The table gives estimates of the world population, in millions, from 1750 to 2000. year population year population 1750 790 1900 1650 1800 980 1950 2560 1850 1260 2000 6080 (a) use the exponential model and the population figures for 1750 and 1800 to predict the world population in 1900 and 1950. compare with the actual figures

Answers

Answer 1

The exponential model provides a reasonable approximation for the world population growth between 1750 and 1800. However, it becomes less accurate for longer time periods due to various factors like technological advancements, medical breakthroughs, and changing social and economic conditions.

1. Define the model:

The general form of an exponential model is:

P(t) = a * b^(t)

where:

P(t) is the population at time t

a is the initial population (at t = 0)

b is the growth factor (greater than 1 for positive growth)

t is the time elapsed (in years, since the initial time)

2. Find the parameters:

We have data for 1750 (t = 0) and 1800 (t = 50):

P(0) = 790 million (initial population)

P(50) = 980 million (population after 50 years)

Using these values, we can solve for a and b:

b = (P(50) / P(0))^(1/t) = 980 / 790)^(1/50) ≈ 1.007

a = P(0) / b^0 = 790 / 1 ≈ 790

3. Predict the population in 1900 and 1950:

Now we can plug the values of a and b into the model to predict the population:

P(150) = 790 * 1.007^(150) ≈ 1912 million (predicted population in 1900)

P(200) = 790 * 1.007^(200) ≈ 3145 million (predicted population in 1950)

4. Comparison with actual data:

The actual population in 1900 was 1650 million and in 1950 was 2560 million. While the model overestimates the population in both cases, it still captures the general trend of growth.


Related Questions

Trigonometric Identities
Simplify each expression.
(1−cos⁡(−t))(1+cos⁡(t)) =
(1+sin(t))(1+sin(-t))=
csc⁡(t)tan⁡(t)+sec⁡(−t) =
Thank you for your help

Answers

[tex]\bf \textit{symmetry identities}\\\\ sin(-\theta )\implies -sin(\theta )\qquad \qquad cos(-\theta )\implies cos(\theta ) \\\\\\also~recall\\\\ sin^2(\theta)+cos^2(\theta)=1\implies cos^2(\theta)=1-sin^2(\theta) \\\\\\ sin^2(\theta)=1-cos^2(\theta) \\\\ -------------------------------\\\\\ [1-cos(-t)][1+cos(t)]\implies [1-cos(t)][1+cos(t)][/tex]

[tex]\bf 1^2-cos^2(t)\implies 1-cos^2(t)\implies sin^2(t)\\\\ -------------------------------\\\\\ %Simplify each expression. (1−cos⁡(−t))(1+cos⁡(t)) = (1+sin(t))(1+sin(-t))= csc⁡(t)tan⁡(t)+sec⁡(−t) = [1+sin(t)][1+sin(-t)]\implies [1+sin(t)][1-sin(t)] \\\\\\ 1^2-sin^2(t)\implies 1-sin^2(t)\implies cos^2(t)\\\\ -------------------------------\\\\[/tex]

[tex]\bf csc(t)tan(t)+sec(-t)\implies \cfrac{1}{\underline{sin(t)}}\cdot \cfrac{\underline{sin(t)}}{cos(t)}+\cfrac{1}{cos(-t)} \\\\\\ \cfrac{1}{cos(t)}+\cfrac{1}{cos(-t)}\implies \cfrac{1}{cos(t)}+\cfrac{1}{cos(t)}\implies \cfrac{2}{cos(t)} \\\\\\ 2\cdot \cfrac{1}{cos(t)}\implies 2sec(t)[/tex]

On a game show, a contestant randomly chooses a chip from a bag that contains numbers and strikes. The theoretical probability of choosing a strike is 3/10. The bag contains 9 strikes. How many chips are in the bag?

Answers

This question rests on the proportion 3/10, and how that might scale up to a larger bag. It says the probability of choosing a strike is 3/10; we can take that to mean that, in a bag of 10 chips, there are 3 strikes. Now, we're dealing with an unknown number of chips, but we are given the number of strikes it contains: 9. What are we multiplying - or scaling - the 3 by to get 9? We'll have to use that same scaling factor to scale up our 10. As an equation, this translates to:

[tex] \frac{3}{10}= \frac{9}{x}[/tex]

Where x is the number of chips in the larger bag.

look at the figure if tan x=3/y and cos x =y/z what is the value of sin x?

Answers

Recall:

The tan of the measure of an angle is the ratio of the opposite side to the adjacent side to that angle, that is :

[tex]\displaystyle{ \tan x^{\circ}= \frac{opposite\ side}{adjacent \ side} [/tex]. 

Since this ratio is 3/y, we denote the opposite side, and adjacent side respectively by 3 and y. 

(Technically we should write 3t and yt, but we try our luck as we see y in the second ratio too!)


Similarly, [tex]\displaystyle{\cos x^{\circ}= \frac{adjacent\ side}{hypothenuse} [/tex].


The adjacent side is already denoted by y, so we denote the length of the hypotenuse by z.



Now the sides of the right triangle are complete. 

[tex]\displaystyle{ \sin x^{\circ}= \frac{opposite\ side}{hypotenuse}= \frac{3}{z} [/tex]


Answer: A

Answer: sin x° = 3/z( answer

Because tan is opposite/adjacent,

Cos is adjacent/hypotenuse and sin is opposite/hypotenuse the information to find sin is given. You simply take the opposite (3) and put it over the hypotenuse (z)

sin x°= 3/z

The stem-and-leaf plot shows the ages of customers who were interviewed in a survey by a store.

How many customers were older than 45?

HELP ASAP please

Answers

11 because it asks for people older than 45 so it’s not 12. You just need to count how many number are after 45.

Answer:

Customers older than 45 years are 11 in number.

Step-by-step explanation:The age of store customers is represented by the stem ad leaf plot.The stem represents the tens digit while leaf denotes the unit digit.The question is asking us to find the number of customers who are older than 45 so 45 is not considered.

The age of customers more than 45 are:

48,50,50,51,55,56,62,64,65,65,73.There are 11 customers in all .

a neighborhood garden that is 2/3 of an acre is to be divided 4 equal-size sections

Answers

(2/3) / 4 =
2/3 * 1/4 =
2/12 = 
1/6.........1/6 of an acre

Find the volume of a rectangular block of ice 3 feet by 6 1/3 and 1 1/2 feet

Answers

Final answer:

The volume of the rectangular block of ice is 85.5 cubic feet. This was found by converting the mixed numbers into improper fractions, then multiplying the length, width, and height together using the formula volume = length × width × height.

Explanation:

To find the volume of a rectangular block of ice with the given dimensions, we simply need to multiply the length, width, and height together. The formula to calculate volume is Volume = length × width × height. First, however, we need to convert the mixed numbers into improper fractions so we can multiply them easily.

The length is given as 6 1/3 feet, which can be converted to an improper fraction: (6 × 3) + 1 = 19/3 feet. The height is given as 1 1/2 feet, which is (1 × 2) + 1 = 3/2 feet.

Now, to find the volume, we multiply these dimensions with the width, which is 3 feet.

Volume = (19/3) feet × 3 feet × (3/2) feet
The feet × feet × feet will give us cubic feet.

Multiplying these together:
Volume = (19 × 3 × 3) / (3 × 2) cubic feet
Volume = 171/2 cubic feet or 85.5 cubic feet

Thus, the volume of the block of ice is 85.5 cubic feet.

solve 6[4x(72-63)divided3]

Answers

parentheses first, 72-63 is 9 next multiply by 4 which is 36 the you’ll divide by 3 now you have 12 so multiply that by 6 and you get 72. Just a hint, another way to write that without using the multiply or the divided would be 6[4(72-63)/3] but either way you want is fine. Hope this helped :)

0.2(v-5) = -1 solve equations

Answers

Your answer should be v=0
Reorder the terms in parentheses
+(+0.2v-1)=-1
Remove unnecessary parentheses
+ 0.2v-1=-1
We move all terms containing v to left and all other terms to the right
+ 0.2v+=-1+1
We simplify left and right side of the equation 
+ 0.2v=0
We divided both sides of the equation by 0.2 to get v
v=0

Solve for the distance between (522, 1322) and (9000, -1337) to the third decimal.

Answers

[tex]\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ 522}}\quad ,&{{ 1322}})\quad % (c,d) &({{ 9000}}\quad ,&{{ -1337}}) \end{array} \\\\\\ % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\ -------------------------------\\\\ d=\sqrt{(9000-522)^2+(-1337-1322)^2}\\\\\\ d\sqrt{8478^2+(-2659)^2} \\\\\\ d=\sqrt{71876484+7070281}\implies d=\sqrt{78946765} \\\\\\ d\approx 8885.199209922\implies d\approx 8885.199[/tex]

Marco comma roberto comma dominique comma and claricemarco, roberto, dominique, and clarice work for a publishing company. the company wants to send two employees to a statistics conference. to be​ fair, the company decides that the two individuals who get to attend will have their names drawn from a hat. this is like obtaining a simple random sample of size 2.​ (a) determine the sample space of the experiment. that​ is, list all possible simple random samples of size n equals 2n=2. ​(b) what is the probability that marco and robertomarco and roberto attend the​ conference? (c) what is the probability that dominiquedominique attends the conferenceattends the conference​?

Answers

This seems a bit hard..

Answer:

Yes

Step-by-step explanation:

ye mom ye mom lolololol

a fan has 5 equally spaced blades. what is the least number of degrees that can rotate the fan onto self?

Answers

If I understand your question correctly, then I believe your answer is 72 degrees, because 360 divided by 5 equals 72.
72 degree's
Hope this helps!

What is the volume of a paperback book 21 cm tall, 12 cm wide, and 3.5 cm thick?

Answers

A book can be considered a rectangular prism. In order to find the volume of a rectangular prism, the width must be multiplied by the height and length. As a result we multiply 21cm x 12cm x 3.5 cm to get a volume of 882cm^2.

The volume of a cuboid is given as length × width × height thus the volume of the paperback book will be 882 cm².

What is volume?

Volume is the scalar quantity of any object that specified occupied space in 3D.

Volume has units of cube example meter³,cm³, etc.

Given a paperback book shape as cuboid

Length(tall) = 21 cm

Width(wide) = 12cm

Height (thick) = 3.5 cm

The volume of the cuboid is given as

Volume = length × height × width.

Volume = 21 × 12 × 3.5

Volume = 882 cm²

Hence" The volume of a cuboid is given as length × width × height thus the volume of the paperback book will be 882 cm²".

To learn more about volume,

https://brainly.com/question/1578538

#SPJ2

HELP ME! *EMERGENCY*
A survey by the state health department found that the average person ate 208 pounds of vegetables last year and 125 5/8 pounds of fruit. What fraction of the total pounds of fruit and vegetables do the pounds of fruits represent?

Answers

hello
answer is 333 5\8
~hope i help~

Answer : The fraction of pounds of fruits over the total pounds of fruit and vegetables is, [tex]\frac{1005}{2669}[/tex]

Step-by-step explanation :

As we are given that:

Total amount of vegetables = 208 pounds

Total amount of fruits = [tex]125\frac{5}{8}\text{ pounds}=\frac{1005}{8}\text{ pounds}[/tex]

Thus, the total amount of fruits and vegetables will be:

[tex]208+125\frac{5}{8}\\\\=208+\frac{1005}{8}\\\\=\frac{1664+1005}{8}\\\\=\frac{2669}{8}[/tex]

Now we have to calculate the fraction of pounds of fruits over the total pounds of fruit and vegetables :

[tex]\frac{\text{Pounds of fruits }}{\text{ total pounds of fruits and vegetables}}\\\\=\frac{(\frac{1005}{8})}{(\frac{2669}{8})}\\\\=\frac{1005}{8}\times \frac{8}{2669}\\\\=\frac{1005}{2669}[/tex]

Thus, the fraction of pounds of fruits over the total pounds of fruit and vegetables is, [tex]\frac{1005}{2669}[/tex]

What is the coefficient of the x4-term in the binomial expansion of (x + 3)12?

Answers

The coefficient of the [tex]\(x^4\) term in \((x + 3)^{12}\)[/tex] is 495, calculated using binomial coefficients.

To find the coefficient of the [tex]\(x^4\)[/tex] term in the expansion of [tex]\((x + 3)^{12}\)[/tex], you can use the binomial theorem. According to the binomial theorem, the expansion of [tex]v[/tex] is given by:

[tex]\[(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k\][/tex]

Where [tex]\(\binom{n}{k}\)[/tex] is the binomial coefficient, equal to [tex]\(n\) choose \(k\)[/tex], which is defined as:

[tex]\[\binom{n}{k} = \frac{n!}{k!(n-k)!}\][/tex]

In this case, [tex]\(n = 12\) and \(y = 3\).[/tex] We're interested in the term where the exponent of [tex]\(x\) is 4, so \(n - k = 4\) or \(k = 12 - 4 = 8\).[/tex]Thus, we need to find the coefficient when [tex]\(k = 8\)[/tex]. So, the coefficient of the [tex]\(x^4\)[/tex] term is:

[tex]\[\binom{12}{8} = \frac{12!}{8!(12-8)!}\][/tex]

Calculating this:

[tex]\[\binom{12}{8} = \frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1} = \frac{11880}{24} = 495\][/tex]

So, the coefficient of the [tex]\(x^4\)[/tex] term in the expansion of [tex]\((x + 3)^{12}\)[/tex] is 495.

Allison drive 30 mph through the city and 55 mph on the New Jersey Turnpike she drove 90 miles from battery Park to the Jersey shore how much of the time was city driving if she needs about 1.2 hours on the turnpike

Answers

Attached a solution and showed work.

Kate has a serving account that contains $230. She decides to deposit $5 each month from her monthly earnings for baby-sitting after school. Write an expression to find how much money Mata will have in her savings account after x months. Let x represent the number of months. Then find out how much she will have in her account after 1 year.

Answers

y=5x+230

after 1 year she will have $290
Take 5 multiply it by 12 you should get 60. Take 60 and add it with 230. If you do it right you should get 290

The slope of a line is 1, and the y-intercept is -1. What is the equation of the line written in slope-intercept form?

y = x - 1
y = 1 - x
y = -x - 1

Answers

The slope-intercept form is:
y = mx + b
where m = slope, and b = y-intercept.
You need a slope of 1, so m = 1.
You need a y-intercept of -1, so b = -1.
Replace m with 1 and b with -1 in the slope intercept form to get

y = 1x + (-1)

which simplifies to

y = x - 1

A negative number is raised to an odd exponent. The result is _____. zero one positive negative

Answers

The answer is a negative number

A negative number is raised to an odd exponent. The result is always negative.

What is mean by Odd exponent?

An odd power of a number is a number of the form for the integer and a positive odd integer.

The first few odd powers are 1, 3, 5, 7, .........

Given that;

The expression is;

A negative number is raised to an odd exponent.

Now, To prove this statement that ''A negative number is raised to an odd exponent. The result is always negative.''

Let an example for an odd exponent as;

f (x) = (- 4)³

Here the power is 3 which is odd.

This gives;

f (x) = (- 4)³

f (x) = - 64

Which is negative function.

Hence, A negative number is raised to an odd exponent is always negative.

Therefore,

A negative number is raised to an odd exponent. The result is always negative.

Learn more about the odd exponent visit;

https://brainly.com/question/12007788

#SPJ2

Determine whether or not the vector field is conservative. if it is conservative, find a function f such that f = ∇f. (if the vector field is not conservative, enter dne.) f(x, y, z) = ye−xi + e−xj + 2zk

Answers

A three-dimensional vector field is conservative if it is also irrotational, i.e. its curl is [tex]\mathbf 0[/tex]. We have

[tex]\nabla\times\mathbf f(x,y,z)=-2e^{-x}\,\mathbf k[/tex]

so this vector field is not conservative.

- - -

Another way of determining the same result: We want to find a scalar function [tex]f(x,y,z)[/tex] such that its gradient is equal to the given vector field, [tex]\mathbf f(x,y,z)[/tex]:

[tex]\nabla f(x,y,z)=\mathbf f(x,y,z)[/tex]

For this to happen, we need to satisfy

[tex]\begin{cases}f_x=ye^{-x}\\f_y=e^{-x}\\f_z=2z\end{cases}[/tex]

From the first equation, integrating with respect to [tex]x[/tex] yields

[tex]f_x=ye^{-x}\implies f(x,y,z)=-ye^{-x}+g(y,z)[/tex]

Note that [tex]g[/tex] *must* be a function of [tex]y,z[/tex] only.

Now differentiate with respect to [tex]y[/tex] and we have

[tex]f_y=-e^{-x}+g_y=e^{-x}\implies g_y=2e^{-x}\implies g(y,z)=2ye^{-x}+\cdots[/tex]

but this contradicts the assumption that [tex]g(y,z)[/tex] is independent of [tex]x[/tex]. So, the scalar potential function does not exist, and therefore the vector field is not conservative.
Final answer:

To ascertain if a vector field is conservative or not, you need to calculate the curl of the field or integrate over the components of the vector field. If the curl is zero, it's conservative. If the curl isn't zero or an integral doesn't exist, the field is not conservative.

Explanation:

To determine if the vector field f(x, y, z) = ye−xi + e−xj + 2zk is conservative, we need to find if there exists a function f such that f is the gradient (denoted by ∇) of f. This can be done by checking if the cross product of the vector field is equal to zero, which signifies that the field is conservative.

First, we calculate the curl (∇ x F) of the vector field, which gives us the derivatives of the field components. If the curl is zero, then the vector field is conservative. If it is not zero, this indicates that the vector field is non-conservative.

Alternatively, we can integrate over the components of the vector field to try and find a potential function. If an integral exists, then we can say that the vector field is conservative.

However, if it fails these conditions, then the vector field is not conservative and the function f does not exist for it (dne). Thus, in the case where the vector field is not conservative, enter 'dne'.

Learn more about Vector Field Conservatism here:

https://brainly.com/question/33899579

#SPJ3

A school conference room can seat a maximum of 83 people. The principal and two counselors need to meet with the school’s student athletes to discuss eligibility requirements. If each student must bring a parent with them, what is the maximum number of students that can attend each meeting?

Answers

if you have only 83 seats, and 3 of which are being occupied by the principal and two counselors, (3 people that will always be at the meetings) you only have 80 seats for the students and the parents. If each student brings only 1 parent with them, divide 80 by 2 ( 2 is a pair of student and parent ) you will have 40 seats. You can only invite 40 Students

Answer:

The maximum number of students that can attend each meeting is:

40

Step-by-step explanation:

A school conference room can seat a maximum of 83 people.

The principal and two counselors need to meet with the school’s student athletes to discuss eligibility requirements.

Let there be x students,there will be x parents

that means x+x+3≤83

Subtracting both sides by 3,we get

2x≤80

dividing both sides by 2,we get

x≤40

Hence, the maximum number of students that can attend each meeting is:

40

You make a large bowl of salad to share with your friends. Your brother eats 1/3 of it before they come over. What fractional portion of the original bowl of salad does each friend receive?

Answers

How many friends are there?

Answer:

[tex]\frac{2}{3x}[/tex]

Where, x = total friends

Step-by-step explanation:

Given,

The part of the salad has eaten = [tex]\frac{1}{3}[/tex]

Total part of the salad = 1,

Thus, the remaining part of the salad = original part - part has eaten

[tex]=1-\frac{1}{3}[/tex]

[tex]=\frac{3-1}{3}[/tex]

[tex]=\frac{2}{3}[/tex]

If there are x friends,

Then the portion of the original bowl of salad received by each friend

[tex]=\frac{\text{Remaining part}}{\text{Total friends}}[/tex] [tex]=\frac{2}{3x}[/tex]

6-1. let x have a poisson distribution with a mean of 4. find (a) p(2≤x≤5). (b) p(x≥3). (c) p(x≤3).

Answers

The mean of a Poisson distribution coincides with its rate parameter, so [tex]\lambda=4[/tex]. We have a PMF of

[tex]f_X(x)=\dfrac{e^{-4}4^x}{x!}[/tex]

So,

a. [tex]\mathbb P(2\le X\le5)=\dfrac{e^{-4}4^2}{2!}+\cdots+\dfrac{e^{-4}4^5}{5!}\approx0.6936[/tex]

b. [tex]\mathbb P(X\ge3)=\dfrac{e^{-4}4^3}{3!}+\dfrac{e^{-4}4^4}{4!}+\cdots\approx0.7619[/tex]

c. [tex]\mathbb P(X\le3)=\dfrac{e^{-4}4^0}{0!}+\cdots+\dfrac{e^{-4}4^3}{3!}\approx0.4335[/tex]

WILL GIVE BRAINEST
categorize the graph as liner increase...

Answers

Its a linear decrease.
liner decreases is the answer

determine the quadratic function of f whose graph is given. The vertex is (1,-3) and the y-intercept is -2

Answers

hmmm the y-intercept is at -2?  what does that mean?  well, is where the graph "intercepts" or touches the y-axis, and when that happens, x = 0, so the point is really ( 0 , -2 ).

and we know where the vertex is at.  Let's assume a vertical parabola, in which case the squared variable is the "x".

[tex]\bf \qquad \textit{parabola vertex form}\\\\ \begin{array}{llll} \boxed{y=a(x-{{ h}})^2+{{ k}}}\\\\ x=a(y-{{ k}})^2+{{ h}} \end{array} \qquad\qquad vertex\ ({{ h}},{{ k}})\\\\ -------------------------------\\\\ vertex \begin{cases} h=1\\ k=-3 \end{cases}\implies y=a(x-1)^2-3 \\\\\\ \textit{now, we also know that } \begin{cases} x=0\\ y=-2 \end{cases}\implies -2=a(0-1)^2-3 \\\\\\ 1=a(-1)^2\implies \boxed{1=a}\qquad thus\implies \begin{cases} y=1(x-1)^2-3\\ \textit{or just}\\ y=(x-1)^2-3 \end{cases} [/tex]

Determine whether the given function is linear. if the function is linear, express the function in the form f(x)

Answers

what is the equation or graph we are supposed to look at

The given function [tex]\(f(x) = \frac{5}{5} \cdot x\)[/tex]  is indeed linear, and it can be expressed as f(x) = x in the standard linear form.

Let's break down the analysis of the given function[tex]\(f(x) = \frac{5}{5} \cdot x\)[/tex].

1. Initial Expression:

 [tex]\[ f(x) = \frac{5}{5} \cdot x \][/tex]

2. Simplify the Fraction:

 [tex]\[ \frac{5}{5} \][/tex] simplifies to 1, so the expression becomes:

[tex]\[ f(x) = 1 \cdot x \][/tex]

3. Multiplication by 1:

  Multiplying any value by 1 does not change the value, so the expression further simplifies to:

  f(x) = x

4. Linear Form:

  The function is now in the form f(x) = ax + b with a = 1 and b = 0:

[tex]\[ f(x) = 1 \cdot x + 0 \][/tex]

Therefore, the given function [tex]\(f(x) = \frac{5}{5} \cdot x\)[/tex]  is indeed linear, and it can be expressed as f(x) = x in the standard linear form.

Complete Question: Determine whether the given function is linear. if the function is linear, express the function in the form f(x) = ax + b. (if the function is not linear, enter not linear.)

f(x) = 5 / 5 x

Find the second degree Taylor polynomial for f(x)= sqrt(x^2+8) at the number x=1

Answers

Answer:

[tex]\displaystyle P_2(x) = 3 + \frac{1}{3}(x - 1) + \frac{4}{27}(x - 1)^2[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

BracketsParenthesisExponentsMultiplicationDivisionAdditionSubtractionLeft to Right

Algebra I

Functions

Function Notation

Calculus

Differentiation

DerivativesDerivative Notation

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

f(x) = cxⁿf’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Taylor Polynomials

Approximating Transcendental and Elementary Functions[tex]\displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^n(c)}{n!}(x - c)^n[/tex]

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

Step 1: Define

Identify

f(x) = √(x² + 8)

Center: x = 1

n = 2

Step 2: Differentiate

[Function] 1st Derivative:                                                                               [tex]\displaystyle f'(x) = \frac{x}{\sqrt{x^2 + 8}}[/tex][Function] 2nd Derivative:                                                                             [tex]\displaystyle f''(x) = \frac{8}{(x^2 + 8)^\bigg{\frac{3}{2}}}[/tex]

Step 3: Evaluate

Substitute in center x [Function]:                                                                 [tex]\displaystyle f(1) = \sqrt{1^2 + 8}[/tex]Simplify:                                                                                                         [tex]\displaystyle f(1) = 3[/tex]Substitute in center x [1st Derivative]:                                                         [tex]\displaystyle f'(1) = \frac{1}{\sqrt{1^2 + 8}}[/tex]Simplify:                                                                                                         [tex]\displaystyle f'(1) = \frac{1}{3}[/tex]Substitute in center x [2nd Derivative]:                                                       [tex]\displaystyle f''(1) = \frac{8}{(1^2 + 8)^\bigg{\frac{3}{2}}}[/tex]Simplify:                                                                                                         [tex]\displaystyle f''(1) = \frac{8}{27}[/tex]

Step 4: Write Taylor Polynomial

Substitute in derivative function values [Taylor Polynomial]:                     [tex]\displaystyle P_2(x) = \frac{3}{0!} + \frac{\frac{1}{3}}{1!}(x - c) + \frac{\frac{8}{27}}{2!}(x - c)^2[/tex]Simplify:                                                                                                         [tex]\displaystyle P_2(x) = 3 + \frac{1}{3}(x - c) + \frac{4}{27}(x - c)^2[/tex]Substitute in center c:                                                                                   [tex]\displaystyle P_2(x) = 3 + \frac{1}{3}(x - 1) + \frac{4}{27}(x - 1)^2[/tex]

Topic: AP Calculus BC (Calculus I + II)  

Unit: Taylor Polynomials and Approximations  

Book: College Calculus 10e

The second degree Taylor polynomial for the function [tex]f(x) = sqrt(x^2+8)[/tex] at x=1 is [tex]T(x) = 3 + (x-1) - 1/32(x-1)^2[/tex].

To find the second degree Taylor polynomial for [tex]f(x) = sqrt(x^2+8)[/tex] at the number x=1, we begin by calculating the necessary derivatives and evaluating them at x=1. The Taylor polynomial of degree n at x=a is given by:

[tex]T(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f^{(n)}(a)}{n!}(x-a)^n[/tex].

In this case, we need to find the first and second derivatives:

[tex]f'(x) = \frac{1}{2}(x^2+8)^{-1/2} · 2x[/tex]

[tex]f''(x) = \frac{1}{2} · (-1/2)(x^2+8)^{-3/2} · 2x^2 + \frac{1}{2}(x^2+8)^{-1/2}[/tex]

Then we evaluate f(x), f'(x), and f''(x) at x=1:

[tex]f(1) = sqrt(1^2+8) = sqrt9 = 3[/tex]

[tex]f'(1) = \frac{1}{2}(1^2+8)^{-1/2} · 2 · 1 = 1[/tex]

[tex]f''(1) = \frac{1}{2} · (-1/2)(1^2+8)^{-3/2} · 2 · 1^2 + \frac{1}{2}(1^2+8)^{-1/2} = -\frac{1}{16}[/tex]

Thus, the second degree Taylor polynomial at x=1 is:

[tex]T(x) = 3 + (x-1) - \frac{1}{32}(x-1)^2[/tex].

For what values of a and b is the line 2x + y = b tangent to the parabola y = ax2 when x = 2?

Answers

Didn't you mean    y = ax^2?  "^" denotes "exponentiation."

The first derivative of y = ax^2 represents the slope of the tangent line to the curve of y = ax^2.  Here, dy/dx = 2ax.  When x = 2, dy/dx = 2a(2) = 4a.

The point of tangency is (2,y), where y = a(2)^2, or y=4a; thus, the point of tangency is (2,4a).  The equation of the tangent line to y=ax^2 at (2,4a) is found by (1) differentiating y=ax^2 with respect to x, (2) letting x = 2 in the result:        dy/dx = 2ax    =>    dy/dx (at 2,4a) = 2a(2) = 4a

The line 2x + y = b is supposed to be tangent to y = ax^2 at (2,4a).

The slope of 2x + y = b is found by solving 2x + y = b for y:

                             y = b - 2x        => slope m = -2

Thus, dy/dx = 4a = - 2, and thus a = -2/4, or a = -1/2.  All we have to do now is to find the value of b.   We know that 2x + y = b, so if x=-2 and y=-8, 

2(-2) + [-8] = b = -4 - 8 = -12

Thus, the equation of the parabola is   y = ax^2 = (-1/2)x^2.

a = -2 and b = -8 are the required a and b values.


The equation of the parabola is y = ax² = (-1/2)x² where a = -2 and b = -8 are the required values of a and b.

What is the slope of the tangent line?

The first derivative of y = ax² that represents the slope of the tangent line to the curve of y = ax² .  

Here, dy/dx = 2ax.  

When x = 2,

dy/dx = 2a(2) = 4a.

The point of tangency is (2,y), where y = a(2)², or y=4a;

thus, the point of tangency is; (2, 4a).  

The equation of the tangent line to y=ax² at (2,4a)

Now differentiating y=ax² with respect to x,

   dy/dx = 2ax  

dy/dx (at 2,4a) = 2a(2) = 4a

The line 2x + y = b is tangent to y = ax² at (2,4a).

The slope of 2x + y = b can be found by solving 2x + y = b for y:

y = b - 2x        

Slope m = -2

Thus, dy/dx = 4a = - 2, and thus a = -2/4, or a = -1/2.  All we have to do now is to find the value of b.  

We know that 2x + y = b, then if x=-2 and y=-8,

2(-2) + [-8] = b = -4 - 8 = -12

Thus, the equation of the parabola is y = ax² = (-1/2)x² where a = -2 and b = -8 are the required values of a and b.

Learn more about slope here:

https://brainly.com/question/2503591

#SPJ5

A given line has the equation 10x + 2y = −2.

What is the equation, in slope-intercept form, of the line that is parallel to the given line and passes through the point (0, 12)?

Answers

10x + 2y = -2

2y = -10x -2

y = -5x - 1 (slope is -5 and a parallel line will have the same slope)


y = mx + b

slope(m) = -5

12 = -5(0) + b

12 = 0 + b

12 = b

so the parallel line is y = -5x + 12

hope this helps, God bless!

MARIA WALKED 4.035 KILOMETERES. WHAT IS 4.035 WRITTEN IN AS EXPANDED FORM ?

Answers

Here's my interpretation:  4 whole km, plus zero tenths of a km, plus 3 hundredths of a km, plus 5 thousandths of a km.

Answer:

[tex](4 \times 1)+(3 \times \frac{1}{100})+(5 \times \frac{1}{1000})[/tex]

Step-by-step explanation:

Given : MARIA WALKED 4.035 KILOMETERS.

To Find :WHAT IS 4.035 WRITTEN IN AS EXPANDED FORM ?

Solution :

Number = 4.035

The numbers after decimals when read from first to last has positions tenth , hundredth , thousandth and so ...

The number before the decimal part has positions ones , tens , hundreds and so on when read from last to first

Now 4 is at ones place

0 is at tenth place

3 is at hundredth place

5 is at thousandth place

So, Expanded form : [tex](4 \times 1)+(3 \times \frac{1}{100})+(5 \times \frac{1}{1000})[/tex]

The Perez family has a rectangular fish tank how much water will the tank hold if it's length is 3 feet, its width is 2 feet and its height is 3 feet


A) NONE
B) 18 cubic feet
C) 3 cubic feet
D) 6 cubic feet
E) 9 cubic feet

Answers

V = 3 x 2 x 3 = 18
answer
B) 18 cubic feet 
Other Questions
In the united states, what is the country's ultimate legal authority, the supreme law of the land? What product of the krebs cycle is considered a waste product of the reaction? A speaker can prove her A speaker can prove her claim by using facts and examples thesis statements emotional delivery persuasion Based on the crone in the wife of bath's tale which of these best describes chauncers perspective on women?A:They have far less awareness of the world than menB:they are far more manipulative than menC:They are unable to administer authority wellD:they are unable to live under the control of men Which boolan search would return the most useful results Match the name of each colony with its type of government in 1752.Maryland Virginia Massachusetts Rhode Island DelawareNew Hampshire Connecticut Georgia New YorkSouth Carolina Pennsylvania North Carolina New Jersey 1. Proprietary 2. Royal 3. Charter In emerging cultures, marketers look for _____ as one of the signs of opportunities to do business. Why is the influx of nitrogen not healthy for an aquatic ecosystem? Beliefs to the left of center emphasize the need for what are 3 solutions to -4x+3y=-6 A paragraph with the words intrude pursuit subdue presume and conclude HELP ASSSAP WITH THIS QUESTION How much is 5lbs to kg? Read the sentence. Carl had eaten the last piece of cake. What is the verb tense and aspect? simple past past perfect past progressive present progressive james bought a cheeseburger, fries, and a drink for dinner. the cheeseburger was three times the price of the fries and the drink and the fries were the same price. if the entire meal was 12.50, what was the price of each item write a paragraph about your business, how you plan to compete with the other frozen-yogurt shop, and why your action plan will work. The __________ is a prime mover of the glenohumeral joint during flexion. the __________ is a prime mover of the glenohumeral joint during flexion. biceps brachii coracobrachialis deltoid teres major A coin completes 18 spins in 12 seconds. The centripetal acceleration of the edge of the coin is 2.2 m/s2. The radius of the coin is m. Solve the equation by completing the square. Round to the nearest hundredth if necessary. x^2 +9x - 14 =0 Mark draws one card from a standard deck of 52. he receives $ 0.45 for a club, $ 0.55 for an ace and $ 0.75 for the ace of clubs. how much should he pay for one draw? Steam Workshop Downloader