The regular admission price...

The Regular Admission Price...

Answers

Answer 1

Answer:

Total Cost = 14.50

Step-by-step explanation:

We have to assume that the third child pays a regular fee to get in.

2 adults = 2 * $4.50 =      $9.00

2 children = 2*$2.75/2=   $2.75

1 more child=1*$2.75   =   $2.75

Total                                   $14.50              

The 2 children 1/2 price is rather tricky. You could firgure out what 1/2 price is and then just double it, but that is rather long. And it will come to what I have. So let's try it

1/2 of 2.75 = 1.375

2 * 1.375 = 2.75

It is just as easy to show it rather than doing it.


Related Questions

In physics, if a moving object has a starting position at so, an initial velocity of vo, and a constant acceleration a, the
the position S at any time t>O is given by:
S = 1/2 at ^2 + vot+so
Solve for the acceleration, a, in terms of the other variables. For this assessment item, you can use^to show exponent
and type your answer in the answer box, or you may choose to write your answer on paper and upload it.

Answers

Answer:

[tex]a=\frac{2S -2v_ot-2s_o}{t^2}[/tex]

Step-by-step explanation:

We have the equation of the position of the object

[tex]S = \frac{1}{2}at ^2 + v_ot+s_o[/tex]

We need to solve the equation for the variable a

[tex]S = \frac{1}{2}at ^2 + v_ot+s_o[/tex]

Subtract [tex]s_0[/tex] and [tex]v_0t[/tex] on both sides of the equality

[tex]S -v_ot-s_o = \frac{1}{2}at ^2 + v_ot+s_o - v_ot- s_o[/tex]

[tex]S -v_ot-s_o = \frac{1}{2}at ^2[/tex]

multiply by 2 on both sides of equality

[tex]2S -2v_ot-2s_o = 2*\frac{1}{2}at ^2[/tex]

[tex]2S -2v_ot-2s_o =at ^2[/tex]

Divide between [tex]t ^ 2[/tex] on both sides of the equation

[tex]\frac{2S -2v_ot-2s_o}{t^2} =a\frac{t^2}{t^2}[/tex]

Finally

[tex]a=\frac{2S -2v_ot-2s_o}{t^2}[/tex]

Indicate in standard form the equation of the line through K(6,4) L(-6,4)

Answers

[tex]\bf (\stackrel{x_1}{6}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{-6}~,~\stackrel{y_2}{4}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{4-4}{-6-6}\implies \cfrac{0}{-12}\implies 0 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-4=0(x-6)\implies y-4=0\implies y=4[/tex]

Answer: [tex]y-4=0[/tex]

Step-by-step explanation:

The equation of line passing through two points (a,b) and (c,d) is given by :-

[tex](y-b)=\dfrac{d-b}{c-a}(x-a)[/tex]

The standard form of equation of a line is given by :-

[tex]Ax+By+C=0[/tex], where A , B , and C are integers.

Then , the equation of line passing through two points  K(6,4) and L(-6,4) is given by :-

[tex](y-4)=\dfrac{4-4}{-6-6}(x-6)\\\\\Rightarrow\ y-4=(0)(x-6)\\\\\Rightarrow\ y-4=0[/tex]

Write an exponential function whose graph contains the points (1, 6) and (0, 2).

Answers

Answer:

y = 2 [tex](3)^{x}[/tex]

Step-by-step explanation:

The exponential function is of the form

y = a [tex](b)^{x}[/tex]

To find a and b substitute the given points into the equation

Using (0, 2), then

2 = a [tex](b)^{0}[/tex] ⇒ a = 2

Using (1, 6), then

6 = 2 [tex](b)^{1}[/tex] ⇒ b = 3

Equation is y = 2 [tex](3)^{x}[/tex]

Which ordered pair is a solution of the equation?
y + 5 = 2(2+1)
Choose 1 answer
®
Only (5,10
®
Only (-1,-5)
©
Both (5, 10) and (-1,-5)
0
Neither

Answers

Answer:

neither

Step-by-step explanation:

y would 1 but there is no x

Answer:(-1,-5)

Step-by-step explanation:

Because that's how math works. Its also what Khan Academy says soooo...

Dimple gets paid $3,100 per month.she pays $930 a month for rent.what percent of her monthly pay goes to rent

Answers

Answer:

Its 30%

Step-by-step explanation:

I used guess and check.

(25%)

3100*.25 = 775

(30%)

3100*.3 = 930

Answer:

30%.

Step-by-step explanation:

It is the fraction 930/3100 multiplied by 100.

Percentage that is rent = (930 * 100 ) / 3100

=  30%.

What is the parabolas line of symmetry

Answers

Final answer:

The line of symmetry of a parabola is a vertical line that passes through its vertex, dividing the parabola into two equal halves. This line of symmetry can be determined mathematically for a parabolic equation by the formula x = -b/(2a). Symmetry plays an important role in the behavior of optical devices such as spherical and parabolic mirrors.

Explanation:

The line of symmetry of a parabola is a vertical line that passes through its vertex, and it divides the parabola into two mirror-image halves. This line is also known as the axis of symmetry. For a parabola described by the equation y = ax² + bx + c, the axis of symmetry can be found using the formula x = -b/(2a), where a, b, and c are coefficients in the quadratic equation, representing the parabola's concavity, slope at the vertex, and the y-intercept, respectively.

In the context of optical devices like mirrors and lenses, the concept of symmetry is crucial. For instance, a spherical mirror reflects rays in a way that demonstrates symmetry with respect to its optical axis. When a parabolic mirror is used, all parallel rays of light are reflected through its focal point, illustrating how symmetry is a fundamental principle in both nature and physics.

Just like in nature, where symmetrical patterns can be seen in butterfly wings and other complex systems, symmetry in mathematical terms is significant and pervasive, revealing fundamental properties of the objects and phenomena in question.

Two lines intersect at a:
• A. ray
• B. line
• C. point
• D. plane

Answers

C, a Point. The other ones wouldn't be the best or right option
Point (c) ; a Ray is a point with a line stemming from the point. A line is just infinitely two ways (arrows at both ends) & these exist on a plane. Hope my explanation wasn’t too horrible lol.

Simplify 5 square root of 7 end root plus 12 square root of 6 end root minus 10 square root of 7 end root minus 5 square root of 6 . (1 point) 5 square root of 14 end root minus 7 square root of 12 5 square root of 7 end root minus 7 square root of 6 7 square root of 12 end root minus 5 square root of 14 7 square root of 6 end root minus 5 square root of 7

Answers

Answer:

So, the simplified version is

[tex]-5\sqrt{7}+7\sqrt{6}[/tex]

In words it can be written as minus 5 square root of 7 end root plus 7 square root of 6 end root

Step-by-step explanation:

[tex]5\sqrt{7}+12\sqrt{6}-10\sqrt{7}-5\sqrt{6}[/tex]

We need to simplify the above expression.

Combining the like terms of the above expression.

Like terms are those that have same variables.

[tex]=(5\sqrt{7}-10\sqrt{7})+(12\sqrt{6}-5\sqrt{6})[/tex]

[tex]=((5-10)(\sqrt{7})+((12-5)(\sqrt{6}))[/tex]

[tex]=((-5)(\sqrt{7})+((7)(\sqrt{6}))[/tex]

So, the simplified version is

[tex]-5\sqrt{7}+7\sqrt{6}[/tex]

In words it can be written as minus 5 square root of 7 end root plus 7 square root of 6

which table represents vaiable solution for y=5x, where x is the number of tickets sold for the school play and y is the amount of money collected for the tickets?

Answers

Answer:

The answer is the first table: (0, 0), (10, 50), (51, 255), (400, 2000)

Step-by-step explanation:

Let's check all of the tables:

Table 1:

x = 0, y = 0               ⇒        0 = 5 · 0         ⇒          0 = 0  

x = 10, y = 50           ⇒      50 = 5 · 10        ⇒        50 = 50

x = 51, y = 255         ⇒    255 = 5 · 51        ⇒      255 = 255

x = 400, y = 2000    ⇒ 2000 = 5 · 400     ⇒   2000 = 2000

A new landowner is interested in constructing a fence around the perimeter of her property. Her property is 1,080√30
feet wide and 500√20 feet long. What is the perimeter of the property? (Recall that the perimeter is the sum of each
side of a shape or boundary).
A 1,580√40 feet
B. 5,320√5 feet
C. 3,160√20 feet D. 10,640√5 feet

Answers

Answer:

16302.9432 ft

Step-by-step explanation:

P = 2L + 2W

Where P is the perimeter, L is the length and W is the width

P = 2(1080√30) + 2(500√20) = 16302.9432 ft

Answer:

D

Step-by-step explanation:

took the test :)

6,13,20,27 based on the pattern what are the next two terms​

Answers

34, 41 the pattern is +7

The pattern is plus 7

6 + 7 = 13

13 + 7 = 20

20 + 7 = 27

This means to find the next term you must add 7 to 27

27 + 7 = 34

To find the term after 34 add seven to that as well

34 + 7 = 41

so...

6, 13, 20, 27, 34, 41

Hope this helped!

~Just a girl in love with Shawn Mendes

Subtract the second equation from the first 4x+3y=17-(4x+y=9)

Answers

Answer:

[tex]2y=8[/tex]

Step-by-step explanation:

The given equations are:

[tex]4x+3y=17[/tex]

and

[tex]4x+y=9[/tex]

We subtract the second equation from the first equation to get:

[tex]4x-4x+3y-y=17-9[/tex]

This simplifies to:

[tex]2y=8[/tex]

When we subtract the second equation from the first one, we get:

[tex]2y=8[/tex]

what are the roots of the equation
[tex] {x}^{2} - 16x + 89 = 0[/tex]
in simplest a+bi form?

Answers

By completing the square,

[tex]x^2-16x+89=x^2-16x+64+25=(x-8)^2+25=0[/tex]

[tex](x-8)^2=-25[/tex]

[tex]x-8=\pm\sqrt{-25}[/tex]

[tex]x=8\pm5i[/tex]

A family has two cars. The first car has a fuel efficiency of
25

miles per gallon of gas and the second has a fuel efficiency of
15

miles per gallon of gas. During one particular week, the two cars went a combined total of
1025

miles, for a total gas consumption of
55

gallons. How many gallons were consumed by each of the two cars that week?

Answers

Answer:

15x+25y=975

x+y=55

Rearrange equation two so x is by itself.

x=-y+55

Plug the rearranged equation two into equation one.

15(-y+55)+25y=975

Evaluate the 'new' equation 1.

-15y+825+25y=975

10y+825=975

10y=150

y=15

Choose an equation to evaluate with y to get x. (i chose equation 2 because it was easier)

x+15=55

Evaluate the equation

x=55-15

x=40

So now we have x=40 and y=15

Evaluate those two terms with both equations to check the correctness.

15(40)+25(15)=975

600+375=975

975=975 (correct)

40+15=55

55=55 (correct)

Both equations are correct so the values of x and y are true.

Please mark as brainliest. :)

PLEASE HELP! TRIG! Find the area of the triangles

Answers

Answer:

47.91 units²

Step-by-step explanation:

This can be solved using Heron's triangle (see attached)

in this case, your lengths are

a = 3+9=12

b=3+5=8

c=5+9=14

Hence,.

S = (1/2) x (a + b + c) = (1/2) (12+8+14) = 17

(s - a) = 17 -12 = 5

(s - b) = 9

(s - c) = 3

Area = √ [  s (s-a) (s-b) (s-c) ]

= √ [  17 x 5 x 9 x 3 ] = √2295 = 47.9061 = 47.91 units² (rounded to nearest hundreth)

Which are factors of x2 – 4x – 5? Check all that apply.
1.) (x – 5)
2.) (x – 4)
3.) (x – 2)
4.) (x + 1)
5.) (x + 5)

Answers

Ask: Which two numbers add up to -4 and multiply to -5?

-5 and 1

Rewrite the expression using the above

= (x - 5) and (x + 1)

Which of the following is true about the function below? 1/sqrt x+10

Answers

Answer:

what are the questions about it? cant answer if there are no questions

Step-by-step explanation:

Answer:

its domain isn (-10,∞) and its range is (0,∞)

Step-by-step explanation:

if this is the a.pex question regarding what is true about the function below, here you go

Someone plz help me

Answers

Answer:

The answer is the third option- (24n,when n=4.8 the value is 5)

I would recommended reading over the lesson again and maybe watching some videos to help you to grasp the material.

hope this helps!

Find the volume of a cone that has a radius of 9 and a height of 13.

Answers

Answer:

[tex]351 \pi[/tex] (about 1102.69902)

Step-by-step explanation:

The volume of a cone is represented by the formula [tex]V=\pi r^2 \frac{h}{3}[/tex], where [tex]V[/tex] is the volume, [tex]r[/tex] is the radius, and [tex]h[/tex] is the height.

Substitute in the values. [tex]V=\pi * 9^2 * \frac{13}{3}[/tex]Simplify the exponent. [tex]V=\pi * 81 * \frac{13}{3}[/tex]Multiply. [tex]V=351 \pi[/tex]

This is as simple as the solution can get without estimating, but we can estimate with a calculator.  [tex]351 \pi[/tex] is approximately equal to 1102.69902.

Answer is provided in the image attached.

A chemical company makes two brands of antifreeze. The first brand is 65% pure antifreeze, and the second brand is 90% pure antifreeze. In order to obtain 40 gallons of a mixture that contains 80% pure antifreeze, how many gallons of each brand of antifreeze must be used?

Answers

[tex]\bf \begin{array}{lcccl} &\stackrel{solution}{gallons}&\stackrel{\textit{\% of }}{antifreeze}&\stackrel{\textit{gallons of }}{antifreeze}\\ \cline{2-4}&\\ \textit{1st brand}&x&0.65&0.65x\\ \textit{2nd brand}&y&0.90&0.9y\\ \cline{2-4}&\\ mixture&40&0.8&32 \end{array}~\hfill \to \begin{cases} x+y&=40\\ \boxed{x}=40-y\\ \cline{1-2} 0.65x+0.9y&=32 \end{cases} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\bf \stackrel{\textit{substituting in the 2nd equation}}{0.65\left( \boxed{40-y} \right)+0.9y=32}\implies 26-0.65y+0.9y=32 \\\\\\ 26+0.25y=32\implies 0.25y=6\implies y=\cfrac{6}{0.25}\implies \blacktriangleright y=24 \blacktriangleleft \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{since we know that}}{x=40-y\implies }x=40-24\implies \blacktriangleright x=16 \blacktriangleleft[/tex]

Answer:

it should be used 16 gallons of 65% pue antifreeze and 24 gallons of 80% antifreeze.

Step-by-step explanation:

Let 'x' = amount of 65% antifreeze.

Let 'y' = amount of 90% antifreeze.

We need to obtain 40 gallons of mixture, then:

x + y = 40 gallons [1]

Also we know that the mixture should contain 80% pure antifreeze, then:

0.65x + 0.9y = 0.80(x+y) →  0.15x = 0.1y → y = 1.5x  [2]

Now, subtituting the value of 'y' into [1]:

x + y = 40 gallons → x + 1.5x = 40 gallons → 2.5x = 40 gallons

⇒ x = 16 gallons.

Then: y = 40 - 16 = 24 gallons.

Now, it should be used 16 gallons of 65% pue antifreeze and 24 gallons of 80% antifreeze.

The equation 3x2 = 6x – 9 has two real solutions
True
O False

Answers

Answer:

False

Step-by-step explanation:

We first write the equation in the form ax² + bx + c=0 which gives us:

3x² - 6x + 9=0

Given the quadratic formula,

x= [-b ±√(b²- 4ac)]/2a ,the discriminant proves whether the equation has real roots or not.

The discriminant, which is the value under the root sign, may either be positive, negative or zero.

Positive discriminant- the equation has two real roots

Negative discriminant- the equation has no real roots

Zero discriminant - The equation has two repeated roots.

In the provided equation, b²-4ac results into:

(-6)²- (4×3×9)

=36-108

= -72

The result is negative therefore the equation has no real solutions.

Answer: FALSE

Step-by-step explanation:

Rewrite the given equation in the form [tex]ax^2+bx+c=0[/tex], then:

[tex]3x^2 = 6x - 9\\3x^2-6x +9=0[/tex]

Now, we need to calculate the Discriminant with this formula:

[tex]D=b^2-4ac[/tex]

We can identify that:

[tex]a=3\\b=-6\\c=9[/tex]

Then, we only need to substitute these values into the formula:

 [tex]D=(-6)^2-4(3)(9)[/tex]

 [tex]D=-72[/tex]

Since [tex]D<0[/tex] the equation has no real solutions.

find the volume (in terms of pi) of a sphere if it’s surface area of 400pi ft squared

Answers

[tex]\bf \textit{surface area of a sphere}\\\\ SA=4\pi r^2~~ \begin{cases} r=radius\\ \cline{1-1} SA=400\pi \end{cases}\implies 400\pi =4\pi r^2 \implies \cfrac{\stackrel{100}{~~\begin{matrix} 400\pi \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~} }{~~\begin{matrix} 4\pi \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}=r^2 \\\\\\ 100=r^2\implies \sqrt{100}=r\implies 10=r \\\\[-0.35em] ~\dotfill[/tex]

[tex]\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}\qquad \implies V=\cfrac{4\pi (10)^3}{3}\implies V=\cfrac{4000\pi }{3}\implies V\approx 4188.79[/tex]

Factor completely.

-2k - k 3 - 3k 2

a.) k(-k + 1)(k - 2)
b.) -k(k - 1)(k - 2)
c.) -k(k + 1)(k + 2)

Answers

Answer:

-k (k+1) (k+2)

Step-by-step explanation:

-2k - k³ - 3k² (factor-k out)

-k (2 + k² + 3k) (rearrange to standard quadratic form)

-k (k² + 3k + 2) (factor expression inside parentheses using your favorite method)

-k (k+1) (k+2)

Answer:

Option c.

Step-by-step explanation:

The given expression is

[tex]-2k-k^3-3k^2[/tex]

We need to find the factor form of the given expression.

Taking out HCF.

[tex]-k(2+k^2+3k)[/tex]

Arrange the terms according to there degree.

[tex]-k(k^2+3k+2)[/tex]

Splitting the middle terms we get

[tex]-k(k^2+2k+k+2)[/tex]

[tex]-k((k^2+2k)+(k+2))[/tex]

[tex]-k(k(k+2)+(k+2))[/tex]

[tex]-k(k+1)(k+2)[/tex]

The factor form of given expression is -k(k+1)(k+2). Therefore, the correct option is c.

What is the true solution to In 20+ In 5 = 2 In x?
X5
x= 10
X = 50
X=100

Answers

Answer:

for this question the correct answer is x= 10

Step-by-step explanation:

The true value of the equation In 20+ In 5 = 2 In x is x=10.

What is logaritmic function?

It is a function which is denoted through log or ln.

How to solve logarithmic function?

We have been given a log equation

log20+log5=2logx              (log m +log n =log(mn))

log(20*5)=2logx

log(100)=2logx

log[tex](10)^{2}[/tex]=2logx                (log[tex]m^{n}[/tex]=nlogm)

2 log 10=2 log x

x=10

Hence the required answer is x=10

Learn more about logarithmic functions at https://brainly.com/question/13473114

#SPJ2

Quadrilateral ABCD has vertices A(-3, 4), B(1, 3), C(3, 6), and D(1, 6). Match each set of vertices of quadrilateral EFGH with the transformation that shows it is congruent to ABCD.
E(-3, -4), F(1, -3), G(3, -6), and H(1, -6)
a translation 7 units right
E(-3, -1), F(1, -2), G(3, 1), and H(1, 1)
a reflection across the y-axis
E(3, 4), F(-1, 3), G(-3, 6), and H(-1, 6)
a reflection across the x-axis
E(4, 4), F(8, 3), G(10, 6), and H(8, 6)
a translation 5 units down

arrowBoth

arrowBoth

arrowBoth

arrowBoth
Reset Next
Previous3 Next Transformations and Congruence: Mastery Test Submit Test Tools Info
© 2019 Edmentum. All rights reserved.

Answers

E(-3, -4), F(1, -3), G(3, -6), and H(1, -6); a reflection across the x-axis

E(-3, -1), F(1, -2), G(3, 1), and H(1, 1); a translation 5 units down

E(3, 4), F(-1, 3), G(-3, 6), and H(-1, 6); a reflection across the y-axis

E(4, 4), F(8, 3), G(10, 6), and H(8, 6);a translation 7 units right

What is transformation?

Transformation is the movement of a point from its initial location to a new location. Types of transformation are rotation, translation, reflection and dilation.

Quadrilateral ABCD has vertices A(-3, 4), B(1, 3), C(3, 6), and D(1, 6). Hence:

E(-3, -4), F(1, -3), G(3, -6), and H(1, -6); a reflection across the x-axis

E(-3, -1), F(1, -2), G(3, 1), and H(1, 1); a translation 5 units down

E(3, 4), F(-1, 3), G(-3, 6), and H(-1, 6); a reflection across the y-axis

E(4, 4), F(8, 3), G(10, 6), and H(8, 6);a translation 7 units right

Find out more on transformation at: https://brainly.com/question/4289712


(06.03)
How can one half x − 5 = one third x + 6 be set up as a system of equations? (6 points)

Answers

Answer:

yes it can

Step-by-step explanation:

1/2x-5=1/3x+6

Answer: third option.

Step-by-step explanation:

[tex]\frac{1}{2}x-5=\frac{1}{3}x+6[/tex] can be rewritten into two separate equationts:

[tex]\left \{ {{ y=\frac{1}{2}x-5} \atop {y=\frac{1}{3}x+6}} \right.\\\\[/tex]

You can observe that this linear equations are written in Slope-Intercept form:

[tex]y=mx+b[/tex]

  But the equations shown in options provided are written in Standard form:

[tex]Ax+By=C[/tex]

Therefore, you need to move the x term to the left side of the equation (In each equation):

- For the first equation:

[tex]y-\frac{1}{2}x=-5[/tex]

Simplifying:

[tex]\frac{2y-x}{2}=-5\\\\2y-x=-10[/tex]

 - For the second equation:

[tex]y-\frac{1}{3}x=6[/tex]

Simplifying:

[tex]\frac{3y-x}{3}=6\\\\3y-x=18[/tex]

Then the system of equations is:

[tex]\left \{ {{2y-x=-10} \atop {3y-x=18}} \right.[/tex]

What transformation were applied to ABCD to obtain A’B’C’D?

Answers

Answer:

Rotation 90 degree counterclockwise then 2 units up.

Step-by-step explanation:

Given : Quadrilateral ABCD and A'B'C'D'.

To find: What transformation were applied to ABCD to obtain A’B’C’D.

Solution: We have given

A (3,6) →→ A'(-6,5)

B( 3,9)→→ B'(-9 ,5)

C(7,9)→→C'(-9 ,9)

D(7,6)→→D'(-6,9)

By the 90 degree rotational rule :   (x ,y) →→(-y ,x) and unit 2 unit up

A (3,6) →→ A'(-6,3) →→ A'(-6,3+2)

B( 3,9)→→ B'(-9 ,3)→→ B'(-9 ,3+2)

C(7,9)→→C'(-9 ,7) →→C'(-9 ,7+2)

D(7,6)→→D'(-6,7)→→D'(-6,7+2)

Therefore, Rotation 90 degree counterclockwise then 2 units up.

The transformation applied is Rotation 90 degree counterclockwise then 2 units up.

What are coordinates?

A coordinate system in geometry is a system that employs one or more integers, or coordinates, to define the position of points or other geometric components on a manifold such as Euclidean space.

The transformation which was applied to ABCD to obtain A’B’C’D be found by finding the change in the coordinates of the quadrilateral. Therefore,

A (3,6)  ⇒  A'(-6,5)B( 3,9)  ⇒  B'(-9 ,5)C(7,9)  ⇒  C'(-9 ,9)D(7,6)  ⇒  D'(-6,9)

As it is observed that the change in the coordinate is 90 degrees counterclockwise then 2 units up. Therefore, the transform of the coordinates can be done as (x ,y)⇒(-y ,x)⇒(-y, x+2).

A (3,6) ⇒ A'(-6,3+2)B( 3,9) ⇒ B'(-9 ,3+2)C(7,9) ⇒ C'(-9 ,7+2)D(7,6) ⇒ D'(-6,7+2)

Since the condition holds true, it can be concluded that the transformation applied is Rotation 90 degree counterclockwise then 2 units up.

Learn more about Coordinates:

https://brainly.com/question/23450276

#SPJ5

which parent function is an example of a piecewise function?

Answers:

Linear parent function

Quadratic parent function

An Exponential parent function

Absolute value parent function

pls helppp I’m sorry if this doesn’t make sense

Answers

The correct option is Absolute value parent function. The absolute value parent function is a piecewise function because it is defined by different expressions depending on whether the input is positive or negative. In contrast, linear, quadratic, and exponential functions are defined by a single expression over their entire domains and are not piecewise.

The absolute value parent function is an example of a piecewise function. A piecewise function is a function that is defined by multiple sub-functions, each applied to a certain interval of the domain.

On the contrary, linear, quadratic, and exponential parent functions have a single expression defining them throughout their domain.

Linear functions, such as y = ax + b, have a constant rate of change and are not piecewise. Quadratic functions, like y = ax^2 + bx + c, create parabolas and are also defined by a single expression over their entire domain. Exponential functions, such as y = b^x, grow by a consistent percentage rate and are continuous and not piecewise.

When you shift a function you are

Answers

Answer:

translating it

Step-by-step explanation:

Final answer:

Shifting a function, in mathematics and economics, refers to the process through which the entire graph or model of a function is moved either up, down, left or right. A phase shift, commonly noted by φ, is an example of this, seen when aligning a cosine or sine function with initial conditions of data. In economics, factors like income, household preferences and taxes cause shifts in the consumption function.

Explanation:

When you shift a function in mathematics, you are essentially moving the entire graph of the function either up, down, left, or right. This is done by altering the function equation. For instance, the position of a block on a spring, modeled by a periodic function like a cosine function, can be shifted to the right. This rightward shift is termed a phase shift, typically denoted by the Greek letter phi (φ). The equation for the position as a function of time for the block becomes x(t) = Acos(wt + φ), where φ reflects the phase shift.

A shift in a function can also occur under economic contexts. Factors besides income can trigger the entire consumption function to shift, either parallelly up or down or make the slope of the consumption function steeper or flatter.

Shifting of functions is a crucial concept, whether we're handling a cosine or sine function to align the function with data's initial conditions or in economical situations where changes in income, taxes, or household preferences could cause significant shifts in the consumption function.

Learn more about Shift in Functions here:

https://brainly.com/question/29028605

#SPJ3

Please help me !!!!!

Answers

Answer:

the answer is 12

Step-by-step explanation:

Answer:

Second option

[tex]x =9[/tex]

Step-by-step explanation:

To solve this problem we use the secant theorem.

If two secant lines intersect with a circumference, the product between the segment external to the circumference and the total segment in one of the secant lines is equal to the product of the corresponding segments in the other secant line.

This means that

[tex](5+4)*4 = (x+3)*3[/tex]

Now we solve the equation for the variable x

[tex](9)*4 = (x+3)*3[/tex]

[tex]36 = 3x + 9[/tex]

[tex]36-9 = 3x[/tex]

[tex]3x =27[/tex]

[tex]x =9[/tex]

Other Questions
Use the function below to find f(3).f(x) =1/3* 4* Solve the inequality. x 1 9 Which equation of a line passes through the points (3, 1) and (6, 1)?Y = 2/3x - 3Y = - 2/3x + 5Y = - 2/3x + 10Y = 3/2x - 8 Where are centrioles found Use the figure above to identify a pair of similar triangles, then find the scale factor. The image is not drawn to scale.A. HEF ~EGH with a scale factor of root 3.2.B. HEG-GEF with a scale factor of 2:1.C. HEF -EGF with a scale factor of root 3.1.D. HEF -GEF with a scale factor of 3.1. Which example best describes a reflex action?A. eating food when hungryB. coughing when the throat is irritatedC. bending down to lift a heavy objectD. going for a walk outside Which graph represents a nonlinear relationship? What type of sentence is this?? If I purchase this product for 79.99 and two accessories for 9.99 and 7.00 how much would I owe after the 8.75 tax is applied Write this trinomial in factored form. 3b^2+b-14 Help please! Find x What is the sum of the geometric sequence 1, 6, 36, if there are 6 terms? What are the domain and range of the function f(x)=-square root x+3-2? Which best expresses the explicit meaning of this excerpt from Jeffersons Virginia Statue for Religious Freedom? The Adbusters' image of the Gap logo on the silhouette of a head most likely relays the message that:A.The man in the ad needs a hat from the GapB.Consumers should be suspicious of Gap adsC.Gap clothes make you look intelligentD.everyone should have the Gap on their minds How much is the sales tax on $29.50 worth of goods if the tax rate is 7%?$0.21$0.42$2.07$4.21 11. 10ac 6ab (2bc) = ? A. 14a2b2c2 B. 2a + 2b + 2c + 14 C. 120a2b2c2 D. 2a + 2b +2c 120 The population of the United States has shifted A.South and West.B.South.C.from cities to rural areas.D.to states with fewer minorites a quadrilateral has 2 right angles. the measure of the third angle is 73, what is the measure of the forth angle? In a first -aid kit the ratio of large bandages is 3 to 2. Based on this ratio, how many large bandages are in the kit if there are a total of 80 bandages? Steam Workshop Downloader