The rate constant for this second‑order reaction is 0.380 M − 1 ⋅ s − 1 0.380 M−1⋅s−1 at 300 ∘ C. 300 ∘C. A ⟶ products A⟶products How long, in seconds, would it take for the concentration of A A to decrease from 0.860 M 0.860 M to 0.230 M?

Answers

Answer 1

Answer: 8.38 seconds

Explanation:

Integrated rate law for second order kinetics is given by:

[tex]\frac{1}{a}=kt+\frac{1}{a_0}[/tex]

[tex]a_0[/tex] = initial concentartion = 0.860 M

a= concentration left after time t = 0.230 M

k = rate constant =[tex]0.380M^{-1}s^{-1}[/tex]

[tex]\frac{1}{0.860}=0.380\times t+\frac{1}{0.230 }[/tex]

[tex]t=8.38s[/tex]

Thus it will take 8.38 seconds for the concentration of  A to decrease from 0.860 M to 0.230 M .

Answer 2

Final answer:

To find out how long it would take for the concentration of A to decrease from 0.860 M to 0.230 M in a second-order reaction, we can use the integrated rate law.

Explanation:

The reaction in question is second order and the rate constant is 0.380 M⁻¹⋅s⁻¹ at 300 ∘C. To find out how long it would take for the concentration of A to decrease from 0.860 M to 0.230 M, we can use the integrated rate law for a second-order reaction:

t = 1 / (k * [A])

Substituting the given values:

t = 1 / (0.380 M⁻¹⋅s⁻¹ * 0.860 M)

t ≈ 2.80 s


Related Questions

Assume the solubility of benzoic acid in ice-cold water is 1.70 g/L and the solubility of benzoic acid in hot water is 68.0 g/L. Calculate the minimum volume of water (in mL) needed to recrystallize 0.700 g of benzoic acid.

Answers

Answer:

The volume of water needed to recrystallize 0.700 g of benzoic acid is 10.29 mL.

Explanation:

For the complete recrystalization,

the amount of hot water should be such that, the benzoic acid is completely soluble in it.

As we are given that the solubility of benzoic acid in hot water is 68.0 g/L. Now we have to determine the volume of water is needed to recrystallize 0.700 g of benzoic acid.

we conclude that,

As, 68.0 grams of benzoic acid soluble in 1 L of water.

So, 0.700 grams of benzoic acid soluble in  of water.

The volume of water needed = 0.01029 L = 10.29 mL

conversion used : (1 L = 1000 mL)

Therefore, the volume of water needed to recrystallize 0.700 g of benzoic acid is 10.29 mL.

In preparation for a demonstration, your professor brings a 1.50−L bottle of sulfur dioxide into the lecture hall before class to allow the gas to reach room temperature. If the pressure gauge reads 173 psi and the lecture hall is 20°C, how many moles of sulfur dioxide are in the bottle? In order to solve this problem, you will first need to calculate the pressure of the gas. Hint: The gauge reads zero when 14.7 psi of gas remains.

Answers

Answer:

0.66 mol

Explanation:

Zero Gauge pressure = 14.7 psi

Pressure read = 173 psi

Actual pressure = 173 psi - 14.7 psi = 158.3 psi

P (psi) = 1/14.696  P(atm)

So, Pressure = 10.77 atm

Given that:

Temperature = 20 °C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T₁ = (20+ 273.15) K = 298.15 K

V = 1.50 L

Using ideal gas equation as:

[tex]PV=nRT[/tex]

where,  

P is the pressure

V is the volume

n is the number of moles

T is the temperature  

R is Gas constant having value = 0.0821 L atm/ K mol  

Applying the equation as:

10.77 atm × 1.50 L = n ×0.0821 L atm/ K mol  × 298.15 K

⇒n = 0.66 mol

The rate of SN2 reaction of the type Nu- RX -> R-Nu X- can be increased Select one: a. using a solvent of high polarity b. using tertiary substrate c. using weak nucleophile d. using higher concentration of the nucleophile

Answers

Answer:

using higher concentration of the nucleophile

Explanation:

In SN2 reaction, the attack of the nucleophile on the substrate occurs simultaneously as the leaving group departs. The entering group normally attacks through the back side of the molecule. The reaction is concerted and bimolecular. This implies that the concentration of the nucleophile is important in the rate equation for the reaction. Hence increasing the concentration of the nucleophile will increase the rate of SN2 reaction.

A student dissolves 14.g of benzoic acid C7H6O2 in 425.mL of a solvent with a density of 0.92 g/mL. The student notices that the volume of the solvent does not change when the benzoic acid dissolves in it.Calculate the molarity and molality of the student's solution. Round both of your answers to 2 significant digits.

Answers

Final answer:

The molarity and molality of a solution of 14. g of benzoic acid dissolved in 425.mL of a solvent with a density of 0.92 g/mL are 0.26 M and 0.28 m respectively.

Explanation:

To calculate the molarity and molality of the solution, we'll first need to know how many moles of benzoic acid (C7H6O2) are present. Simply converting grams to moles using the molar mass of benzoic acid (122.12 g/mol), we get 14.g ÷ 122.12 g/mol = 0.11 mol.

Molarity is defined as moles of solute divided by liters of solution. Therefore, the molarity of the solution would be 0.11 mol ÷ 0.425 L = 0.26 M.

On the other hand, molality is calculated as moles of solute divided by kilograms of solvent. To obtain the mass of the solvent in kg, we need to multiply the volume by the density, 425.mL x 0.92 g/mL = 391 g = 0.391 kg. Consequently, the molality of the solution would be 0.11 mol ÷ 0.391 kg = 0.28 m.

Learn more about Solution Concentrations here:

https://brainly.com/question/34412339

#SPJ3

Write the expression for the equilibrium constant for the reaction represented by the equation CaCO3(s)⇌Ca2+(aq)+CO32−(aq). Is Kc > 1, < 1, or ≈ 1? Explain your answer.

Answers

Answer: For the given reaction, the value of [tex]K_c[/tex] is greater than 1

Explanation:

For the given chemical equation:

[tex]CaCO3(s)\rightleftharpoons Ca^{2+}(aq.)+CO_3^{2-}(aq.)[/tex]

The expression of [tex]K_c[/tex] for above equation follows:

[tex]K_c=\frac{[Ca^{2+}]\times [CO_3^{2-}]}{[CaCO_3}]\\\\K_c=[Ca^{2+}]\times [CO_3^{2-}][/tex]

The concentration of pure solids and pure liquids are taken as 1 in equilibrium constant expression

As, the denominator is missing and the numerator is the only part left in the expression. So, the value of [tex]K_c[/tex] will be greater than 1.

Hence, for the given reaction, the value of [tex]K_c[/tex] is greater than 1

In the laboratory, a general chemistry student measured the pH of a 0.329 M aqueous solution of benzoic acid, C6H5COOH to be 2.327. Use the information she obtained to determine the Ka for this acid. Ka(experiment) =

Answers

Answer:

The dissociation constant for the acid ( experimental ) is 1.45 lit/mol

Explanation:

The value of dissociation constant can be calculated as,

  [tex]K_{a}[/tex] = C × ∝²

Where, C = concentration of the solution = 0.329M

          ∝ = Degree of dissociation

again , Degree of dissociation can be obtained form :

                      [tex]p_{H}[/tex] = C × ∝

                         ∝ = [tex]\frac{p_{H} }{C}[/tex]

                        ∝ = [tex]\frac{2.327}{0.329}[/tex] = 7.072

So, now [tex]K_{a}[/tex] = C × ∝²

                     = 0.329 ×( 7.072)²

                     = 1.45 lit/ mol

Answer:

The Ka = 6.74 * 10^-5

Explanation:

Step 1: Data given

Concentration of benzoic acid = 0.329 M

pH = 2.327

Step 2: Calculate the Ka

pH = -log (√([HA]*Ka))

2.327 = -log (√(0.329*Ka))

10 ^ - 2.327 = √(0.329*Ka))

0.0047098 = √(0.329*Ka))

2.218 * 10^-5 = 0.329 * Ka

Ka = 6.74 * 10^-5

The Ka = 6.74 * 10^-5

Methylamine, CH3NH2, is a weak base and one of several substances that give herring brine its pungent odor. In .100 M CH3NH2, only 6.4 percent of the base has undergone ionization. What are Kb and pKb of methylamine

Answers

Answer:

[tex]K_{b}[/tex] is 0.000438 and [tex]pK_{b}[/tex] is 3.36

Explanation:

Methylamine is a monoprotic base.

For a monoprotic base, [tex]K_{b}=\frac{ca^{2}}{(1-a)}[/tex]

where, c is concentration of base in molarity and a is it's degree ionization

Here [tex]a=\frac{6.4}{100}=0.064[/tex] and c = 0.100 M

So, [tex]K_{b}=\frac{(0.100)\times (0.064)^{2}}{(1-0.064)}=0.000438[/tex]

We know, [tex]pK_{b}=-logK_{b}[/tex]

Hence, [tex]pK_{b}=-log(0.000438)=3.36[/tex]

Mirex(MW = 540) is a fully chlorinated organic pesticide that was manufactured to control fire ants. Due to its structure, mirex is very unreactive; thus, it persists in the environment. Lake Erie water samples have had mirex measured as high as 0.002 μg/L and lake trout samples with 0.002 μg/g. (a) (10 points) In the water samples, what is the aqueous concentration of mirex in units of (i) ppb, (ii) ppt, (iii) μM? (b) (10 points) In the fish samples, what is the concentration of mirex in (i) ppm, (ii) pp

Answers

Answer:

A) i) 0.002 ppb (ii) 2ppt (iii) 3.7 x 10^(-6) μM

B) i)0.002 ppm. (ii) 2ppb

Explanation:

A) We know that 1 ppb = 1 μgram per liter, and so the concentration of Mirex in ppb would be 0.002 ppb.

1 ppt = 1 nanogram per liter of water, so the concentration of Mirex in ppt would be 2 ppt;

(0.002 μg/L) (100ng/μg) (1ppt/ng/L) = 2ppt.

Now, MW of Mirex = 540 g/mol ≡ μg/μmol

Thus, 1 μmole = 540 μgram,

Hence, the concentration of Mirex in μmoles would be;

(0.002 μg/L)/(540 μg/μmol) = 3.7 x 10^(-6) μM

B) i) 1 ppm = 1 μgram per gram.

Thus, the concentration of Mirex in ppm would be = 0.002 ppm.

ii) Now, 1 ppb = 1 nanogram per gram.

Thus, concentration of Mirex in ppb would be = (0.002 μg/g) (100ng/μg) (1ppb ng/g) = 2ppb

Final answer:

The concentration of mirex in water samples is 0.002 ppb, 2 ppt, and approximately 3.70 x 10⁻³ μM. In fish samples, the concentration of mirex is 0.002 ppm and 2 ppb.

Explanation:

The student is asking about converting the concentration of a pesticide, mirex, in water and fish samples to various units. The concentration in water samples is given as 0.002 μg/L. The conversions are as follows:

Parts per billion (ppb) is equivalent to micrograms per liter (μg/L), so the concentration is 0.002 ppb.To convert to parts per trillion (ppt), we multiply the ppb value by 1,000. Thus, the concentration is 2 ppt.The concentration in micromolar (μM) can be found by dividing the microgram concentration by the molecular weight of mirex and then dividing by the volume of the solution in liters. Since the molecular weight (MW) of mirex is 540 g/mol, the calculation is 0.002 μg/L × (1 mg/1,000 μg) × (1 mol/540,000 mg) × (1,000,000 μM/1 M), resulting in approximately 3.70 x 10⁻³ μM.

For the fish samples:

The concentration as parts per million (ppm) is the same as micrograms per gram (ug/g), so it is 0.002 ppm.The parts per billion (ppb) value is 0.002 ppb, as 1 ppm is equal to 1,000 ppb, and the value for mirex in fish is already less than 1 ppm.

The heat of fusion ΔHf of ethyl acetate C4H8O2 is 10.5 /kJmol. Calculate the change in entropy ΔS when 95.g of ethyl acetate freezes at −84.0°C. Be sure your answer contains a unit symbol. Round your answer to 2 significant digits.

Answers

Picture? Of the problem

The change in entropy when 95 g of ethyl acetate freezes at -84.0°C is -59.8 J/K, rounded to two significant digits.

The question involves calculating the change in entropy when 95 g of ethyl acetate freezes at -84.0℃. Given the heat of fusion ( Hf) for ethyl acetate is 10.5 kJ/mol, we first need to convert grams to moles using the molar mass of ethyl acetate (C4H8O2) which is 88.11 g/mol.

Next, we use the formula:

moles = mass (g) / molar mass (g/mol)

For 95 g ethyl acetate, moles = 95 g / 88.11 g/mol = 1.078 moles.

The change in entropy ( S) can be found using the formula:
S =  H / T

where T is the temperature in Kelvin. To convert -84.0℃ to Kelvin, we add 273.15:

T = -84.0 + 273.15 = 189.15 K

The entropy change then is:
S = 10.5 kJ/mol / 189.15 K
S per mole = 0.0555 kJ/K∙mol

Finally, for 1.078 moles, the total entropy change is:
S total = 0.0555 kJ/K∙mol × 1.078 mol
S total = 0.0598 kJ/K

Expressed in J/K (as 1 kJ = 1000 J),
S total = 59.8 J/K.

Since we are calculating the entropy change for freezing, the sign should be negative because entropy decreases during freezing.

Therefore, the change in entropy when 95 g of ethyl acetate freezes at -84.0℃ is -59.8 J/K, rounded to two significant digits.

Write the balanced equation for the combustion of isooctane (C8H18) to produce carbon dioxide and water. Use the smallest possible integers to balance the equation. Also, separate the sign with 1 space and enter the reaction arrow as hyphen greater than sign: ->

Answers

Final answer:

The balanced equation for the combustion of isooctane (C8H18) is C8H18 + 12.5O2 -> 8CO2 + 9H2O.

Explanation:

The balanced equation for the combustion of isooctane (C8H18) to produce carbon dioxide (CO2) and water (H2O) is:

C8H18 + 12.5O2 -> 8CO2 + 9H2O

In this equation, the coefficients have been adjusted to balance the number of atoms on both sides of the equation. There are 8 carbon atoms, 18 hydrogen atoms, and 25 oxygen atoms on both sides of the equation.

Final answer:

The balanced chemical equation for the complete combustion of isooctane (C₈H₁₈) is 2 C₈H₁₈(l) + 25 O₂(g) → 16 CO₂(g) + 18 H₂O(g), comprising a step-by-step process of first balancing the carbon, then hydrogen, and finally the oxygen atoms.

Explanation:

The balanced chemical equation for the combustion of isooctane (C₈H₁₈) to produce carbon dioxide (CO₂) and water (H₂O) can be represented as follows:

2 C₈H₁₈(l) + 25 O₂(g) → 16 CO₂(g) + 18 H₂O(g)

Here is a step-by-step explanation:

Start by writing the unbalanced equation: C₈H₁₈ + O₂ → CO₂ + H₂O.Balance the carbon (C) atoms first: As there are 8 C atoms in isooctane, you need to have 8 CO₂ molecules to balance the carbons.Next, balance the hydrogen (H) atoms: With 18 H atoms in isooctane, you will need 9 H₂O molecules.Finally, balance the oxygen (O) atoms: There are 16 O atoms in 8 CO₂ molecules and 18 O atoms in 9 H₂O molecules, giving a total of 25 O₂ molecules needed.

After balancing, you end up with the smallest possible integers that balance the equation.

Select the correct definition of a glycolipid. A glycolipid is: a lipid molecule that contains a glycerol backbone and three fatty acids a lipid molecule that contains at least one carbohydrate unit a lipid molecule produced during glycolysis a molecule produced during the breakdown of glycogen

Answers

Answer:

a lipid molecule that contains at least one carbohydrate unit

Explanation:

A glycolipid -

It refers to the lipid which consists of the carbohyde group attached via a glycosidic bond , which are basically covalent bonds , is referred to as a glycolipid .

They are present on the surface of the eukaryotic cell membranes .

Glycolipids are important to connect from one tissue to another and facilitate cellular recognition .

Hence , from the given information of the question ,

The correct answer is a lipid molecule that contains at least one carbohydrate unit .

A volume of 90.0 mL mL of a 0.590 M M HN O 3 HNO3 solution is titrated with 0.350 M M KOH KOH . Calculate the volume of KOH KOH required to reach the equivalence point. Express your answer to three significant figures and include the appropriate units.

Answers

Answer:

152 mL is the volume of KOH required to reach the equivalence point.

Explanation:

[tex]HNO_3(aq)+KOH(aq)\rightarrow KNO_3(aq)+H_2O(l)[/tex]

To calculate the concentration of acid, we use the equation given by neutralization reaction:

[tex]n_1M_1V_1=n_2M_2V_2[/tex]

where,

[tex]n_1,M_1\text{ and }V_1[/tex] are the n-factor, molarity and volume of acid which is [tex]HNO_3[/tex]

[tex]n_2,M_2\text{ and }V_2[/tex] are the n-factor, molarity and volume of base which is KOH.

We are given:

[tex]n_1=1\\M_1=0.590 M\\V_1=90.0 mL\\n_2=1\\M_2=0.350 M\\V_2=?[/tex]

Putting values in above equation, we get:

[tex]1\times 0.590 M\times 90.00=1\times 0.350 M\times V_2[/tex]

[tex]V_2=\frac{1\times 0.590 M\times 90.0 mL}{1\times 0.350 M}=151 .7 mL\approx 152 mL[/tex]

152 mL is the volume of KOH required to reach the equivalence point.

Answer:

152 ml.

Explanation:

Given:

Volume of HNO3 = 90 ml

Molar concentration of HNO3 = 0.59 M

Molar concentration of KOH = 0.35 M

Equation of the reaction

KOH + HNO3 --> KNO3 + H2O

Number of moles of HNO3 = molar concentration × volume

= 0.59 × 0.09

= 0.0531 moles.

By stoichiometry, 1 mole of HNO3 reacts with 1 mole of KOH. Therefore,

Number of moles of KOH = 0.0531 moles.

Volume = 0.0531 ÷ 0.350

= 0.152 l

= 152 ml.

You want to determine the protein content in milk with the Kjeldahl method. You take 100 g whole milk and use 100 mL of 0.5 M hydrochloric acid to collect ammonia. You needed 34.50 mL of 0.3512 M NaOH for the back-titration. Calculate the percentage of protein in the sample?

Answers

Answer:

82.53 % protein in the milk.

Explanation:

Titration formula:

Conc (acid) × Vol (acid) = Conc (base) × Vol (base)

Beginning from back-titration:

0.5 M HCl × Vol  (HCl) = 0.3512 (conc of NaOH) × 34.50 mL (vol of NaOH)

=  [tex]\frac{12.1164}{0.5}[/tex] = 24.2328 mL

Vol of HCl used in initial titration is 24.2328 mL

So from Initial Titration:

Using same titration formula,

0.5 × 24.2328 = Conc. (base) × 100 ml

Conc (base) = 12.1164 ÷ 100

= 0.121164 M.

But concentration = mass ÷ molar mass

0.121164 = [tex]\frac{100 g}{ molar mass}[/tex]

= 825.3277 g/mol of protein

⇒ [tex]\frac{825.32765}{1000}[/tex] × 100

= 82.53 % protein in the milk.

A solution contains 4.08 g of chloroform (CHCl3) and 9.29 g of acetone (CH3COCH3). The vapor pressures at 35 ∘C of pure chloroform and pure acetone are 295 torr and 332 torr, respectively. Assuming ideal behavior, calculate the vapor pressures of each of the components and the total vapor pressure above the solution.

Answers

Final answer:

The vapor pressures of chloroform and acetone in the solution are 52.02 torr and 273.50 torr, respectively, and the total vapor pressure above the solution is 325.52 torr.

Explanation:

To calculate the vapor pressures of chloroform and acetone above the solution, we should make use of Raoult's law. According to Raoult's law, the partial pressure of each component of a mixture is the product of the vapor pressure of the pure component and its mole fraction in the mixture.

First, calculate the mole fractions of each substance. The molar mass of chloroform (CHCl3) is about 119.38 g/mol, and the molar mass of acetone (CH3COCH3) is about 58.08 g/mol. Therefore, the mole fractions of chloroform and acetone are 4.08 g CHCl3 * (1 mol / 119.38 g) = 0.0342 mol and 9.29 g CH3COCH3 * (1 mol / 58.08 g) = 0.1599 mol, respectively. The total moles are 0.0342 mol + 0.1599 mol = 0.1941 mol, so the mole fraction of chloroform is 0.0342/0.1941 = 0.176 and that of acetone is 0.1599/0.1941 = 0.824.

Next, apply Raoult's Law to find the partial pressure of each component in the mixture. The vapor pressure of chloroform is 0.176 * 295 torr = 52.02 torr, and the vapor pressure of acetone is 0.824 * 332 torr = 273.50 torr.

The total vapor pressure above the solution is the sum of the vapor pressures of chloroform and acetone, that is, 52.02 torr + 273.50 torr = 325.52 torr.

Learn more about Vapor Pressure here:

https://brainly.com/question/34135527

#SPJ3

If a 32.4 gram sample of sodium sulfate (Na2SO4) reacts with a 65.3 gram sample of barium chloride (BaCl2) according to the reaction below: Na2SO4 (aq) + BaCl2 (aq) → BaSO4 (s) + 2NaCl (aq) What is the theoretical yield of barium sulfate (BaSO4) in grams?

Answers

Answer: The theoretical yield of barium sulfate is 50.9 grams

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]     .....(1)

For sodium sulfate:

Given mass of sodium sulfate = 32.4 g

Molar mass of sodium sulfate = 142 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of sodium sulfate}=\frac{32.4g}{142g/mol}=0.228mol[/tex]

For barium chloride:

Given mass of barium chloride = 65.3 g

Molar mass of barium chloride = 208.23 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of barium chloride}=\frac{65.3g}{208.23g/mol}=0.314mol[/tex]

The chemical equation for the reaction of barium chloride and sodium sulfate follows:

[tex]Na_2SO_4+BaCl_2\rightarrow BaSO_4+2NaCl[/tex]

By Stoichiometry of the reaction:

1 mole of sodium sulfate reacts with 1 mole of barium chloride

So, 0.228 moles of sodium sulfate will react with = [tex]\frac{1}{1}\times 0.228=0.228mol[/tex] of barium chloride

As, given amount of barium chloride is more than the required amount. So, it is considered as an excess reagent.

Thus, sodium sulfate is considered as a limiting reagent because it limits the formation of product.

By Stoichiometry of the reaction:

1 mole of sodium sulfate produces 1 mole of barium sulfate.

So, 0.228 moles of sodium sulfate will produce = [tex]\frac{1}{1}\times 0.228=0.228moles[/tex] of barium sulfate

Now, calculating the mass of barium sulfate from equation 1, we get:

Molar mass of barium sulfate = 233.4 g/mol

Moles of barium sulfate = 0.228 moles

Putting values in equation 1, we get:

[tex]0.228mol=\frac{\text{Mass of barium sulfate}}{223.4g/mol}\\\\\text{Mass of barium sulfate}=(0.228mol\times 223.4g/mol)=50.9g[/tex]

Hence, the theoretical yield of barium sulfate is 50.9 grams

the osmotic pressure ofa solution containing 5.87 mg of an unknown protein per 10ml of solution is 2.45 torr at 25 degree celsius. Find the molar mass of the unknown protein.

Answers

Final answer:

The molar mass of the unknown protein is 5.79 g/mol.

Explanation:

To find the molar mass of the unknown protein, we can use the formula for osmotic pressure:

π = MRT

Where π is the osmotic pressure, M is the molarity of the solution, R is the ideal gas constant, and T is the temperature in Kelvin. Rearranging the formula, we have:

M = π / (RT)

Substituting the given values:

M = 2.45 torr / (0.0821 L.atm/(mol.K) * 298 K)

M = 0.0996 mol/L

To convert the molarity to grams per liter, we need to multiply it by the molar mass

Molar mass = (0.0996 mol/L) * (10 mL/1 L) * (5.87 mg/1 mL)

Molar mass = 5.79 g/mol

For the oxidation–reduction reaction equation 2 Rb + Br 2 ⟶ 2 RbBr 2Rb+Br2⟶2RbBr indicate how many electrons are transferred in the formation of one formula unit of product.

Answers

For the given reaction between rubidium and Boron, only one electron will be transferred in the formation [tex]2 RbBr[/tex].

The potential difference between the two half-cells of an electrochemical cell is known as cell potential. The transfer of electrons from one-half cell to another produces the potential difference.

The given chemical reaction is:

[tex]2Rb_{(s)} + Br_{(l)}[/tex] ⇒ [tex]2RbBr_{(s)}[/tex]

The following electrochemical reaction can be divided into the reaction occurring at the cathode and the reaction occurring at the anode:

Oxidation reaction at the anode: [tex]2Rb_{(s)}[/tex] ⇒ [tex]2Rb^+_{(aq)} + 2e^-[/tex]

Reduction reaction at the cathode: [tex]Br_{2(l)} + 2e^-[/tex] ⇒ [tex]2Br^-_{(aq)}[/tex]

Since there are two units of RbBr in the aforementioned equation and two electrons were transported, only one electron is needed to generate one unit of RbBr.

Thus, only one electron is involved in the formation of RbBr.

Learn more about electrons here:

brainly.com/question/12001116

#SPJ12

Final answer:

In the formation of one formula unit of RbBr, one electron is transferred from rubidium (Rb) to bromine (Br), as Rb loses one electron to form Rb+ and Br gains one electron to form Br-.

Explanation:

The question regards the number of electrons transferred in the formation of one formula unit of RbBr from the reaction 2 Rb + Br2 → 2 RbBr. In order to determine the electron transfer, we need to consider the oxidation states of the elements involved. Rubidium (Rb) is oxidized, meaning it loses electrons, and bromine (Br2) is reduced, meaning it gains electrons.

Rubidium starts with an oxidation state of 0 and becomes Rb+ in RbBr. This indicates that each Rb atom loses one electron. Bromine starts with an oxidation state of 0 as diatomic Br2 and each Br atom gains one electron to become Br- in RbBr. Therefore, for each RbBr formula unit produced, one electron is transferred from Rb to Br.

A particular reaction, A- products, has a rate that slows down as the reaction proceeds. The half-life of the reaction is found to depend on the initial concentration of A. Determine whether each statement is likely to be true or false for this reaction.
a. A doubling of the concentration of A doubles the rate of the reaction.
b. A plot of 1/[A] versus time is linear.
c. The half-life of the reaction gets longer as the initial concen- tration of A increases.
d. A plot of the concentration of A versus time has a constant slope.

Answers

Explanation:

Half life of zero order and second order depends on the initial concentration. But as the given reaction slows down as the reaction proceeds, therefore, it must be second order reaction. This is because rate of reaction does not depend upon the initial concentration of the reactant.

a. As it is a second order reaction, therefore, doubling reactant concentration, will increase the rate of reaction 4 times. Therefore, the statement  a is wrong.

b. Expression for second order reaction is as follows:

[tex]\frac{1}{[A]} =\frac{1}{[A]_0} +kt[/tex]

the above equation can be written in the form of Y = mx + C

so, the plot between 1/[A] and t is linear. So the statement b is true.

c.

Expression for half life is as follows:

[tex]t_{1/2}=\frac{1}{k[A]_0}[/tex]

As half-life is inversely proportional to initial concentration, therefore, increase in concentration will decrease the half life. Therefore statement c is wrong.

d.

Plot between A and t is exponential, therefore there is no constant slope. Therefore, the statement d is wrong

at body temperature (37∘c) the rate constant of an enzyme-catalyzed reaction is 2.3 x 1014 times greater than the rate constant of the uncatalyzed reaction. assuming the frequency factor A is the same for both reaction, y how much does the enzyme lower the activation energ

Answers

Answer:

The activation energy is lowered by +85.35 KJ/mol

Explanation:

Rate constant is related to the activation energy and the temperature of the reaction through

K = Ae⁻ᴱᵃ/ᴿᵀ

In K = (In A) - (Ea/RT)

In K = (-Ea/RT) + In A

where k = the activity constant

Ea = activation energy

R = molar gas constant

T = absolute temperature in Kelvin

₁₂

At point 1, without the catalyst

In K₁ = (-Ea₁/RT) + In A (eqn 1)

At point 2 with the catalyst

In K₂ = (-Ea₂/RT) + In A (eqn 2)

Note that the molar gas constant, the absolute temperature in Kelvin and the activity constant are all the same for both points.

Subtract (eqn 1) from (eqn 2)

In K₂ - In K₁ = (-Ea₂/RT) - (-Ea₁/RT) + In A - In A

In (K₂/K₁) = (1/RT) (Ea₁ - Ea₂)

We were told that K₂/K₁ = 2.3 × 10¹⁴, then find the difference in Ea

R = 8.314 J/mol.K, T = 37°C = 310.15 K

In (2.3 × 10¹⁴) = (1/(8.314×310.15) (Ea₁ - Ea₂)

33.1 = (1/2578.5871) (Ea₁ - Ea₂)

(Ea₁ - Ea₂) = 33.1 × 2578.5871 = 85351.23 J/mol

Therefore, the activation energy is lowered by +85.35 KJ/mol

The activation energy is lowered by +85.35 KJ/mol

Relation between Rate constant and Activation Energy:

[tex]K = Ae^{\frac{-E_a}{RT} }\\\\In K = (In A) -( \frac{-E_a}{RT})\\\\In K = (\frac{-E_a}{RT}) + In A[/tex]

where

k = the activity constantEa = activation energyR = molar gas constantT = absolute temperature in Kelvin

1. At point 1, without the catalyst

[tex]In K_1 = (-Ea_1/RT) + In A[/tex]............(i)

2. At point 2 with the catalyst

[tex]In K_ = (-Ea_2/RT) + In A[/tex]...........(ii)

On subtracting equation (i) from (ii)

[tex]In K_2 - In K_1 = (-Ea_2/RT) - (-Ea_1/RT) + In A - In A\\\\In (K_2/K_2) = (1/RT) (Ea_1 - Ea_2)[/tex]

Given:

K₂/K₁ = 2.3 × 10¹⁴R = 8.314 J/mol.K, T = 37°C = 310.15 K

On solving:

[tex]In (2.3 * 10^{14}) = (1/(8.314*310.15) (Ea_1 - Ea_2)\\\\33.1 = (1/2578.5871) (Ea_1 - Ea_2)\\\\(Ea_1 - Ea_2) = 33.1 * 2578.5871\\\\ (Ea_1 - Ea_2)= 85351.23 J/mol[/tex]

Thus, the activation energy is lowered by +85.35 KJ/mol.

Find more information about Activation energy here:

brainly.com/question/1380484

Calculate the value of K p for the equation C ( s ) + CO 2 ( g ) − ⇀ ↽ − 2 CO ( g ) K p = ? given that at a certain temperature C ( s ) + 2 H 2 O ( g ) − ⇀ ↽ − CO 2 ( g ) + 2 H 2 ( g ) K p 1 = 3.23 H 2 ( g ) + CO 2 ( g ) − ⇀ ↽ − H 2 O ( g ) + CO ( g ) K p 2 = 0.693

Answers

Answer:

kp  = 1.55

Explanation:

To get to this reaction, we just need to sum the other two reactions, and multiply coefficients if it's needed so:

C(s) + 2H₂O(g) ⇄CO₂(g) + 2H₂(g)   Kp1 = 3.23    (1)

H₂(g) + CO₂(g) ⇄ H₂O(g) + CO(g)    Kp2 = 0.601   (2)

we will multiply eqn 2 by 2 because we need to eliminate H₂

2H2(g) + 2CO2(g) ⇄ 2H2O(g) + 2CO(g)    Kp = (0.601)²

Now, add both equation

C(s) + 2H₂O(g) ⇄CO₂(g) + 2H₂(g)   Kp1 = 3.23  

2H2(g) + 2CO2(g) ⇄ 2H2O(g) + 2CO(g)    Kp = (0.601)²

we have,

C(s) + CO₂(g) ⇄ 2CO(g)  

Now the value of Kp will be:

kp = 3.23 × (0.693)²

kp  = 1.55

At a given temperature, 4.92 atm of Cl2 and 4.65 atm of Br2 are mixed and allowed to come to equilibrium. The equilibrium pressure of BrCl is found to be 1.597 atm. Calculate Kp for the reaction at this temperature. Cl2(g) + Br2(g) <=> 2 BrCl(g). Give answer to 2 decimal places.

Answers

Answer:

Kp = 0.16

Explanation:

Step 1: Data given

Initial pressure of Cl2 = 4.92 atm

Initial pressure of Br2 = 4.65 atm

The equilibrium pressure of BrCl is found to be 1.597 atm

Step 2: The balanced equation

Cl2(g) + Br2(g) ⇔ 2 BrCl(g

Step 3: The initial pressures

pCl2 = 4.92 atm

pBr2 = 4.65 atm

pBrCl = 0 atm

Step 4: The pressure at the equilibrium

For 1 mol Cl2 we need 1 mol Br2 to produce 2 moles BrCl

pCl2 = 4.92 - X atm

pBr2 = 4.65 - Xatm

pBrCl = 2X atm = 1.597 atm

X = 1.597/2 = 0.7985 atm

pCl2 = 4.92 - X atm = 4.92 - 0.7985 = 4.1215 atm

pBr2 = 4.65 - Xatm = 3.8515 atm

Step 5: Calculate Kp

Kp = (BrCl)² / (Cl2)*(Br2)

Kp = 1.597² / (4.1215*3.8515)

Kp = 0.16

Final answer:

To calculate Kp for the given reaction, start with the initial pressures of Cl2 and Br2, calculate the change in pressure due to the formation of BrCl, and apply these values in the Kp equation. The result is Kp = 0.084.

Explanation:

The student asked how to calculate Kp for the reaction Cl2(g) + Br2(g) ⇌ 2 BrCl(g) at a given temperature, given initial pressures for Cl2 and Br2, and the equilibrium pressure of BrCl. To solve for Kp, we utilize the change in concentration according to the reaction's stoichiometry and apply it to the equation for the equilibrium constant in terms of pressure (Kp).

Initial pressures: Cl2 = 4.92 atm, Br2 = 4.65 atm. At equilibrium, BrCl = 1.597 atm. The change in pressure for Cl2 and Br2 to form 2 BrCl is equal to the pressure of BrCl divided by 2, since the stoichiometry of the reaction dictates twice the amount of BrCl for each reactant consumed. Thus, the change (δ) is 1.597 atm / 2 = 0.7985 atm. Therefore, the pressures of Cl2 and Br2 at equilibrium are 4.92 - 0.7985 atm and 4.65 - 0.7985 atm, respectively.

To find Kp, the equation is Kp = (PBrCl)2 / (PCl2 × PBr2). Substituting the equilibrium pressures into this equation gives Kp = (1.5972) / ((4.92 - 0.7985) × (4.65 - 0.7985)). Solving this yields Kp = 0.084 (to two decimal places).

A mixture of 0.438 M H2, 0.444 M I2 , and 0.895 M HI is enclosed in a vessel and heated to 430 °C. H2 (g) + I2 (g) <-----> 2 HI (g) Kc = 54.3 at 430∘C Calculate the equilibrium concentrations of each gas at 430∘C.

Answers

Answer:

[H₂]  = 0.178 M

[I₂]    = 0.184 M

[HI]   = 1.415 M

Explanation:

For the equilibrium:

H₂(g) + I₂(g) ⇄ 2 HI(g)

the equilibrium constant is given by the equation:

Kc = [ HI]² / [H₂][I₂]

Lets use first the reaction quotient which has the same expression as the equilibrium constant to predict the direction the reaction will take, i.e towards reactants or product side.

Q =( 0.895)²/(0.438)(0.444) = 4.12

Q is less than Kc so the reaction will favor the product side.

We can set up the following table to account for all the species at equilibrium:

                                     H₂             I₂                HI

initial                        0.438        0.444          0.895

change                        -x               -x                +2x

equilibrium              0.438 - x    0.444 - x     0.895 + 2x

Now we are in position to express these concentrations  in terms of the equilibrium conctant, Kc

54.3 = (0.895 + 2x)² / (0.438 -x)(0.444 - x)

performing the calculatiopns will result in a quadratic equation:

0.801 + 3.580x +4x² = (0.194 - 0.882x + x²)x 54.3

Upon rearrangement and some algebra, we have

0.801 + 3.580 x + 4x² = 10.534 - 47.893x + 54.3 x²

0 = 9.733 - 51.473 x + 54.3 x²

This equation has two roots X₁ = 0.687 and X₂ = 0.26

The first is physically impossible since it will imply that more 0.687 will make the quantity at equilibrium for both H₂ and I₂ negative.

Therefore the concentrations at equilibrium of each  gas are:

[H₂] = (0.438 - 0.260)              = 0.178 M

[I₂]   = (0.444 - 0.260) M          = 0.184  M

[HI] = [0.895 + 2x(0.260)] M    = 1.415   M

Note if we plug these values into the equilibrium expression we get 61 which is due to the rounding errors propagating in the quadratic equation.

Final answer:

The equilibrium concentrations of H2, I2, and HI at 430 °C are calculated using an expression derived from the reaction quotient equation, plugged into the Kc equation, which is then solved for 'x'. The solutions found are the changes in molarities which applied to the initial molarities give the equilibrium concentrations

Explanation:

Let's denote the change in molarity of H2, I2, and HI as 'x'. At equilibrium, the molarities of H2, I2, and HI will be 0.438+x, 0.444+x, and 0.895-2x respectively. We know the equilibrium constant, Kc = 54.3. Thus, (0.895-2x)2/(0.438+x)(0.444+x) = 54.3. This is a quadratic equation in 'x' and needs to be solved to get the value of 'x'.

After finding 'x', put this value back into the equilibrium concentrations of the gases, i.e., 0.438+x for H2, 0.444+x for I2, and 0.895-2x for HI. These will give you the equilibrium concentrations of the gases at 430 °C.

Learn more about Equilibrium Concentrations here:

https://brainly.com/question/16645766

#SPJ3

If 50.0 g of N2O4 is introduced into an empty 2.12 L container, what are the partial pressures of NO2 and N2O4 after equilibrium has been achieved at 45∘C?

Answers

Answer:

p(N2O4) = 0.318 atm

p(NO2) = 7.17 atm

Explanation:

Kc for the reaction N2O4 <=> 2NO2 is 0.619 at 45 degrees C If 50.0g of N2O4 is introduced into an empty 2.10L container, what are the partial pressures of NO2 and N2O4 after equilibrium has been achieved at 45 degrees C?

Step 1: Data given

Kc = 0.619

Temperature = 45.0 °C

Mass of N2O4 = 50.0 grams

Volume = 2.10 L

Molar mass N2O4 = 92.01 g/mol

Step 2: The balanced equation

N2O4 ⇔ 2NO2

Step 3: Calculate moles N2O4

Moles N2O4 = 50.0 grams / 92.01 g/mol

Moles N2O4 = 0.543 moles

Step 4: The initial concentration

[N2O4] = 0.543 moles/2.10 L = 0.259 M

[NO2]= 0 M

Step 5: Calculate concentration at the equilibrium

For 1 mol N2O4 we'll have 2 moles NO2

[N2O4] = (0.259 -x)M

[NO2]= 2x

Step 6: Calculate Kc

Kc = 0.619=  [NO2]² / [N2O4]

0.619 = (2x)² / (0.259-x)

0.619 = 4x² / (0.259 -x)

x = 0.1373  

Step 7: Calculate concentrations

[N2O4] = (0.259 -x)M = 0.1217 M

[NO2]= 2x = 0.2746 M

Step 8: The moles

Moles = molarity * volume

Moles N2O4 = 0.1217 M * 2.10  = 0.0256 moles

Moles NO2 = 0.2746 M * 2.10 = 0.577 moles

Step 9: Calculate partial pressure

p*V = n*R*T

⇒ with p = the partial pressure

⇒ with V = the volume = 2.10 L

⇒ with n = the number of moles

⇒ with R = the gas constant = 0.08206 L*atm/mol*K

⇒ with T = the temperature = 45 °C = 318 K

p = (nRT)/V

p(N2O4) = (0.0256 *0.08206 * 318)/ 2.10

p(N2O4) = 0.318 atm

p(NO2) = (0.577 *0.08206 * 318)/ 2.10

p(NO2) = 7.17 atm

Solvents at disposal:

Hexanes, Toluene, dichloromethane, diethyl, ethyl acetate, methanol, water, acetic acid

From the solvents, choose a single solvent that would give the best chance of separating benzophenone, diphenyl methanol and biphenyl using TLC on silica gel. Explain reasoning behind the choice. (phenyl groups are fairly non-polar)

Answers

The Best-used Solvent is Hexane.

Explanation:

In the given solvents -

Hexanes, Toulene, and dichloromethane have lesser eluting power. Diethyl ether and Ethyl acetate have medium eluting power. Methanol, water, and acetic acid have very little eluting power. Greater is the eluting power of the solvent lesser is the amount to be added. For solvents like Diethyl ether and Ethyl acetate have to be added in the percentage of 1% - 50% in addition to the solvent of higher eluting power. Hexanes and Toulene are often used in TLC (Thin Layer Chromatography ) as a Base. The reason behind this is they are non-polar compounds. The best-used solvent is Hexane.

Final answer:

Toluene is the best solvent choice for separating benzophenone, diphenyl methanol, and biphenyl using TLC on silica gel due to its balanced polarity, which will allow for better differentiation between the non-polar compounds.

Explanation:

In choosing a solvent for separating benzophenone, diphenyl methanol, and biphenyl using TLC on silica gel, toluene appears to be the most appropriate choice. Since phenyl groups are fairly non-polar, a non-polar or moderately polar solvent is needed to achieve good separation. Toluene is a good choice because it has a higher polarity than hexanes but is less polar than the other solvents listed, providing a balanced environment to distinguish the three compounds on the basis of their differing polarities. A solvent like methanol or water would be too polar, causing the compounds to stay near the baseline, while hexanes might be too non-polar, failing to separate the compounds efficiently. Therefore, toluene is the recommended solvent for TLC in this scenario.

for the hypothetical reaction 2A B -> 2C D, the initial rate of disappearance of A is 1.6x10^-1 mol/(L s) . what is the initial rate of disappearance of B

Answers

Answer:

0.8 x10^-1 mol/(L s)

Explanation:

2A + B -> 2C + D

For the reaction above, the differential rate is usually expressed as;

Rate = - (1 / 2) Δ[A] / Δt = - Δ[B] / Δt

The negative sign denotes disappearance.

Upon comparing ;  (1 / 2) Δ[A] / Δt = Δ[B] / Δt

If  initial rate of disappearance of A is 1.6x10^-1 mol/(L s);

That means

Δ[B] / Δt = 1.6x10^-1 mol/(L s) / 2

Δ[B] / Δt = 0.8 x10^-1 mol/(L s)

The initial rate of disappearance of B = 1.6x10^-1 mol/(L s)

Be sure to answer all parts. A buffer consists of 0.38 M KHCO3 and 0.71 M K2CO3. Carbonic acid is a diprotic acid with Ka1 = 4.5 × 10−7 and Ka2 = 4.7 × 10−11. (a) Which Ka value is more important to this buffer?

Answers

Explanation:

The dissociation equations for the carbonic acid are as follows.

    [tex]H_{2}CO_{3}(aq) + H_{2}O(l) \rightarrow HCO^{-}_{3}(aq) + H_{3}O^{+}(aq)[/tex]

  [tex]HCO^{-}_{3}(aq) + H_{2}O(l) \rightarrow (CO^{2-}_{3})(aq) + H_{3}O^{+}(aq)[/tex]

The given buffer contains [tex]KHCO_{3}[/tex] and [tex]K_{2}CO_{3}[/tex]. This means that there will be [tex]HCO^{-}_{3}[/tex] ions and [tex]CO^{2-}_{3}[/tex] ions and since, both of them are present in the second step.

Therefore, [tex]K_{a2}[/tex] is more significant with respect to this reaction.

Thus, we can conclude that [tex]K_{a2}[/tex] is more important to this buffer.

Final answer:

A buffer resists changes in pH. When considering carbonic acid, which is a diprotic acid i.e., it can donate two protons, the first ionization is represented by Ka1, and the second by Ka2. In a buffer solution with physiological pH close to 7, Ka1 is more important because the first ionization of carbonic acid happens more readily at this pH.

Explanation:

Your question asks which Ka value is more important for this buffer, which contains 0.38 M KHCO3 and 0.71 M K2CO3. Carbonic acid is a diprotic acid with Ka1 = 4.5 × 10^−7 and Ka2 = 4.7 × 10^−11.

A buffer solution resists changes in pH by neutralizing added acids and bases. The effectiveness of a buffer is determined by the pKa of the acid component of the buffer, which is the negative logarithm of its Ka. Generally, the most effective buffers are those wherein the pKa is close to the desired pH.

In our case, since carbonic acid is diprotic it has two associated Ka values. The first dissociation (giving HCO3^-) has Ka1 and the second dissociation (giving CO3^2-) has Ka2. Typically in physiological circumstances such as in our blood, where pH is close to 7, the first ionization of carbonic acid matters more because it is the one that happens readily at physiological pH. Therefore, Ka1 would be more important in this buffer solution as it represents the first ionization of the acid.

Learn more about Buffer Solutions here:

https://brainly.com/question/31367305

#SPJ2

Cyclohexane (C6H12) is a hydrocarbon (a substance containing only carbon and hydrogen) liquid. Which of the following will most likely dissolve in cyclohexane to form a solution?

a) NaBr
b) CH2Cl2
c) CH3CH2CH2CH2CH3
d) HI

Answers

Answer: Option (c) is the correct answer.

Explanation:

It is known that like dissolves like. As cyclohexane is a hydrocarbon and we know that hydrocarbons are non-polar in nature. So, a non-polar compound will be soluble in a hydrocarbon.

For example, NaBr is an ionic compound and when it i added to liquid cyclohexane then it will not dissolve. Similarly, [tex]CH_{2}Cl_{2}[/tex] and HI are polar covalent compounds and they will not dissolve in liquid cyclohexane.

But [tex]CH_3CH_2CH_2CH_2CH_3[/tex] is a non-polar compound. So, when it is added to liquid cyclohexane then it will readily dissolve.

Thus, we can conclude that pentane ([tex]CH_3CH_2CH_2CH_2CH_3[/tex]) will most likely dissolve in cyclohexane to form a solution.

A sucrose solution is prepared to a final concentration of 0.210 MM . Convert this value into terms of g/Lg/L, molality, and mass %%. (Use the following values: molecular weight MWsucroseMWsucrose = 342.296 g/molg/mol ; density rhosol′nrhosol′n = 1.02 g/mLg/mL ; and mass of water, mwatmwat = 948.1 gg ). Note that the mass of solute is included in the density of the solution.

Answers

Answer:

1) 71.9 g/L

2) 0.221 m olal

3)  7.05% by mass

Explanation:

Step 1: Data given

Concentration of sucrose = 0.210 M

Molar weight of sucrose = 342.3 g/mol

Density of solution = 1.02 g/mL

Mass of water = 948.1 grams

Step 2: Convert this value into terms of g/L

(0.210 mol/L) * (342.3 g/mol) = 71.9 g/L

Calculate the molality

Step 1: Calculate mass water

Suppose we have a volume of 1.00L

Mass of the solution = 1000 mL * 1.02 g/mL = 1020 g solution

We know that there are 71.9 g of solute in a liter of solution from the first calculation. This means

(1020 grams solution) - (71.9 g solute) = 948.1 g = 0.9481 kg water

Step 2: Calculate molality

Molality = moles sucrose / mass water

(0.210 mol) / (0.9481 kg) = 0.221 mol/kg = 0.221 m olal

Mass %

% MAss = (mass solute / mass solution)*100%

(71.9 g) / (1020 g) *100% = 7.05% by mass

Molten solder flows between the two base metals being soldered because ____. A. the atmospheric pressure pushes it in B. of capillary action C. there are no surface pores in the base metal D. the tubing surface melts and the pressure differential forces it in

Answers

Answer:

Molten solder flows between the two base metals being soldered because of capillary action.

Explanation:

Capillary molten solder takes place when a metal and a melt is brought into contact with the tube and an accessory after heating. Due to the phenomenon of capillary action, the molten metal rises and extends in any direction, due to the small space that remains between the wall of the tube and that of the fitting; With this, when cooling, a completely hermetic union is achieved.

Final answer:

Molten solder flows between two base metals due to capillary action, which allows the solder to spread evenly and adhere to the bases, metal ensuring a strong bond.

Explanation:

Molten solder flows between the two base metals being soldered mainly because of a process known as capillary action. Capillary action is a natural occurrence where a liquid, in this case the molten solder, moves along a narrow space, such as between the two pieces of metal, against the force of gravity. The solder is drawn into the space and spread evenly between the two base metals because of the adhesive forces between the liquid and the surrounding materials are stronger than the cohesive forces within the liquid.

This phenomenon plays a fundamental role in the soldering process, as it allows the solder to spread evenly and adhere to the base metals, ensuring a strong and stable bond between them. This principle is used not only in soldering but also in various other fields such as plant biology, painting, and inkjet printing.

Learn more about Capillary Action:

https://brainly.com/question/14451466

#SPJ3

A solution contains 10. mmol of H3PO4 and 5.0 mmol of NaH2PO4. How many milliliters of 0.10 M NaOH must be added to reach the second equivalence point of the titration of the H3PO4 with NaOH

Answers

Explanation:

Reaction equations for the given species is as follows.

   [tex]H_{3}PO_{4} + 2NaOH \righleftharpoons Na_{2}HPO_{4} + 2H_{2}O[/tex]

   [tex]NaH_{2}PO_{4} + NaOH \rightleftharpoons Na_{2}HPO_{4} + H_{2}O[/tex]

At the first equivalence point we need 2 × 10 mmol NaOH.

At the second equivalence point we need 5 mmol of NaOH.

Hence, total moles of NaOH required is as follows.

               (20 + 5) mmol = 25 mmol

We assume that volume of NaOH required is V.

      [tex]25 mmol NaOH \times \frac{10^{-3} mol NaOH}{1 mmol NaOH} \times \frac{1000 ml V}{0.10 \text{mol NaOH}}[/tex]

      = 250 ml V

Thus, we can conclude that 250 ml of 0.10 M NaOH must be added to reach second equivalence point of the titration of the [tex]H_{3}PO_{4}[/tex] and NaOH.

In the given case, 250 ml of 0.10 M NaOH must be added to attain the second equivalence point.

Calculation based on equivalence point:

The reactions taking place in the given case are:

H₃PO₄ + 2NaOH ⇔ Na₂HPO₄ + 2H₂ONaH₂PO₄ + NaOH ⇔ Na₂HPO₄ + H₂O

Based on the given information, a solution comprises 10 mmol of H₃PO₄ and 5 mmol of NaH₂PO₄.

For the first equivalence point, there is a need of 2 × 10 mmol NaOH.

For the second equivalence point, there is a need of 5 mmol NaOH.

Now the total moles of NaOH needed is,

= 20 + 5 mmol

= 25 mmol

Now let the volume of NaOH required be V. Now putting the values we get,

[tex]= 25 mmol NaOH * \frac{10^{-3} mole NaOH}{1 mmol NaOH} * \frac{1000 mLV}{0.10 mol NaOH} \\= 250 ml[/tex]

Thus, 250 ml of 0.10 M NaOH is need to be added to attain the second equivalence point of the titration.

Find out more information about the calculations based on equivalence point here:

https://brainly.com/question/14014457

Other Questions
What are three numbers that have a sum of 44 if the greatest number is 11 more than the leasta. 1, 15, 12b. 9, 14, 20c. 8, 17, 19d. 11, 16, 22 Convert 145.0 mm to meters and express the answer to the correct number of significant digits. In a Broadway performance, an 83.0-kg actor swings from a R = 3.90-m-long cable that is horizontal when he starts. At the bottom of his arc, he picks up his 55.0-kg costar in an inelastic collision. What maximum height do they reach after their upward swing? Find the molar mass of Strontium nitride, Sr3N2. 3. a. Reviewing How does a mutation in a geneaffect the order of DNA bases? Write the slope intercept equation for the line with a slope of -3 that goes through the point (-2,1) In a production facility, 1.6-in-thick 2-ft 2-ft square brass plates (rho = 532.5 lbm/ft3 and cp = 0.091 Btu/lbmF) that are initially at a uniform temperature of 75F are heated by passing them through an oven at 1500F at a rate of 340 per minute. If the plates remain in the oven until their average temperature rises to 900F, determine the rate of heat transfer to the plates in the furnace. If employees are bonded a. it means that they are not allowed to handle cash b. they have worked for the company for at least 10 years c. they have been insured against misappropriation of assets. d. it is impossible for them to steal from the company Suppose that a technological advancement substantially reduces the cost of producing cheese. We would predict that the equilibrium quantity of cheese will ________ and the equilibrium price of cheese will ________. Factor the expression completely. 9x+6 Andre rents beach chairs and umbrellas to tourists visiting the beach. On one Saturday, he has 150 customers. If he rents 125 chairs and 72 people rent both chairs and umbrellas, how many people rent umbrellas?A.25B.72C.97D.125 A Nike women's-only store in California offers women's running, training, and sportswear products and also contains an in-store fitness studio for group and personal fitness training sessions. The store consistently earns profits in excess of $586,000 per year and is located on prime real estate in the center of town. The store owner pays $17,000 per month in rent for the building. A real estate agent approached the owner and informed her that she could add $6,900 per month to her firm's profits by renting out the portion of her store that she uses as a fitness studio. While the prospect of acquiring this rental income was enticing, the owner believed the use of that space as a fitness studio was an important contributor to her store's profits.What is the opportunity cost of continuing to operate the fitness studio within the store? A charge of 28.0 nC is placed in a uniform electric eld that is directed vertically upward and that has a magnitude of What work is done by the electric force when the charge moves (a) 0.450 m to the right; (b) 0.670 m upward; (c) 2.60 m at an angle of 45.0 downward from the horizontal? Claire is from France and has been working in the United States for the last two years in cancer research. If her work visa expires in a year, what can Claires employer do to create a permanent position for her in the company? ________ is a relatively mild disorder in which children have relatively good verbal language, milder nonverbal language problems, and a restricted range of interests and relationships. Lysine is an essential amino acid for animals. If an animal did not consume lysine in its diet, you might expect that the animal ________. Lysine is an essential amino acid for animals. If an animal did not consume lysine in its diet, you might expect that the animal ________. was a carnivore would be very healthy could not effectively make many necessary proteins would make lysine from other amino acids Intuition is defined as an insight that just seems to be true or correct. Intuition is not the result of a mental process that can be taken apart and examined.True / False. PLEASE i need help ASAP i beg of you!! due today!!! 50 points! and brainliest!!!!!!! 1. Anthony has a sink that is shaped like a half-sphere. The sink has a volume of660 pi in^3. One day, his sink clogged. He has to use one of twocylindrical cups to scoop the water out of the sink. The sink is completely fullwhen Anthony begins scooping. (a) One cup has a diameter of 5 in, and a height of 8 in. How many cups ofwater must Anthony scoop out of the sink with this cup to empty it?Round the number of scoops to the nearest whole number.(b)One cup has a diameter of 10 in, and a height of 8 in. How many cups ofwater must he scoop out of the sink with this cup to empty it? Round thenumber of scoops to the nearest whole number. Which of the following is not cited as an environmental drawback to the development of aquaculture worldwide? a. Aquaculture often leads to overexploitation of marine organisms. b. Pollution from aquaculture facilities can harm nearby wild organisms and ecosystems. c. Aquaculture can compete for space along crowded coastlines, resulting in the destruction of natural ecosystems like mangroves. d. Many farmed fish species are carnivorous, so can be an inefficient use of other potential food sources. We learned in that about 69.7% of 18-20 year olds consumed alcoholic beverages in 2008. We now consider a random sample of fifty 18-20 year olds. 1. How many people would you expect to have consumed alcoholic beverages? (round to one decimal place) 2. What is the standard deviation? (round to two decimal places) 3. Would you be surprised, if there were 45 or more people who have consumed alcoholic beverages? _ Steam Workshop Downloader