text{a}}{\text{b}}[/tex]
[tex]\text{a = 8}\\\text{b = 2}[/tex]
[tex]\dfrac{8}{2}= \text{the answer}\\\\\dfrac{8\div2}{2\div2}=\dfrac{4}{1}= 4\\\\\\\boxed{\boxed{\bf{Answer: 4}}}\checkmark[/tex]
[tex]\text{Good luck on your assignment and enjoy your day!}\\\\\frak{LoveYourselfFirst:)}[/tex]
compute the mass of CaSO4 that can be prepared by the reaction of 3.2900g of H2SO4 with 3.1660g of CaCO3
Answer: 4.3020 grams of calcium sulfate will be produced.
Explanation:
To calculate the number of moles, we use the formula:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ....(1)
For calcium carbonate:Given mass of calcium carbonate = 3.1660 g
Molar mass of calcium carbonate = 100.0869 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of calcium carbonate}=\frac{3.1660g}{100.0869g/mol}=0.0316mol[/tex]
For sulfuric acid:Given mass of sulfuric acid = 3.2900 g
Molar mass of sulfuric acid = 98.079 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of sulfuric acid}=\frac{3.2900g}{98.079g/mol}=0.0335mol[/tex]
For the given reaction:
[tex]CaCO_3+H_2SO_4\rightarrow CaSO_4+H_2CO_3[/tex]
By Stoichiometry of the reaction:
1 mole of calcium carbonate reacts with 1 mole of sulfuric acid
So, 0.0316 moles of calcium carbonate will react with = [tex]\frac{1}{1}\times 0.0316mol=0.0316mol[/tex]
As, the given amount of sulfuric acid is more than the required amount. Hence, it is present in excess and is considered as an excess reagent.
Calcium carbonate is considered as a limiting reagent because it limits the formation of product.
By Stoichiometry of the reaction:1 mole of calcium carbonate produces 1 mole of calcium sulfate
So, 0.0316 moles of calcium carbonate will produce = [tex]\frac{1}{1}\times 0.0316mol=0.0316mol[/tex] of calcium sulfate.
Now, to calculate the mass of calcium sulfate, we use equation 1:
Molar mass of calcium sulfate = 136.14 g/mol
Moles of calcium sulfate = 0.0316mol
Putting values in equation 1, we get:
[tex]0.0316mol=\frac{Mass of calcium sulfate}}{136.14g/mol}\\\\\text{Mass of calcium sulfate}=4.3020g[/tex]
Hence, 4.3020 grams of calcium sulfate will be produced.
Starting with the unbalanced equation for the combustion of ethanol,
C2H5OH(l)+O2(g)→CO2(g)+?H2O(l)
what coefficient should be placed in front of H2O to balance the hydrogen atoms
Final answer:
The coefficient that should be placed in front of H2O to balance the hydrogen atoms for the combustion of ethanol is 3. After balancing the hydrogen atoms, the fully balanced chemical equation for the combustion of ethanol is C2H5OH(l) + 3O2(g) → 2CO2(g) + 3H2O(l).
Explanation:
To balance the hydrogen atoms in the combustion of ethanol, we start with the unbalanced equation C2H5OH(l) + O2(g) → CO2(g) + H2O(l). Ethanol (C2H5OH) contains 6 hydrogen atoms, and since each molecule of water (H2O) contains 2 hydrogen atoms, we need 3 molecules of water to account for all the hydrogen atoms from ethanol. Therefore, the coefficient for H2O in the balanced equation is 3.
After placing 3 in front of H2O, the equation looks like this: C2H5OH(l) + O2(g) → 2CO2(g) + 3H2O(l), which balances the hydrogen atoms. To complete the balancing, the oxygen atoms also need to be accounted for. In the product side, there are a total of 7 oxygen atoms (4 from the 2CO2 and 3 from the 3H2O). There is 1 oxygen atom in the ethanol molecule, so we need 6 more oxygen atoms from O2, which means we need 3 O2 molecules. Thus, the coefficient for O2 is 3. The fully balanced equation is C2H5OH(l) + 3O2(g) → 2CO2(g) + 3H2O(l).
science question down below hurry