The proportion of baby boys born in the United States has historically been 0.508. You choose an SRS of 50 newborn babies and find that 45% are boys. Do ALL calculations to 5 decimal places before rounding.

Answers

Answer 1

Answer:

[tex]z=\frac{0.45 -0.508}{\sqrt{\frac{0.508(1-0.508)}{50}}}=-0.82[/tex]  

[tex]p_v =P(z<-0.82)=0.206[/tex]  

So the p value obtained was a very high value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to  FAIL to reject the null hypothesis, and we can said that at 5% of significance the proportion of newborn boys babies is not significantly lower than 0.508

Step-by-step explanation:

Data given and notation

n=50 represent the random sample taken

[tex]\hat p=0.45[/tex] estimated proportion of newborn boys babies

[tex]p_o=0.508[/tex] is the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level

Confidence=95% or 0.95  (asumed)

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

Concepts and formulas to use  

We assume that we want to check if the true proportion is less than 0.508.

Null hypothesis:[tex]p\geq 0.508[/tex]  

Alternative hypothesis:[tex]p < 0.508[/tex]  

When we conduct a proportion test we need to use the z statisitc, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.45 -0.508}{\sqrt{\frac{0.508(1-0.508)}{50}}}=-0.82[/tex]  

Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level assumed is [tex]\alpha=0.05[/tex]. The next step would be calculate the p value for this test.  

Since is a left tailed test the p value would be:  

[tex]p_v =P(z<-0.82)=0.206[/tex]  

So the p value obtained was a very high value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to  FAIL to reject the null hypothesis, and we can said that at 5% of significance the proportion of newborn boys babies is not significantly lower than 0.508

Answer 2

It is concluded that the null hypothesis H₀ is not rejected. There is not enough evidence to claim that the population proportion p is less than 0.508, at the α =0.05 significance level.

What is the z test statistic for one sample proportion?

Suppose that we have:

n = sample size[tex]\hat{p}[/tex] = sample proportionp₀ = population proportion (hypothesised)

Then, the z test statistic for one sample proportion is:

[tex]Z = \dfrac{\hat{p} - p_0}{\sqrt{\dfrac{p_0(1-p_0)}{n}}}[/tex]

Making the hypothesis and performing the test, assuming that we want to test if the population mean proportion is < 0.508 at the level of significance 0.05.

(1) Null and Alternative Hypotheses

The following null and alternative hypotheses for the population proportion needs to be tested:

[tex]H_0: p \geq 0.508 \\\\ H_a: p & < & 0.508 \end{array}[/tex]

This corresponds to a left-tailed test, for which a z-test for one population proportion will be used.

(2) Rejection Region

Based on the information provided, the significance level is [tex]\alpha = 0.05[/tex], and the critical value for a left-tailed test is [tex]z_c = -1.64[/tex]

The rejection region for this left-tailed test is [tex]R = \{z: z < -1.645\}[/tex]

(3) Test Statistics

The z-statistic is computed as follows:

[tex]z & = & \displaystyle \frac{\hat p - p_0}{\sqrt{ \displaystyle\frac{p_0(1-p_0)}{n}}} \\\\& = & \displaystyle \frac{0.45 - 0.508}{\sqrt{ \displaystyle\frac{ 0.508(1 - 0.508)}{50}}} \\\\ & = & -0.82[/tex]

(4) Decision about the null hypothesis

Since it is observed that [tex]z = -0.82 \ge z_c = -1.645[/tex],  it is then concluded that the null hypothesis is not rejected.

Thus, it is concluded that the null hypothesis H₀ is not rejected. Therefore, there is not enough evidence to claim that the population proportion p is less than 0.508, at the α =0.05 significance level.

Learn more about population proportion here:

https://brainly.com/question/7204089


Related Questions

For each call to the following method, indicate what console output is produced:public void mysteryXY(int x, int y) { if (y == 1) { System.out.print(x); } else { System.out.print(x * y + ", "); mysteryXY(x, y - 1); System.out.print(", " + x * y); }} mysteryXY(4, 1); mysteryXY(4, 2); mysteryXY(8, 2); mysteryXY(4, 3); mysteryXY(3, 4);

Answers

Final answer:

The mysteryXY method on Java demonstrates recursion, and calls to this method generate a sequence of multiplications based on the values of x and y, with the results printed in a particular format.

Explanation:

The console output for each call to the mysteryXY method can be determined by following the recursion and evaluating the output statements. The method prints a series of multiplications, interspersed with commas, by recursively calling itself with a decremented y until y reaches 1.

Calling mysteryXY(4, 1) will output 4 since y is 1.Calling mysteryXY(4, 2) will output 8, 4, 4 because it prints 4 × 2, then calls itself with y-1 (which is 1, printing 4), and then prints 4 × 2 again after the recursive call.Calling mysteryXY(8, 2) will output 16, 8, 8 for the same reasons as the previous call but with x equal to 8.Calling mysteryXY(4, 3) will output 12, 8, 4, 4, 8, 12 which includes two recursive calls, printing 4 × 3, 4 × 2, then 4 × 1, and then 4 × 2 and 4 × 3 after the reversals of the calls.Finally, calling mysteryXY(3, 4) will output 12, 9, 6, 3, 3, 6, 9, 12 with three recursive calls and their reversals.

B. Calculate the distance Kinsey jogs if
she jogs'mile each day for 9 days.

Answers

Answer:

9x miles

Step-by-step explanation:

Distance covered per day = x mile per day

Number of days = 9days

Unknown:

Distance covered for 9 days = ?

Solution:

This is a simple problem.

Since Kinsey covered a distance of x mile/day, in 9 days:

                 x mile is covered in 1 day;

                         

               1 day, Kinsey covers x mile

               9 days, she will cover  9 x  (x) miles = 9x miles

Final answer:

Kinsey has jogged 9 miles in total over the 9 days.

Explanation:

The question asks us to calculate the distance Kinsey jogs if she jogs 1 mile each day for 9 days.

To find the total distance, we simply need to multiply the daily distance by the number of days she jogs.

To calculate:

Identify the daily distance jogged: 1 mile.

Identify the number of days jogged: 9 days.

Multiply the daily distance by the number of days: 1 mile/day  imes 9 days.

After performing the multiplication, we find that Kinsey has jogged 9 miles in total over the 9 days.

The manager of the service department of a local car dealership has noted that the service times of a sample of 30 new automobiles has a standard deviation of 6 minutes. A 95% confidence interval estimate for the standard deviation of the service times for all their new automobiles is

Answers

Answer:

95% confidence interval estimate for the standard deviation = [4.78 , 8.06]

Step-by-step explanation:

We are given that the manager of the service department of a local car dealership has noted that the service times of a sample of 30 new automobiles has a standard deviation of 6 minutes, i.e. n = 30 and s = 6.

The pivotal quantity for 95% confidence interval for the population variance is given by;

                   [tex]\frac{(n-1)s^{2} }{\sigma^{2} }[/tex]  ~ [tex]\chi^{2}__n_-_1[/tex]

95% confidence interval for the population variance is;

P(16.05 < [tex]\chi^{2}__2_9[/tex] < 45.72) = 0.95

P(16.05 < [tex]\frac{(n-1)s^{2} }{\sigma^{2} }[/tex] < 45.72) = 0.95

P( [tex]\frac{16.05}{(n-1)s^{2} }[/tex] < [tex]\frac{1 }{\sigma^{2} }[/tex] < [tex]\frac{45.72}{(n-1)s^{2} }[/tex] ) = 0.95

P( [tex]\frac{(n-1)s^{2}}{ 45.72}[/tex] < [tex]\sigma^{2}[/tex] <[tex]\frac{(n-1)s^{2}}{ 16.05}[/tex]  ) = 0.95

95% Confidence interval for [tex]\sigma^{2}[/tex] = [ [tex]\frac{(n-1)s^{2}}{ 45.72}[/tex] , [tex]\frac{(n-1)s^{2}}{ 16.05}[/tex] ]

                                                = [ [tex]\frac{(30-1)6^{2}}{ 45.72}[/tex] , [tex]\frac{(30-1)6^{2}}{ 16.05}[/tex] ]

                                                = [ 22.835 , 65.047 ]

So, 95% Confidence interval for [tex]\sigma[/tex] = [ [tex]\sqrt{ 22.835} ,\sqrt{ 65.047}[/tex] ] = [ 4.78 , 8.06 ]

Therefore, 95% confidence interval for the standard deviation of the service times for all their new automobiles is [ 4.78 , 8.06 ] .

The correct answer is b. 4.78 to 8.07.

The question asks us to determine the 95% confidence interval estimate for the standard deviation of service times of new automobiles at a dealership.

Given the sample size (n = 30) and the sample standard deviation (s = 6 minutes), we can calculate the confidence interval using the chi-squared (χ²) distribution.

1. Calculate the degrees of freedom (df):

df = n - 1 = 30 - 1 = 29

2. Find the critical values of chi-squared at 95% confidence level:

3. From chi-squared tables, χ²α/2, 29 = 45.722, and χ²1-α/2, 29 = 16.047

4. Use the critical values to compute the confidence interval:

Lower limit: √ ( (n - 1)s² / χ²α/2 ) = √ ((29)(6²) / 45.722 ) = √ 174 / 45.722 ) = 1.92 × 2.49 = 4.78

Upper limit: √ ( (n - 1)s² / χ²1-α/2 ) = √ ((29)(6²) / 16.047 ) = √ 174 / 16.047 ) = 1.92 × 5.14 = 8.07

Therefore, the 95% confidence interval for the standard deviation of service times for all new automobiles at the dealership is 4.78 to 8.07 minutes, so the correct answer is b. 4.78 to 8.07.

Complete question: The manager of the service department of a local car dealership has noted that the service times of a sample of 30 new automobiles has a standard deviation of 6 minutes. A 95% confidence interval estimate for the standard deviation of the service times for all their new automobiles is

a. 16.05 to 45.72

b. 4.78 to 8.07

c. 2.93 to 6.31

d. 22.83 to 65.06

Eli, a pretty smart ape in the Salt Lake City zoo, has correctly picked the winner of the last 7 Super Bowls. Read about Eli's prowess at selecting winners here. Question. If Eli is guessing when he chooses a Super Bowl winner (that is, he mentally flips a fair coin to decide which team he chooses as the winner), what is the probability that Eli chooses 7 winners in a row

Answers

Answer:

0.0078125

Step-by-step explanation:

If the probability of flipping a fair coin (mentally) correctly for 1 row is 0.5, then the probability of flipping it correctly for 2 rows is

0.5 * 0.5 = 0.25

for 3 rows: 0.5*0.5*0.5 = 0.125

...

For 7 rows:

[tex]0.5*0.5*0.5*0.5*0.5*0.5*0.5 = 0.5^7 = 0.0078125[/tex]

The random variable X, representing the number of accidents in a certain intersection in a week, has the following probability distribution: x 0 1 2 3 4 5 P(X = x) 0.20 0.30 0.20 0.15 0.10 0.05 On average, how many accidents are there in the intersection in a week? a. 5.3 b. 2.5 c. 1.8 d. 0.30 e. 0.1667

Answers

Final answer:

The average number of accidents in the intersection in a week, given by the expected value of the random variable, is calculated by multiplying each possible value by its corresponding probability and summing these products. The resulting average is 1.8 accidents per week.

Explanation:

This question is about calculating the expected value or mean of a random variable. For a discrete random variable, we calculate the expected value by summing the product of each possible value and its corresponding probability.

Here, you should multiply the number of accidents (x) by the corresponding probability (P(X = x)), then sum these products. So, the calculation becomes:

0*0.20 + 1*0.30 + 2*0.20 + 3*0.15 + 4*0.10 + 5*0.05 = 0 + 0.30 + 0.40 + 0.45 + 0.40 + 0.25 = 1.80.

Therefore, on average, there are 1.8 accidents in the intersection in a week, so the answer is (c).

Learn more about Expected Value here:

https://brainly.com/question/35639289

#SPJ3

verify that the given point is on the curve and find the lines that are (a) tangent and (b) normal to the curve at the given point.
I. x2 + xy - y2 = 1, (2,3) (10)
II x2 + y2 = 25, (3,-4)
III. x3y2 = 9, (-1,3)
IV. y2 – 2x – 4y - 1 = 0, (-2, 1)

Answers

For each curve, plug in the given point [tex](x,y)[/tex] and check if the equality holds. For example:

(I) (2, 3) does lie on [tex]x^2+xy-y^2=1[/tex] since 2^2 + 2*3 - 3^2 = 4 + 6 - 9 = 1.

For part (a), compute the derivative [tex]\frac{\mathrm dy}{\mathrm dx}[/tex], and evaluate it for the given point [tex](x,y)[/tex]. This is the slope of the tangent line at the point. For example:

(I) The derivative is

[tex]x^2+xy-y^2=1\overset{\frac{\mathrm d}{\mathrm dx}}{\implies}2x+x\dfrac{\mathrm dy}{\mathrm dx}+y-2y\dfrac{\mathrm dy}{\mathrm dx}=0\implies\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{2x+y}{2y-x}[/tex]

so the slope of the tangent at (2, 3) is

[tex]\dfrac{\mathrm dy}{\mathrm dx}(2,3)=\dfrac74[/tex]

and its equation is then

[tex]y-3=\dfrac74(x-2)\implies y=\dfrac74x-\dfrac12[/tex]

For part (b), recall that normal lines are perpendicular to tangent lines, so their slopes are negative reciprocals of the slopes of the tangents, [tex]-\frac1{\frac{\mathrm dy}{\mathrm dx}}[/tex]. For example:

(I) The tangent has slope 7/4, so the normal has slope -4/7. Then the normal line has equation

[tex]y-3=-\dfrac47(x-2)\implies y=-\dfrac47x+\dfrac{29}7[/tex]

Final answer:

The points (2,3) and (-1,3) are not on their respective curves, so there are no tangent or normal lines to find. The point (3,-4) lies on the curve. The tangent line at (3,-4) has the equation y = (3/4)x - (25/4) and the normal line has the equation y = (-4/3)x - (8/3). The point (-2,1) also lies on the curve. The tangent line at (-2,1) has the equation y = (-3/2)x - 2 and the normal line has the equation y = (2/3)x + 7/3.

Explanation:

Question: Verify that the given point is on the curve and find the lines that are (a) tangent and (b) normal to the curve at the given point.

I. x2 + xy - y2 = 1, (2,3)

To verify if the given point (2,3) lies on the curve, substitute x=2 and y=3 into the equation:

22 + 2(2)(3) - 32 = 4 + 12 - 9 = 7 ≠ 1

Since the expression on the left side doesn't equal 1, the point (2,3) is not on the curve. Therefore, there are no tangent or normal lines to find.

II. x2 + y2 = 25, (3,-4)

To verify if the given point (3,-4) lies on the curve, substitute x=3 and y=-4 into the equation:

32 + (-4)2 = 9 + 16 = 25

Since the expression on the left side is equal to 25, the point (3,-4) lies on the curve. To find the tangent line, take the derivative of the equation and evaluate it at the point (3,-4). The derivative of the equation is:

2x + 2y(dy/dx) = 0

Substituting x=3 and y=-4 into the derivative equation:

2(3) + 2(-4)(dy/dx) = 0
6 - 8(dy/dx) = 0
-8(dy/dx) = -6
dy/dx = 6/8 = 3/4

The slope of the tangent line at the point (3,-4) is 3/4. Using the point-slope form of a line, the equation of the tangent line is:

y - (-4) = (3/4)(x - 3)

Simplifying the equation:

y + 4 = (3/4)x - (9/4)
y = (3/4)x - (9/4) - (16/4)
y = (3/4)x - (25/4)

To find the normal line, we need to find the negative reciprocal of the slope of the tangent line. The negative reciprocal of 3/4 is -4/3. Using the point-slope form of a line, the equation of the normal line is:

y - (-4) = (-4/3)(x - 3)

Simplifying the equation:

y + 4 = (-4/3)x + (12/3)
y = (-4/3)x + (4/3) - (12/3)
y = (-4/3)x - (8/3)

III. x3y2 = 9, (-1,3)

To verify if the given point (-1,3) lies on the curve, substitute x=-1 and y=3 into the equation:

(-1)3(3)2 = -1(9) = -9 ≠ 9

Since the expression on the left side doesn't equal 9, the point (-1,3) is not on the curve. Therefore, there are no tangent or normal lines to find.

IV. y2 – 2x – 4y - 1 = 0, (-2, 1)

To verify if the given point (-2,1) lies on the curve, substitute x=-2 and y=1 into the equation:

(1)2 – 2(-2) – 4(1) - 1 = 1 + 4 - 4 - 1 = 0

Since the expression on the left side is equal to 0, the point (-2,1) lies on the curve. To find the tangent line, take the derivative of the equation and evaluate it at the point (-2,1). The derivative of the equation is:

-2 - 4y(dy/dx) – 4 = 0

Substituting x=-2 and y=1 into the derivative equation:

-2 - 4(1)(dy/dx) – 4 = 0
-6 - 4(dy/dx) = 0
-4(dy/dx) = 6
dy/dx = 6/-4 = -3/2

The slope of the tangent line at the point (-2,1) is -3/2. Using the point-slope form of a line, the equation of the tangent line is:

y - 1 = (-3/2)(x + 2)

Simplifying the equation:

y - 1 = (-3/2)x - 3
y = (-3/2)x - 3 + 1
y = (-3/2)x - 2

To find the normal line, we need to find the negative reciprocal of the slope of the tangent line. The negative reciprocal of -3/2 is 2/3. Using the point-slope form of a line, the equation of the normal line is:

y - 1 = (2/3)(x + 2)

Simplifying the equation:

y - 1 = (2/3)x + 4/3
y = (2/3)x + 4/3 + 1
y = (2/3)x + 7/3

Learn more about Tangent and Normal Lines here:

https://brainly.com/question/35115203

#SPJ11

Anna goes to a frozen yogurt shop. She can choose from any of the following toppings: peanuts, caramel sauce, butterscotch chips, strawberries, and cookie dough bits. How many different variations of yogurt and toppings can be made?

Answers

Answer:

32 variations

Step-by-step explanation:

Anna can choose any number from 0 to 5 different toppings, which is the sum of the combinations of 0 out of 5, 1 out of 5, 2 out of 5, 3 out of 5, 4 out of 5 and 5, out of 5. The number of different variations is:

[tex]n = \frac{5!}{(5-0)!0!} + \frac{5!}{(5-1)!1!}+ \frac{5!}{(5-2)!2!} +\frac{5!}{(5-3)!3!} +\frac{5!}{(5-4)!4!} +\frac{5!}{(5-5)!5!}\\ n=1+5+10+10+5+1\\n=32[/tex]

There are 32 different variations of yogurt and toppings.

Final answer:

The question involves combinatorics, a branch of Mathematics. For each topping, Anna can decide to either have it or not, generating 2^5 possible combinations. Subtracting the option with no toppings, there are 31 different yogurt and toppings combinations.

Explanation:

When Anna goes to the frozen yogurt shop, she has five options for toppings: peanuts, caramel sauce, butterscotch chips, strawberries, and cookie dough bits. In this scenario, she could have her yogurt with any possible combination of these five toppings. We're entering the domain of combinatorics, a branch of Mathematics. For each topping, Anna can decide to either have it or not. Therefore, the problem is essentially a set of five binary decisions, which means there are 2^5 possible outcomes. However, one of these possibilities is that she chooses no toppings at all, leaving us with 2^5 - 1 = 31 different combinations of toppings that she can choose.

Learn more about Combinatorics here:

https://brainly.com/question/32015929

#SPJ11

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to cone back to the skipped part. The half-life of cesium-137 is 30 years. Suppose we have a 30 mg sample. Exercise
(a) Find the mass that remains after t years. Step 1 Let y(t) be the mass (in mg) remaining after t years. Then we know the following Stop 2 Since the half-life is 30 years, then y(30) - More Information m Your answer cannot be understood or graded Submit Skie (you cannot come back) Exercise
(b) How much of the sample remains after 20 years? Step 1 After 20 years we have the following (20) 30 mg (Round your answer to two decimal places.)

Answers

Answer:

(a)y(t)=30exp(-0.0231t)

(b)y(20)=18.9mg

Step-by-step explanation:

At a particular time t, the mass of a radioactive substance like Cesium-137 is governed by the equation:

N=N₀e⁻ᵏᵗ where k=ln 2/half life

(a)Mass that remains after t years

Half Life= 30 years

k= ln2/30=0.0231

Initial Mass, N₀=30mg

Therefore the mass N that remains at time t

N=N₀e⁻ᵏᵗ

N=30exp(-0.0231t)

y(t)=30exp(-0.0231t)

(b)We want to determine how much of the sample remains after 20 years.

At t=20 years

y(t)=30exp(-0.0231t)

y(20)=30exp(-0.0231X20)

=30 X 0.63

y(20)=18.9mg

Final answer:

23.81 mg of the original 30 mg sample remaining, rounded to two decimal places.

Explanation:

The half-life of a radioactive isotope like cesium-137 is time it takes for half of the original amount of the substance to decay. For cesium-137, this period is 30 years. To find out how much of a sample remains after a specific amount of time, such as 20 years in the given question, we use the decay formula.

Step 1: Let y(t) be the mass remaining after t years.
Step 2: The decay formula is y(t) = y(0) · (1/2)^(t/half-life), where y(0) is the initial mass and t is the time in years.

For cesium-137 after 20 years: y(20) = 30 mg · (1/2)^(20/30).
Calculating the remaining mass: y(20) = 30 mg · (1/2)^(2/3) ≈ 30 mg · 0.7937 ≈ 23.81 mg.

Write the given differential equation in the form L(y) = g(x), where L is a linear differential operator with constant coefficients. If possible, factor L. (Use D for the differential operator.) y(4) + 8y' = 6

Answers

Answer:

The differential equation will be like the one shown below

Step-by-step explanation:

Data:

Let the equation be given as:

y(4) + 8y' = 6

The equation will be expressed linearly as follows:

y(4) + 8[tex]\frac{dy}{dx} = 6[/tex]

[tex]8\frac{dy}{dx}+ 4y = 6[/tex]

This is the linear form of the differential equation.

Answer:

Step-by-step explanation:

Given the differential equation

y^(4) + 8y' = 6

We want to write this in the form

L(y) = g(x)

Where L is a linear differential operator with constant coefficient.

A linear differential operator of the nth order is a linear combination of derivative operators up to n.

L = D^n + a_1D^(n-1) + a_2D^(n-2) + ... + a_n,

defined by

Ly = y^n + a_1y^(n-1) + a_2y^(n-2) + ... + a_(n-1)y' + a_ny

Where a_i are continuous functions of x.

Now, we have

y^(4) + 8y' = 6

Let d/dx = D

Then

D^4 y + 8Dy = 6

D(D³ + 8)y = 6

Consider

D(D³ + 8)y = 0

The auxiliary equation is

m(m³ + 8) = 0

m = 0

Or

m³ + 8 = 0

=> m³ = -8

=> m = -2

The complimentary solution is

y = C1 + (C2 + C3x + C4x²)e^(-2x)

The particular integral is

y_p = Ax

y' = A

y'' = y''' = y^(4) = 0

Using these

0 + 8A = 6

A = 6/8 = 3/4

So

y = C1 + (C2 + C3x + C4x²)e^(-2x) + 3/4

2.10 Guessing on an exam: In a multiple choice exam, there are 6 questions and 4 choices for each question (a, b, c, d). Nancy has not studied for the exam at all and decides to randomly guess the answers. What is the probability that:

Answers

Answer:

a) [tex] p = (3/4)^5 *(1/4) =0.0593[/tex]

b) [tex] P(X=6) = (6C6) (0.25)^6 (1-0.25)^{6-6}= 0.000244[/tex]

c) [tex] P(X \geq 1)[/tex]

And we can use the complement rule like this:

[tex]P(X \geq 1) = 1-P(X<1) = 1-P(X=0) [/tex]

[tex] P(X=0) = (6C0) (0.25)^0 (1-0.25)^{6-0}= 0.17798[/tex]

And replacing we have:

[tex]P(X \geq 1) = 1-P(X<1) = 1-P(X=0) =1-0.17798 = 0.822[/tex]

Step-by-step explanation:

Previous concepts

A Bernoulli trial is "a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted". And this experiment is a particular case of the binomial experiment.

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

The probability mass function for the Binomial distribution is given as:  

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]  

Where (nCx) means combinatory and it's given by this formula:  

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]  

The complement rule is a theorem that provides a connection between the probability of an event and the probability of the complement of the event. Lat A the event of interest and A' the complement. The rule is defined by: [tex]P(A)+P(A') =1[/tex]

We can model the number of correct questions answered with a binomial distribution [tex] X \sim Binom(n = 6, p = 1/4=0.25)[/tex]

Solution to the problem

Assuming the following questions:

a) the first question she gets right is the 6th question?  

For this case we want the first 5 questions incorrect and the last one correct, assuming independence we have:

[tex] p = (3/4)^5 *(1/4) =0.0593[/tex]

(b) she gets all of the questions right?

For this case we want all the questions right so then we want this:

[tex] P(X=6) = (6C6) (0.25)^6 (1-0.25)^{6-6}= 0.000244[/tex]

(c) she gets at least one question right?

For this case we want this probability:

[tex] P(X \geq 1)[/tex]

And we can use the complement rule like this:

[tex]P(X \geq 1) = 1-P(X<1) = 1-P(X=0) [/tex]

[tex] P(X=0) = (6C0) (0.25)^0 (1-0.25)^{6-0}= 0.17798[/tex]

And replacing we have:

[tex]P(X \geq 1) = 1-P(X<1) = 1-P(X=0) =1-0.17798 = 0.822[/tex]

Final answer:

The probability of guessing all 6 answers correctly in a multiple choice exam is 1/4096.

Explanation:

In mathematics, especially in the field of probability, the question describes a situation in which the answer to each of the questions on the exam is guessed at random. To calculate the probability of correctly guessing the answer to an individual question with 4 choices, we need to remember that probability is calculated as a ratio of the favorable outcomes to the total number of outcomes. In this case, each question has 1 correct answer and 3 incorrect answers, so the probability of correctly guessing an answer is 1/4 or 0.25 for each question.

However, if we were to calculate the probability of correctly guessing all the answers, such a probability would be significantly smaller. Because the answers to the questions are guessed independently, their probabilities multiply. Thus, the probability of correctly guessing the answer to all 6 questions is (1/4)^6 = 0.000244140625.

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ3

Consider the following random sample from a normal population: 14, 10, 13, 16, 12, 18, 15, and 11. What is the 95% confidence interval for the population variance?

Answers

Final answer:

The 95% confidence interval for the population variance of the provided sample is between 2.34 and 24.87. This is calculated using the chi-square distribution, by finding the sample variance and then applying the chi-square formulas for each bound of the confidence interval.

Explanation:

The question is asking for a 95% confidence interval for the variance of a normal population given a random sample. We would first utilize the chi-square distribution, specifically the chi-square statistic (χ^2), which measures the discrepancy between the observed data and what we would expect if the null hypothesis were true. The chi-square statistic is calculated as: χ^2 = (n-1) * (sample variance) / (population variance).

In this question, we are being asked to find the confidence interval for the population variance, but we are given a sample. From our sample we calculate the sample variance and then use the chi-square distribution to find the confidence interval for the population variance.

To calculate the sample variance: Add up the squared deviation of each number from the mean and divide by n-1 for the sample variance. For this sample, the variance is 7.67.

For the chi-square distribution, the degrees of freedom (df) will be n-1, in this case, 7. The confidence interval for the variance is (df * s^2 / χ^2_right, df * s^2 / χ^2_left), where χ^2_right and χ^2_left represent the right and left critical values for the chi-square distribution respectively. For a 95% confidence interval with 7 degrees of freedom, the right critical value is 2.167 and the left critical value is 16.013. Substituting in our values, we get the confidence interval to be (7.67*7/16.013, 7.67*7/2.167). This simplifies to (2.34, 24.87).

Therefore, we estimate with 95 percent confidence that the true value of the population variance is between 2.34 and 24.87.

Learn more about 95% Confidence Interval here:

https://brainly.com/question/30265803

#SPJ12

The 95% confidence interval for the population variance of the given sample is calculated using Chi-Square distribution. The steps include finding the sample mean, sample variance, and then applying the Chi-Square values to get the interval. The final interval is approximately (1.179, 8.703).

To calculate the 95% confidence interval for the population variance from the given sample data (14, 10, 13, 16, 12, 18, 15, and 11), we need to follow these steps:

Calculate the sample mean [tex]\bar{X}[/tex]
Sample mean = (14 + 10 + 13 + 16 + 12 + 18 + 15 + 11) / 8

= 13.625

Calculate the sample variance (s^2):
First, find the squared differences from the mean: (14-13.625)², (10-13.625)², ..., (11-13.625)².
Sum of squared differences = 18.875
Sample variance (s²) = 18.875 / 7

≈ 2.696

Use Chi-Square distribution to find the interval:
Degrees of freedom (df) = n - 1 = 7
For 95% confidence and df = 7, from Chi-Square table:Compute the confidence interval:

Lower limit = (df * s²) / χ² (0.975,7)

≈ (7 * 2.696) / 16.012

≈ 1.179
Upper limit = (df * s²) / χ² (0.025,7)

≈ (7 * 2.696) / 2.167

≈ 8.703

Thus, the 95% confidence interval for the population variance is approximately (1.179, 8.703).

The Bruin Stock Fund sells Class A shares that have a front-end load of 4.8 percent, a 12b-1 fee of 0.42 percent, and other fees of 1.3 percent. There are also Class B shares with a 5 percent CDSC that declines 1 percent per year, a 12b-1 fee of 1.95 percent, and other fees of 1.3 percent. Assume the portfolio return is 11 percent per year. What is the value of $1 invested in each share class if your investment horizon is 3 years? Class A $ Class B $ What if your investment horizon is 20 years?

Answers

Answer:

Step-by-step explanation:

Investment Amount Net of Front end Load (1 - 0.048) = $0.952

The value of $1 invested in each share class if investment horizon is 3 years

After 3 years: (For every dollar invested)Class A: 0.952 x (1+0.11-0.0042-0.013)^3 = $1.24Class B: (1 x (1+0.11-0.0195-0.013)^3) x (1-0.02) = $1.23

SIMILARLY,

The value of $1 invested in each share class if investment horizon is 20 years

After 20 years: (For every dollar invested)Class A: 0.952 x (1+0.11-0.0042-0.013)^20 = $5.62Class B: 1 x (1+0.11-0.0195-0.013)^20 = $4.45

Answer:

Part 1 :

The total investment for,

Class A =  $1.24

Class B = $ 1.23

Part 2:

The total investment for,

Class A = $ 5.62

Class B = $ 4.45

           

Step-by-step explanation:

The amount of investment Net of Front end Load,

[tex]= 1 - 0.048[/tex]

[tex]= $0.952[/tex]

Part 1:

If the investment horizon is 3 years, the value of $1 invested in each share class for Class A become,

[tex]= (0.952)(1 + 0.11 - 0.0042 - 0.013)^{3}[/tex]

[tex]= $1.24[/tex]

The value of $1 invested in each share class for Class A is $1.24.

If the investment horizon is 3 years, the value of $1 invested in each share class for Class B become,

[tex]= ((1)(1 + 0.11 - 0.0195 - 0.013)^{3} )(1-0.02)[/tex]

[tex]= $1.23[/tex]

The value of $1 invested in each share class for Class B is $1.23.

Part 2:

If the investment horizon is 20 years, the value of $1 invested in each share class for Class A become,

[tex]= (0.952)(1 + 0.11 - 0.0042 - 0.013)^{20}[/tex]

[tex]= 5.62[/tex]

The value of $1 invested in each share class for Class A is $5.62.

If the investment horizon is 20 years, the value of $1 invested in each share class for Class B become,

[tex]= (1)(1 + 0.11 - 0.0195 - 0.013)^{20}[/tex]

[tex]= $4.45[/tex]

The value of $1 invested in each share class for Class B is $4.45.

When designing an experiment to study tree growth, the following four treatments are used: none, irrigation only, fertilization only, irrigation and fertilization. A row of 10 trees is used in the study and each tree is randomly assigned to one of the four treatments. How many different treatment arrangements are possible

Answers

Answer:

286 different treatment arrangements

Step-by-step explanation:

This is a combination problem.

We want to share 10 trees amongst 4 experimental groups.

13C3 = 286 different treatment arrangements.

There are 286 different treatment arrangements of trees possible.

What is tree treatment ?

The tree treatment includes the medical aid of trees in the growth and development such as fertilizers and various chemical that allows for their development.

As per the question the experiment was conducted to study the tree's growth and the treatments were used that included irrigation, fertilization. The row of 10 trees was used in the study and each tree was randomly taken.

This is a combination problem. About  10 trees are given that have 4 experimental groups. Thus the 13 C3 = 286 different treatment arrangements.

Find out more information about the treatments.

brainly.com/question/13648997.

Let X denote the amount of time a book on two-hour reserve is actually checked out, and suppose the cdf is the following.



0 , x<0

f(x) = ((x^2)/4) , 0 <= x <= 2

1 , 2<= x


Use the cdf to obtain the following. (If necessary, round your answer to four decimal places.)

(a) P(X %u2264 1)

(b) P(0.5 %u2264 X %u2264 1)

(c) P(X > 1.5)

(d) The median checkout duration [solve 0.5 = F(mew)]

(e) Use F'(x) to obtain the density function f(x)
(f) Calculate E(X)

(g) Calculate V(X) and %u03C3x
(h) If the borrower is charged an amount h(X) = X2 when checkout duration is X, compute the expected charge

E[h(X)].

Answers

Final answer:

This is a set of solutions for a series of problems related to a given cumulative distribution function of a random variable X. The answers provide ways to calculate various probabilities, the median, the density function, the expected value, the variance and standard deviation, and the expected charge.

Explanation:

Given that the cumulative distribution function (cdf) of the random variable X, which denotes the amount of time a book on two-hour reserve is checked out, is f(x) = (x^2)/4 for 0 <= x <= 2.

(a) P(X <= 1) can be obtained by substituting x = 1 into the cdf, which yields (1^2)/4 = 0.25.

(b) P(0.5 <= X <= 1) is the probability that x is between 0.5 and 1. This can be calculated by subtracting P(X <= 0.5) from P(X <= 1), giving (1^2)/4 - (0.5^2)/4 = 0.1875.

(c) P(X > 1.5) can be obtained by subtracting P(X <= 1.5) from 1, giving 1 - (1.5^2)/4 = 0.375.

(d) For the median, we need to solve (m^2)/4 = 0.5, yielding a median of sqrt(2).

(e) The density function f(x) is the derivative of the cdf, and so we need to calculate F'(x). This gives f(x) = x/2.

(f) The expected value E(X) can be calculated as ∫xf(x)dx from 0 to 2, yielding 4/3.

(g) The variance V(X) can be calculated as ∫(x-E(x))^2*f(x)dx from 0 to 2, yielding 4/45, and the standard deviation σx is the square root of the variance, which is 2sqrt(10)/15.

(h) If the borrower is charged an amount h(X) = X^2 when the checkout duration is X, the expected charge E[h(X)] can be calculated as ∫x^2f(x) dx from 0 to 2, yielding 4/5.

Learn more about Cumulative Distribution Function here:

https://brainly.com/question/30402457

#SPJ12

In the following equations, based on the variable costing income statement, identify the items designated by X: a. Net Sales – X = Manufacturing Margin b. Manufacturing Margin – X = Contribution Margin c. Contribution Margin – X = Income from Operations a. b. c.

Answers

Answer:

A = Total cost

B = Variable cost

C = Fixed cost

Step-by-step explanation:

A - Manufacturing cost includes all the cost directly and/or indirectly involved in the production process. It includes the variable component and fixed component, which represent the total cost. Hence, to arrive at the manufacturing margin, the total cost is subtracted from the net sales. The results us the manufacturing margin.

B - Contribution margin only includes and ultimately works with the individual variable element of cost, unlike the manufacturing margin. Hence, to arrive at the contribution margin, the variable cost element is subtracted from the manufacturing margin.

C - To arrive at the income from operations, the fixed cost element is subtracted from the contribution margin. With this, our income from operations can be derived.

The average age of CEOs is 56 years. Assume the variable is normally distributed. If the SD is four years, find the probability that the age of randomly selected CEO will be between 50 and 55 years old.

Answers

Answer: the probability that the age of randomly selected CEO will be between 50 and 55 years old is 0.334

Step-by-step explanation:

Assuming that the age of randomly selected CEOs is normally distributed, we would apply the formula for normal distribution which is expressed as

z = (x - µ)/σ

Where

x = age of randomly selected CEOs.

µ = mean age

σ = standard deviation

From the information given,

µ = 56 years

σ = 4 years

We want to find the probability that the age of randomly selected CEO will be between 50 and 55 years old. It is expressed as

P(50 ≤ x ≤ 55)

For x = 50,

z = (50 - 56)/4 = - 1.5

Looking at the normal distribution table, the probability corresponding to the z score is 0.067

For x = 55,

z = (55 - 56)/4 = - 0.25

Looking at the normal distribution table, the probability corresponding to the z score is 0.401

Therefore,

P(50 ≤ x ≤ 55) = 0.401 - 0.067 = 0.334

For this assignment, your group will utilize the preliminary data collected in the Topic 2 assignment. Considering the specific requirements of your scenario, complete the following steps using Excel. The accuracy of formulas and calculations will be assessed.

Select the appropriate discrete probability distribution. If using a binomial distribution, use the constant probability from the collected data and assume a fixed number of events of 20. If using a Poisson distribution, use the applicable mean from the collected data.
Identify the following: the probability of 0 events occurring, the probability of <5 events occurring, and the probability of ≥10 events occurring.
Using the mean and standard deviation for the continuous data, identify the applicable values of X for the following: Identify the value of X of 20% of the data, identify the value of X for the top 10% of the data, and 95% of the data lies between two values of X.

How would I Calculate and do #3 and can it be explained step by step so I can better understnd?

Answers

Answer:

See the attached file.

Step-by-step explanation:

see the attached file for explanation.

A technician plans to test a certain type of resin developed in a laboratory to determine the nature of the time it takes before bonding takes place. It is known that the time to bonding is normally distributed with a mean of 4.5 hours and a standard deviation of 1.5 hours. It will be considered an undesirable product if the bonding time is either less than 2 hours or more than 6 hours. a. What is the probability that the bonding time will be less than 2 hours? b. What is the probability that the bonding time will be more than 6 hours? c. How often would the performance be considered undesirable (in a value of probability)? d. Between what two times (equally before the mean and equally after the mean) accounts for the a drying time of 95%?

Answers

Answer:

Step-by-step explanation:

Hello!

The objective is to test if the new type of resin has a bonding time between 2 and 6 hs, less than 2 hs or more than 6 hs makes it undesirable.

The bonding time of resin is normally distributed with mean μ= 4.5 hs and standard deviation δ= 1.5 hs.

a. What is the probability that the bonding time will be less than 2 hours?

Symbolically:

P(X<2)

Using thestandard normal distribution you have to standardize this value to reach the corresponding probability using Z= (X-μ)/δ ~N(0;1)

P(Z<(2-4.5)/1.5)= P(Z<-1.67)= 0.047

b. What is the probability that the bonding time will be more than 6 hours?

P(X>6)= 1 - P(X≤6)

1 - P(Z≤(6-4.5)/1.5)= 1 - P(Z≤1)= 1 - 0.841= 0.159

c. How often would the performance be considered undesirable (in a value of probability)?

The performance will be considered undesirable when the bonding time is less than 2 hs or when the time is higher than 6 hs,

P(X<2) + P(X>6)= 0.047 + 0.159= 0.206

20.6% of the new resin will be considered undesirable.

d. Between what two times (equally before the mean and equally after the mean) accounts for the a drying time of 95%?

I'll start working with the standard normal distribution and then transform the values to X.

Considering that the mean if the standard normal distribution is zero and that the distribution is symmertical regarding it's mean.

You need to look for two values of Z equidistant from the mean that surround 1-α: 0.95 of the distribution, leaving the remaining α: 0.05 outside, equally distributed in two tails α/2: 0.025 (See attachment)

These two value would be the same but with different sign, symbolically:

P(-d≤Z≤d)= 0.95

We can  say that the accumulated probability until "d" is

P(Z≤d)= (1-α)+(α/2)

P(Z≤d)= 0.95+0.025= 0.975

And the accumulated  until "-d" is:

P(Z≤-d)= α/2

P(Z≤-d)= 0.025

Now you look in the table of the standard normal distribution for the corresponding Z values:

P(Z≤d)= 0.975 ⇒ d= 1.965

P(Z≤-d)= 0.025 ⇒ -d= -1.965

Now for each value you have to use the variable information to reverse the standardization and reach the corresponding bonds of the interval:

Upper bond:

Z= (d-μ)/δ

d= (Z*δ)+μ

d= (1.965*1.5)+4.5

d= 7.45

Lower bond

Z= (-d-μ)/δ

-d= (Z*δ)+μ

-d= (-1.965*1.5)+4.5

-d= 1.55

95% of the bonding time will be between 1.55 and 7.45 hs

I hope it helps!

A researcher collected a sample of 938 low-income women and asked about their material well-being. The researcher was interested in the effects of two independent variables:
current employment status (no, yes), and if they had received cash welfare assistance in the past (no, yes).
More specifically, the researcher hypothesized that the effect of current employment on material well-being would be different depending on whether the women had received cash for welfare in the past.
What type of statistical analysis is appropriate for the researcher’s hypothesis?

a) ANOVA
b) ANCOVA 2-Way
c) ANOVA 2-Way
d) ANCOVA

Answers

Final answer:

The correct statistical analysis for assessing the effects of two independent variables on a single outcome and understanding interactions between the variables is c) ANOVA 2-Way.

Explanation:

The appropriate statistical analysis for the researcher’s hypothesis, which involves understanding the effects of two independent variables (current employment status and prior cash welfare assistance) on a dependent variable (material well-being) is a two-way ANOVA. This statistical method is used to analyze the impact of two independent categorical variables on a continuous outcome and to interact between these variables.

A two-way ANOVA, also known as factorial ANOVA, is particularly useful in this case as the researcher is interested not just in the separate effect of each variable, but also in the potential interaction between current employment status and the experience of receiving cash welfare in the past. This interaction term allows the researcher to understand if the effect of employment status on material well-being differs based on whether the women had received cash welfare.

Therefore, the correct answer to the question is: c) ANOVA 2-Way

The points (x, y) represented in the table below lie on a straight line. When the equation of this line is written in the form y = Ax + B, what is the value of A + B?

Answers

Final answer:

The equation y = Ax + B represents a straight line. In the given example, 'A' is the slope of the line which is 3, and 'B' is the y-intercept which is 9. Hence, the sum of 'A' and 'B', or A + B, equals 12.

Explanation:

The student's question pertains to the equation of a straight line, which in slope-intercept form is y = mx + b, where 'm' represents the slope and 'b' represents the y-intercept. However, the equation mentioned in the question was written as y = Ax + B, where 'A' represents the slope and 'B' represents the y-intercept (equivalent to 'm' and 'b', respectively, in the more common form).

In the instance given, A (the slope) is 3 and B (the y-intercept) is 9. Therefore, when you add the values of A and B together as the question asked, the calculation is 3 + 9. So, A + B equals 12. In essence, the equation represents a line that, for every horizontal movement (x), the vertical movement (y) increases by 3 times the x value, and it intersects the y-axis at 9.

Learn more about Linear Equations here:

https://brainly.com/question/32634451

#SPJ12

The calculated value of A + B is -15/4 from the equation y = 3/4x - 9/2

How to determine the calculated value of A + B

From the question, we have the following parameters that can be used in our computation:

The graph

A linear equation is represented as

y = mx + c

Where

c = y when x = 0

m = slope

Using the above as a guide, we have the following:

m = (-6 + 3)/(-2 - 2)

m = 3/4

So, we have

y = 3/4x + c

Using the points, we have

3/4 * 6 + c = 0

Evaluate

c = -9/2

So, we have

y = 3/4x - 9/2

So, we have

A + B = 3/4 - 9/2

Evaluate

A + B = -15/4

Hence, the value of A + B is -15/4

Read more about linear relation at

brainly.com/question/29685213

#SPJ3

If sin⁡ θ=− 8/17 and 270°<θ<360°, what is cos⁡ θ?

Answers

Final answer:

To determine cos θ when sin θ is -8/17 and θ is in the fourth quadrant, use the Pythagorean identity; the result is cos θ = 15/17.

Explanation:

Given the information that sin θ is -8/17 and the angle θ is between 270° and 360°, we need to determine the cos θ. In the given range, θ lies in the fourth quadrant where sine is negative and cosine is positive.

Using the Pythagorean identity sin2 θ + cos2 θ = 1, we can find cos θ. Since sin θ = -8/17, we have:

sin2 θ = (-8/17)2 = 64/289

cos2 θ = 1 - sin2 θ = 1 - 64/289 = 225/289

cos θ = √(225/289)

cos θ = 15/17 (since cosine is positive in the fourth quadrant)

Therefore, cos θ = 15/17.

Biologists stocked a lake with 160 fish and estimated the carrying capacity (the maximal population for the fish of that species in that lake) to be 4,000. The number of fish tripled in the first year. (a) Assuming that the size of the fish population satisfies the logistic equation, find an expression for the size of the population after t years. P

Answers

Answer:

Therefore logistic equation is

[tex]P(t) = \frac{4000}{1+ 24(\frac{36}{11})^t}[/tex]

Step-by-step explanation:

The logistic equation is

[tex]\frac{dP}{dt}= kP(1-\frac{P}{k})[/tex]

The analytic solution is

[tex]P(t)= \frac{K}{1+Ae^{-kt}}[/tex] ; [tex]A=\frac{K-P_0}{P_0}[/tex]

P(t) = the population at time t.

K = the carrying capacity = 4,000

k= constant proportionality

t= time

[tex]P_0[/tex] = 160.

The number of fish tripled in the first year.

P(1) = 3×160 =480

[tex]A= \frac{4000-160}{160}[/tex] =24

[tex]\therefore P(t) =\frac{4000}{1+24 e^{-kt}}[/tex] .....(1)

When t= 1 , P(1)=480

[tex]480=\frac{4000}{1+24 e^{-k}}[/tex]

[tex]\Rightarrow 1+24e^{-k} =\frac{4000}{480}[/tex]

[tex]\Rightarrow 24e^{-k} =\frac{4000}{480} -1[/tex]

[tex]\Rightarrow 24e^{-k}= \frac{25}{3}-1[/tex]

[tex]\Rightarrow 24e^{-k}=\frac{22}{3}[/tex]

[tex]\Rightarrow e^{-k} = \frac{22}{3\times 24}[/tex]

[tex]\Rightarrow e^{-k} = \frac{11}{36}[/tex]

taking ln both sides

[tex]\Rightarrow ln e^{-k} =ln \frac{11}{36}[/tex]

[tex]\Rightarrow {-k} = ln\frac{11}{36}[/tex]

[tex]\Rightarrow k = -ln\frac{11}{36}[/tex]

Putting the value of k in equation (1)

[tex]P(t)=\frac{4000}{1+24e^{ln\frac{36}{11}t}}[/tex]

[tex]\Rightarrow P(t) = \frac{4000}{1+24 (e^{ln\frac{36}{11}})^t}[/tex]

[tex]\Rightarrow P(t) = \frac{4000}{1+ 24(\frac{36}{11})^t}[/tex]

Therefore logistic equation is

[tex]P(t) = \frac{4000}{1+ 24(\frac{36}{11})^t}[/tex]

According to an​ article, 47​% of adults have experienced a breakup at least once during the last 10 years. Of 9 randomly selected​ adults, find the probability that the​ number, X, who have experienced a breakup at least once during the last 10 years is a

Answers

Answer:

a) [tex]P(X=5)=(9C5)(0.47)^5 (1-0.47)^{9-5}=0.228[/tex]

b) [tex]P(X=0)=(9C0)(0.47)^0 (1-0.47)^{9-0}=0.0033[/tex]

And replacing we got:

[tex]P(X \geq 1)= 1-P(X<1) = 1-P(X=0)=1-0.0033= 0.9967[/tex]

c) [tex]P(X=4)=(9C4)(0.47)^4 (1-0.47)^{9-4}=0.257[/tex]

[tex]P(X=5)=(9C5)(0.47)^5 (1-0.47)^{9-5}=0.228[/tex]

[tex]P(X=6)=(9C6)(0.47)^6 (1-0.47)^{9-6}=0.135[/tex]

And adding we got:

[tex] P(4 \leq X \leq 6)= 0.257+0.228+0.135=0.620 [/tex]

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Solution to the problem

Let X the random variable of interest, on this case we now that:

[tex]X \sim Binom(n=9, p=0.47)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

Assuming the following questions:

a. exactly five

For this case we can use the probability mass function and we got:

[tex]P(X=5)=(9C5)(0.47)^5 (1-0.47)^{9-5}=0.228[/tex]

b. at least one

For this case we want this probability:

[tex] P(X \geq 1)[/tex]

And we can use the complement rule and we got:

[tex]P(X \geq 1)= 1-P(X<1) = 1-P(X=0)[/tex]

[tex]P(X=0)=(9C0)(0.47)^0 (1-0.47)^{9-0}=0.0033[/tex]

And replacing we got:

[tex]P(X \geq 1)= 1-P(X<1) = 1-P(X=0)=1-0.0033= 0.9967[/tex]

c. between four and six, inclusive.

For this case we want this probability:

[tex] P(4 \leq X \leq 6)[/tex]

[tex]P(X=4)=(9C4)(0.47)^4 (1-0.47)^{9-4}=0.257[/tex]

[tex]P(X=5)=(9C5)(0.47)^5 (1-0.47)^{9-5}=0.228[/tex]

[tex]P(X=6)=(9C6)(0.47)^6 (1-0.47)^{9-6}=0.135[/tex]

And adding we got:

[tex] P(4 \leq X \leq 6)= 0.257+0.228+0.135=0.620 [/tex]

It seems like your question was cut off at the end. You did not specify the exact number of adults out of the 9 randomly selected ones that have experienced a breakup. However, I can help you understand how to approach this kind of problem generally using the binomial probability formula.
When we randomly select adults and we are interested in those who have experienced a breakup, with a probability of 47% (or 0.47), this can be modeled as a binomial distribution because:
1. There are a fixed number of trials (n = 9).
2. Each trial has only two possible outcomes (experienced a breakup or did not experience a breakup).
3. The probability of experiencing a breakup is the same for each trial (p = 0.47).
4. Each trial is independent of the others.
The probability of exactly x adults (out of 9) having experienced a breakup can be calculated using the binomial probability formula:
P(X = x) = (n choose x) * p^x * (1 - p)^(n - x)
Where:
- "n choose x" is the binomial coefficient C(n, x) = n! / [x!(n - x)!],
- p is the probability of success on any given trial (in this case, 0.47),
- x is the number of successes out of n trials,
- n! denotes the factorial of n,
- x! denotes the factorial of x.
Because you didn't specify the value of x in your question, I can't give you the exact probability. However, if you give me a specific number of adults who have experienced a breakup (x), I can provide the calculation for that scenario.
For now, if you'd like to calculate this probability for a certain number of adults x, you would plug your values for x and n into the formula and calculate accordingly.
Let's say you wanted to find the probability that exactly 4 out of 9 adults have experienced a breakup, for example. You would calculate it as follows:
P(X = 4) = C(9, 4) * (0.47)^4 * (0.53)^(9 - 4)
         = 126 * (0.47)^4 * (0.53)^5
C(9, 4) is the number of combinations of 9 things taken 4 at a time, which is 9! / (4!(9 - 4)!) = 126.
You would then calculate (0.47)^4, (0.53)^5, and multiply these by 126 to get the probability.
For other values of x, you would undergo a similar process, using the appropriate value of x in the formula.

Mark each statement as True or False?
a) The sine rule is used when we are given either a) two angles and one side, or b) two sides and a non-included angle.
b) The cosine rule is used when we are given either a) three sides or b) two sides and the included angle.

Answers

Answer:

a.True

b. True

Step-by-step explanation:

a. #Given two angles and one side

Let the given angles be A° and B° and side x, the angle and two remaining sides can be calculated as:

[tex]\frac{a}{sin \ A\textdegree}=\frac{b}{sin \ B\textdegree}=\frac{x}{sin \ (180-A-B)\textdegree}[/tex]

#Given two sides and one non-included angle.

Let the given angle A°  and sides x and y, the angle  remaining sideand angle can be calculated as:

[tex]\frac{x}{sin \ A\textdegree}=\frac{y}{sin \ B}=\frac{c}{sin \ C\textdegree}[/tex]

b.#Given three sides

Let the given sides be a, b and c:

The angles can be calculated as:

[tex]a^2=b^2+c^2-2bc\ cos \ A\\\\b^2=a^2+c^2-2ac\ cos \ C\\\\c^2=a^2+b^2-2ab\ cos \ B[/tex]

#Given  two sides and the included angle

Let the sides given be c, b and the angle A, the remaining sides can be calculated by substituting values in the equation;

[tex]a^2=b^2+c^2-2bc\ cos \ A\\\\[/tex]

An insurance company has 1,000 policies on men of age 50. The company estimates that the probability that a man of age 50 dies within a year is .01. Estimate the number of claims that the company can expect from beneficiaries of these men within a year.

Answers

Answer:

the expected number of claims within a year is 10

Step-by-step explanation:

since the life expectancy of each man is independent from others, then the random variable X= number of man of 50 years who die within a year , follows a binomial distribution. Thus the expected value of X is given by

E(X) = n*p

where

p= probability that a man of age 50 dies within a year = 0.01

n = number of policies on men of age 50 = 1000

replacing values

E(X) = n*p = 0.01 * 1000 = 10

therefore the expected number of claims within a year is 10

Using the binomial distribution, it is found that the estimate of the number of claims that the company can expect from beneficiaries of these men within a year is of 10.

For each men, there are only two possible outcomes, either there is a claim(they die), or there is not a claim. The probability of a men dying is independent of any other men, hence, the binomial distribution is used to solve this question.

Binomial probability distribution

Probability of exactly x successes on n repeated trials, with p probability, and has expected value given by:

[tex]E(X) = np[/tex]

In this problem:

There are 1000 policies, hence [tex]n = 1000[/tex].Each of them has a 0.01 probability of dying, hence causing a claim, which means that [tex]p = 0.01[/tex].

Then:

[tex]E(X) = 1000(0.1) = 10[/tex]

The expected number of claims is of 10.

To learn more about the binomial distribution, you can take a look at https://brainly.com/question/25642476

Consider three independent rolls of a fair six-sided die. (a) What is the probability that the sum of the three rolls is 11? (b) What is the probability that the sum of the three rolls is 12? (c) In the seventeenth century, Galileo explained the experimental observation that a sum of 10 is more frequent than a sum of 9, even though both 10 and 9 can be obtained in six distinct ways. Can you retrace Galileo’s thinking?

Answers

Answer:

a) 1/8 b) 1/12 c) probability of obtaining sum of 9 in a single roll of die without having the same number repeated twice is less than than of sum of 10  

Step-by-step explanation:

Probability of any digit in a single roll = 1/6

a) sum of 11 will be obtained if each roll has the following result

1 and 4 and 6, 1 and 5 and 5, 1 and 6 and 4, 4 and 1 and 6, 4 and 6 and 1, 6 and 4 and 1, 6 and 1 and 4, 5 and 1 and 5, 5 and 5 and 1, 2 and 5 and 4, 2 and 4 and 5, 4 and 2 and 5, 4 and 5 and 2, 5 and 2 and 4, 5 and 4 and 2, 2 and 6 and 3, 2 and 3 and 6, 3 and 2 and 6, 3 and 6 and 2, 6 and 3 and 2, 6 and 2 and 3, 3 and 3 and 5, 3 and 5 and 3, 5 and 3 and 3, 3 and 4 and 4, 4 and 3 and 3, 3 and 4 and 3

27(1/6 × 1/6 × 1/6)= 1/8

b) 2 and 4 and 6, 2 and 5 and 5, 4 and 2 and 6, 4 and 6 and 2, 6 and 4 and 2, 6 and 2 and 4, 5 and 2 and 5, 5 and 5 and 2, 2 and 6 and 4, 3 and 3 and 6, 3 and 6 and 3, 6 and 3 and 3, 3 and 4 and 5, 3 and 5 and 4, 4 and 3 and 5, 4 and 5 and 3, 5 and 3 and 4, 5 and 4 and 3

18(1/6 × 1/6 × 1/6)= 1/12

c) six ways of obtaining 10:  3+1+6, 3+2+5, 3+3+4, 4+2+4,4+5+1, 6+2+2

  six ways of obtaining 9: 1+2+6, 1+3+5, 1+4+4, 2+2+5, 2+3+4,3+3+3

To get 10, there are only two ways of repeating a number out of 6 ways. To get 9, there are three ways of repeating a number out of 6 ways

Final answer:

The probability of sums from rolls of dice is based on the possible combinations of outcomes, where each side of a dice has a 1/6 chance. For three independent rolls, specific sums like 11 or 12 would require identifying all possible combinations that achieve these sums. Galileo's observation relates to the unequal probabilities of different number combinations despite having the same number of combinations for sums of 9 and 10.

Explanation:

The probabilities for the sums of dice rolls are calculated based on the number of ways those sums can be achieved using the possible outcomes of each individual roll. For a fair six-sided die, the probability of rolling any given number is 1/6.

(a) To find the probability that the sum of three rolls is 11, we would identify all the combinations of rolls that result in that sum and calculate the likelihood of each. Possible combinations for a sum of 11 include (5,5,1), (5,4,2), (6,4,1), etc. Each of the three dice has a 1/6 chance of landing on a specified number, and since each roll is independent, the probabilities are multiplied.

(b) Similarly, for a sum of 12, possible combinations include (4,4,4), (6,5,1), (6,4,2), etc.

(c) As for Galileo's observation about sums of 10 being more frequent than 9, it is important to note that while both sums have six distinct combinations, some combinations are more likely than others because rolls are independent and not all number combinations are equally probable. This leads to a higher overall probability for a sum of 10.

3. At the Art Studio 3/8 were red and
# 4/8 were blue. The rest of the colors
were orange. What fraction of the colors
at the Art Studio were Orange?

Answers

Answer:

Step-by-step explanation:

Let the total be X

4/8 = 1/2

X - ⅜X - ½X = ⅛X are orange

Fraction ⅛X ÷ X = ⅛

1/8 of the Art studio is orange.

3/8+4/8=7/8

And that’s the total amount of the room that is red and blue. We subtract that from the whole room (1) and we get how much of the room is orange.

1-7/8=1/8.

Hope this is helpful!

A poll conducted in 2013 found that 52% of U.S. adult Twitter user get at least some news on Twitter, and the standard error for this estimate was 2.4%. Identify each of the following statements as true or false. Provide an explanation justify each of your answers.

a) the data provide statistically significant evidence that more than half U.S. adult twitter users get some news throught Twitter. Use a significance level of alpha = 0.01

b) Since the standard error is 2.4%, we can conclude that 97.6% of all U.S. adult Twitter users were included in the study.

c) If we want to reduce the standard error of estimate, we should collect less data.

d) If we construct a 90% confidence interval for the perventage of U.S. adults Twitter suers who get some news through Twitter, this confidene interval will be wider than a corresponding 99% confidence interval.

Answers

Answer:

a) FALSE we obtain a NOT significant results after conduct the hypothesis tes.

b) FALSE, the standard error is not associated to a certain % of people included in the study

c) FALSE. if we want to reduce the standard error we need to increase the sample size or data

d) FALSE, always if we have a higher confidence level the confidence interval associated to this level would be wider than for a lower confidence interval

Step-by-step explanation:

Data given and notation n  

n represent the random sample taken

[tex]\hat p=0.52[/tex] estimated proportion of U.S. adult Twitter user get at least some news on Twitter

[tex]p_o=0.5[/tex] is the value that we want to test

[tex]\alpha=0.01[/tex] represent the significance level

Confidence=99% or 0.99

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that more than half U.S. adult twitter users get some news throught Twitter:  

Null hypothesis:[tex]p\leq 0.5[/tex]  

Alternative hypothesis:[tex]p > 0.5[/tex]  

When we conduct a proportion test we need to use the z statistic, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

Calculate the statistic  

The standard error is given:

[tex] SE = \sqrt{\frac{p_o (1-p_o)}{n}}=0.024[/tex]

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.52 -0.5}{0.024}=0.833[/tex]  

Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level assumed is [tex]\alpha=0.01[/tex]. The next step would be calculate the p value for this test.  

Since is a right tailed test the p value would be:  

[tex]p_v =P(z>0.833)=0.2024[/tex]  

So the p value obtained was a very high value and using the significance level given [tex]\alpha=0.01[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis.

Now let's idendity the statements

a) FALSE we obtain a NOT significant results after conduct the hypothesis tes.

b) FALSE, the standard error is not associated to a certain % of people included in the study

c) FALSE. if we want to reduce the standard error we need to increase the sample size or data

d) FALSE, always if we have a higher confidence level the confidence interval associated to this level would be wider than for a lower confidence interval

Final answer:

The statement a) is true because the data is statistically significant. Statements b), c) and d) are false because: standard error doesn't reflect the portion of the population included in the study; standard error reduces with more data; and a higher confidence level results in a wider interval, not narrower.

Explanation:

a) This statement is true. The data can be considered statistically significant as long as the percentage is not within the standard error range below 50%. In this case, 52% minus 2.4% (standard error) = 49.6% which is below 50%. However, at a significance level of alpha = 0.01, it would be statistically significant since it is more than one standard error away from 50%.

 

b) This statement is false. The standard error is not an indication of what portion of the population is included in the study. Instead, it's a measure of statistical accuracy of the estimate.

c) This statement is false. The standard error of the estimate would typically decrease as we collect more data. As more data is collected, estimates are usually more accurate.

d) This statement is false. A 90% confidence interval is narrower than a 99% confidence interval. The larger the confidence level, the wider the interval to factor in more uncertainty.

Learn more about Statistical Significance here:

https://brainly.com/question/33838241

#SPJ3

After recording the pizza delivery times for two different pizza shops you conclude one pizza shop has a mean delivery of 45 minutes with a standard deviation of 5 minutes. the other shop has a mean delivery time of 44 minutes with a standard deviation of 19 minutes. interpret these figures. if you like pizzas from both shops equally well, which one would you order from?Why?

A. the means are nearly equal but the variation is significantly lower for the second shop than the first
B. the variations are nearly equal but the mean is greater for the first shop than for the second
C. both means and the variations are nearly equal
D. the means are nearly equal but the variations is significantly greater for the second shop than the first.

If you liked the pizzas from both shops equally well which one would you order from?why?
A. choose the second shop. the delivery time is more reliable because it has a larger standard deviation.
B. choose the second shop. the delivery time is more reliable because it has a larger mean.
C. choose the first shop. the delivery time is more reliable because it has a lower standard deviation.
D. choose the first shop. the delivery time is more reliable because it has a lower mean.

Answers

Answer:

C

Step-by-step explanation:

lolololpygdffffygccffghhjjjj

Find the equilibrium point for the pair of demand and supply functions. Here q represents the number of units​ produced, in​ thousands, and x is the​ price, in dollars. ​Demand: qequals=59005900minus−6060x ​Supply: qequals=400400plus+5050x

Answers

Answer:

Q = 2,900 units

x = $50

Step-by-step explanation:

At the equilibrium point the quantity demanded and supplied at the equilibrium price are the same. The demand and supply functions are:

[tex]D: Q=590 - 60x\\S: Q=400+50x[/tex]

When the quantity is the same, the selling price x is:

[tex]5900 - 60x=400+50x\\x=\frac{5,500}{110}\\ x=\$50[/tex]

And the equilibrium quantity is:

[tex]Q = 400+50*50\\Q=2,900\ units[/tex]

Other Questions
The ending inventory of finished goods has a total cost of $11,600 and consists of 600 units. If the overhead applied to these goods is $3,850, and the overhead rate is 70% of direct labor, how much direct materials cost was incurred in producing these units? What are the consequences of a person-blame approach to social problems? 33. Calista earns $300 per week for a 40 hour work week plus $12.32 per hour for each hour ofovertime after 40 hours. Write an equation that would be used to determine her weekly wageswhere w is her wages, and v is the number of overtime hours worked. Tsunami wavelengths can be as great as ____________.A. 840 mB. 8400 mC. 84 kmD. 840 kmE. 8400 km The function shown in the graph isA)f(x) = x - 1B)f(x) = 2x - 1C)f(x) = x - 0.5D)f(x) = 2x - 0.5 A 1-year long forward contract on a non-dividend-paying stock is entered into when the stock price is $40 and the risk-free rate of interest is 10% per annum with continuous compounding.(a) What are the forward price and the initial value of the forward contract?(b) Six months later, the price of the stock is $45 and the risk-free interest rate is still 10%. What are the forward price and the value of the forward contract? At some construction sites, raw materials are found in abundance nearby. At others, the materials have been brought there from elsewhere at a greater amount of cost and time. What might be some of the reasons why an architect would choose materials that are not indigenous to a building site? When a certain ideal gas thermometer is placed in water at the triple point, the mercury level in the right arm is 846 mm above the reference mark. Part A How far is the mercury level above the reference mark when this thermometer is placed in boiling water at a location where the atmospheric pressure is 1.00 atm Apple Inc."". Create a company report that includes financial highlights. What can you say about Apples financial performance? Compare Apple with key competitors. Submit a one page summary in class and attach the report. (This is a separate assignment than the BB discussion case) A physics professor is pushed up a ramp inclined upward at an angle 33.0 above the horizontal as he sits in his desk chair that slides on frictionless rollers. The combined mass of the professor and chair is 90.0 kg. He is pushed a distance 2.00 m along the incline by a group of students who together exert a constant horizontal force of 600 N. The professor's speed at the bottom of the ramp is 2.30 m/s.A) Find velocity at the top of the ramp. What is the total number of Joules of heat absorbed by 65.0 grams of water when the temperature of the water is raised from 25C to 40C? Final reports represent the end product of a thorough investigation and analysis. They provide an ordered format for presenting information to decision makers and are divided into segments to make information comprehensible and accessible. Formal reports usually consist of three divisions. a. Which element of formal proposals is similar to that of informal proposals? My Notes (a) A 41 resistor is connected in series with a 6 F capacitor and a battery. What is the maximum charge to which this capacitor can be charged when the battery voltage is 6 V? (When entering units, use micro for the metric system prefix .) Plzzz help me I dont understand aTT ALL if I dont do it Ill get a 0 in my report card plz help Why do banks pay their customers interest on the money in their savings accounts? A.High interest rates provide customers with an incentive to choose a particular bank. B.Interest payments make it more worthwhile for customers to stay loyal. C.The government requires all savings accounts to pay interest. D.The bank charged interest when it loaned that money to someone else. Below are a set of heights (in inches) and GPA scores for a sample of 6 students. Height, GPA 60, 4.0 55, 3.2 62, 3.7 55, 3.9 49, 2.4 61, 2.7 Find the equation of the regression line to predict GPA from height by hand Graph this line using the slope and y-intercept Y=1/2x+9 Your older sister recently had a baby and is confused about when she should wean her daughter. Based on what you learned in physical anthropology class about the timing and characteristics of life history stages in humans, what do you tell her? A 19.0 L helium tank is pressurized to 26.0 atm. When connected to this tank, a balloon will inflate because the pressure inside the tank is greater than the atmospheric pressure pushing on the outside of the balloon. Assuming the balloon could expand indefinitely and never burst, the pressure would eventually equalize causing the balloon to stop inflating. What would the volume of the balloon be when this happens a die is rolled. What is the probability that the result is less than 3? Steam Workshop Downloader