The number of defective components produced by a certain process in one day has a Poisson
distribution with mean of 20. Each defective component has probability of 0.60 of being
repairable.

(a) Find the probability that exactly 15 defective components are produced.
(b) Given that exactly 15 defective components are produced, find the probability that
exactly 10 of them are repairable.
(c) Let N be the number of defective components produced, and let X be the number of
them that are repairable. Given the value of N, what is the distribution of X?
(d) Find the probability that exactly 15 defective components are produced, with exactly 10
of them being repairable.

Answers

Answer 1
Final answer:

To find the probability of different scenarios involving defective components produced by a certain process, we can use the Poisson and binomial distributions.

Explanation:

(a) To find the probability that exactly 15 defective components are produced, we can use the formula for the Poisson distribution:

P(X=k) = (e^(-λ) * λ^k) / k!

Here, λ is the mean number of defective components produced in one day, which is 20. So, λ = 20. Substituting this value into the formula, we get:

P(X=15) = (e^(-20) * 20^15) / 15!

Calculating this expression will give us the probability.

(b) To find the probability that exactly 10 of the 15 defective components are repairable, we can use the binomial distribution since each defective component has a fixed probability of being repairable. Here, the number of trials is 15, and the probability of success (being repairable) is 0.60. Substituting these values into the binomial distribution formula, we can calculate the probability.

(c) Given the value of N, the number of defective components produced, X has a binomial distribution since X represents the number of repairable defective components. The probability of each component being repairable is constant, so it follows a binomial distribution.

(d) To find the probability that exactly 15 defective components are produced, with exactly 10 of them being repairable, we can multiply the probabilities obtained from parts (a) and (b) together, since these events are independent. Multiplying the results will give us the desired probability.

Learn more about Poisson and binomial distributions here:

https://brainly.com/question/7283210

#SPJ11

Answer 2

(a) The probability that exactly 15 defective components are produced is 0.0516

(b) Given that exactly 15 defective components are produced, the probability that exactly 10 of them are repairable is 0.1241.

(c) Given the value of N, X follows a binomial distribution

(d) The probability that exactly 15 defective components are produced, with exactly 10 of them being repairable is 0.0064.

(a) Probability of Exactly 15 Defective Components

A Poisson distribution with mean λ = 20 is used. The formula is:

[tex]P(X = k) = (e^{(-\lambda)} * \lambda^k) / k![/tex]

For k = 15 and λ = 20:

[tex]P(X = k) = (e^{(-20)} * 20^15) / 15! \approx 0.0516[/tex]

(b) Probability that Exactly 10 Out of 15 Defective Components are Repairable

This scenario uses a binomial distribution.

Given N = 15 defectives, the probability that exactly 10 are repairable (with p = 0.60) is:

[tex]P(X = 10 | N = 15) = C(15,10) * 0.6^{10} * 0.4^{5} \approx 0.1241[/tex]

(c) Distribution of X Given N

Given N = n

X (number of repairable components) follows a binomial distribution Bin(n, 0.60).

So, X | N = n follows Bin(n, 0.60).

(d) Probability of 15 Defective Components with Exactly 10 being Repairable

The joint probability is the product of the Poisson and binomial probabilities:

[tex]P(X = 15) * P(Y = 10 | X = 15)= 0.0516 * 0.1241 \approx 0.0064[/tex]


Related Questions

Of the 50 states, 39 are currently under court order to alleviate overcrowding and poor conditions in one or more of their prisons. If a state is selected at random, find the probability that it is not currently under such a court order. Give your answer as a reduced fraction.

Answers

Answer:

11/50

Step-by-step explanation:

39 of 50 states are under court order, so 11 of 50 states are not under court order.

Final answer:

The probability that a randomly selected state is not under a court order to alleviate overcrowding and poor conditions in its prisons is 11/50.

Explanation:

To find the probability that a randomly selected state is not currently under court order to alleviate overcrowding and poor conditions in one or more of their prisons, we can use the complement rule in probability. This rule states that the probability of an event not happening is equal to one minus the probability of the event happening. Given that 39 states are under such a court order, the probability that a state is under court order is 39/50. Therefore, the probability that a state is not under court order is 1 - (39/50).

Calculating this, we get:

P(Not under court order) = 1 - (39/50) = (50/50) - (39/50) = 11/50

The probability that a randomly selected state is not currently under a court order to alleviate overcrowding and poor conditions in its prisons is 11/50, when expressed as a reduced fraction.

​If, based on a sample size of 950​, a political candidate finds that 563 people would vote for him in a​ two-person race, what is the 99​% confidence interval for his expected proportion of the​ vote? Would he be confident of winning based on this​ poll?

Answers

Answer:

The 99​% confidence interval for his expected proportion of the​ vote is (0.5516, 0.6336). Since the interval for the proportion is above 50%, he would be confident of winning based on the pool.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

For this problem, we have that:

[tex]n = 950, p = \frac{563}{950} = 0.5926[/tex]

99% confidence level

So [tex]\alpha = 0.01[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.5926 - 2.575\sqrt{\frac{0.5926*0.4074}{950}} = 0.5516[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.5926 + 2.575\sqrt{\frac{0.5926*0.4074}{950}} = 0.6336[/tex]

The 99​% confidence interval for his expected proportion of the​ vote is (0.5516, 0.6336). Since the interval for the proportion is above 50%, he would be confident of winning based on the pool.

A recent study reported that 28​% of the residents of a particular community lived in poverty. Suppose a random sample of 300 residents of this community is taken. We wish to determine the probability that 33​% or more of our sample will be living in poverty. Complete parts​ (a) and​ (b) below.

Before doing any calculations, determine whether this probability is greater than 50% or less than 50%. Why? The answer should be less than 50%, because the resulting z-score will be negative and the sampling distribution is approximately Normal. The answer should be greater than 50%, because 0.24 is greater than the population proportion of 0.20 and because the sampling distribution is approximately Normal. The answer should be less than 50%, because 0.24 is greater than the population proportion of 0.20 and because the sampling distribution is approximately Normal. The answer should be greater than 50%, because the resulting z-score will be positive and the sampling distribution is approximately Normal. Calculate the probability that 24% or more of the sample will be living in poverty. Assume the sample is collected in such a way that the conditions for using the CLT are met. P (p ge 0.24) = (Round to three decimal places as needed.)

Answers

Answer:

a) The answer should be less than 50%, because 0.33 is greater than the population proportion of 0.28 and because the sampling distribution is approximately Normal.

b) P(x ≥ 0.33) = 2.68% = 0.027 to 3 d.p

Step-by-step explanation:

a) The required probability is P(x ≥ 0.33)

The population proportion of people living in poverty has already been given as 0.28, So, whatever the standard deviation of the distribution of sample means is, the sample proportion of 0.33 is more than the population proportion, So, it gives a z-score that is greater than 0. The probability from the z-score of the mean (0) to the end of distribution is exactly 50%; So, a Probability that only covers from a particular positive z-score to the end of the distribution will definitely be less than 50%.

So, because 33% is more than population proportion of 28%, and the sampling distribution is approximately normal, the probability of 33% or more of the sample living in poverty is less than 50%.

b) P(x ≥ 0.33)

The sample mean = population mean

μₓ = μ = 0.28

Standard deviation of the distribution of sample means = √[p(1-p)/n] (this is possible due to the central limit theorem for n greater than 30)

σₓ = √[(0.28×0.72)/300] = 0.0259

We then normalize 0.33

The standardized score for any value is the value minus the mean then divided by the standard deviation.

z = (x - μ)/σ = (0.33 - 0.28)/0.0259 = 1.93

To determine the probability of 33% or more of the sample size is living in poverty.

P(x ≥ 0.33) = P(z ≥ 1.93)

We'll use data from the normal probability table for these probabilities

P(x ≥ 0.33) = P(z ≥ 1.93) = 1 - P(z < 1.93)

= 1 - 0.9732 = 0.0268 = 2.68%

It is indeed way less than 50%.

Hope this Helps!!!

The answer to whether the probability is greater than 50% or less than 50% is; less than 50% because 0.33 is greater than the population proportion

What is the probability of the normal distribution?

A) We want to determine the probability that 33​% or more of our sample will be living in poverty and this is expressed as P(x ≥ 0.33)

Population proportion is; p = 0.28.

Formula for z-score is;

z = (x' - μ)/σ

Since our sample proportion is greater than our population proportion, it means the z-score will be greater than 0

Finally, due to the fact that 33% is more than population proportion of 28%, and the sampling distribution is approximately normal, the probability of 33% or more of the sample living in poverty will definitely be less than 50%.

b) We want to now calculate the above probability;

P(x ≥ 0.33)

The sample mean will be equal to population mean as;

μₓ = μ = 0.28

Standard deviation of the distribution of sample means is;

σₓ = √(p(1 - p)/n)

σₓ = √((0.28×0.72)/300)

σₓ = 0.0259

Thus, z-score is;

z = (x - μ)/σ

z = (0.33 - 0.28)/0.0259

z = 1.93

Thus, the of 33% or more of the sample size is living in poverty is;

P(x ≥ 0.33) = P(z ≥ 1.93) = 1 - P(z < 1.93)

P(x ≥ 0.33) = 1 - 0.9732

P(x ≥ 0.33) = 0.0268

P(x ≥ 0.33) = 0.027

It is indeed way less than 50%.

Read more about normal distribution at; https://brainly.com/question/4079902

For its first year of operations, Marcus Corporation reported pretax accounting income of $274,800. However, because of a temporary difference in the amount of $19,200 relating to depreciation, taxable income is only $255,600. The tax rate is 39%. What amount should Marcus report as its deferred income tax liability in its balance sheet at the end of that year

Answers

Answer:

Please find attached file for complete answer solution and explanation of same question

Step-by-step explanation:

Answer:

$374,484

Step-by-step explanation:

Amount payable as income tax = 0.39 X $255,600 = $99,684

The amount Marcus receives if he deferred income tax that year = $(274,800 + 99,684) = $374,484

A Chinese restaurant offers 10 different lunch specials. Each weekday for one week, Fiona goes to the restaurant and selects a lunch special. How many different ways are there for her to select her lunches for the week

Answers

Answer:

10⁵

Step-by-step explanation:

10×10×10×10×10

= 10⁵ or 100,000

Starting from rest, a DVD steadily accelerates to 500 rpm in 1.0 s, rotates at this angular speed for 3.0 s, then steadily decelerates to a halt in 2.0 s. How many revolutions does it make

Answers

Answer:

37.5 revolutions

Step-by-step explanation:

The average rotation speed for the first second and for the last two seconds is:

[tex]V_1 = \frac{0+500}{2}\\ V_1 = 250\ rpm[/tex]

For the next 3.0 seconds, the rotation speed is V = 500 rpm.

The total number of revolutions, converting rpm to rps, is given by:

[tex]n=\frac{1*V_1+3*V+2*V_1}{60}\\n=\frac{1*250+3*500*2*250}{60}\\n=37.5\ revolutions[/tex]

The DVD makes 37.5 revolutions.

A meticulous gardener is interested in the length of blades of grass on his lawn. He believes that blade length X follows a normal distribution centered on 10 mm with a variance of 2 mm.
i. Find the probability that a blade of grass is between 9.5 and 11 mm long.ii. What are the standardized values of 9.5 and 11 in the context of this distribution? Using the standardized values, confirm that you can obtain the same probability you found in (i) with the standard normal density.iii. Below which value are the shortest 2.5 percent of blade lengths found?iv. Standardize your answer from (iii).

Answers

Answer:

i) [tex] P(9.5 < X<11)[/tex]

And we can solve this problem using the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(9.5<X<11)=P(\frac{9.5-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{11-\mu}{\sigma})=P(\frac{9.5-10}{1.414}<Z<\frac{11-10}{1.414})=P(-0.354<z<0.707)[/tex]

And we can find this probability with this difference:

[tex]P(-0.354<z<0.707)=P(z<0.707)-P(z<-0.354)[/tex]

And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.  

[tex]P(-0.354<z<0.707)=P(z<0.707)-P(z<-0.354)=0.7602-0.3617=0.3985[/tex]

ii) The z scores for this case are:

[tex] z_1 = \frac{9.5-10}{1.414}= -0.354[/tex]

[tex] z_2 = \frac{11-10}{1.414}= 0.707[/tex]

And we can check the answer with the following excel code:

=NORM.DIST(0.707,0,1,TRUE)-NORM.DIST(-0.354,0,1,TRUE)

iii) [tex]P(X>a)=0.975[/tex]   (a)

[tex]P(X<a)=0.025[/tex]   (b)

Both conditions are equivalent on this case. We can use the z score again in order to find the value a.  

As we can see on the figure attached the z value that satisfy the condition with 0.025 of the area on the left and 0.975 of the area on the right it's z=-1.96. On this case P(Z<-1.96)=0.025 and P(z>-1.96)=0.975

If we use condition (b) from previous we have this:

[tex]P(X<a)=P(\frac{X-\mu}{\sigma}<\frac{a-\mu}{\sigma})=0.975[/tex]  

[tex]P(z<\frac{a-\mu}{\sigma})=0.975[/tex]

But we know which value of z satisfy the previous equation so then we can do this:

[tex]z=-1.96<\frac{a-10}{1.414}[/tex]

And if we solve for a we got

[tex]a=10 -1.96*1.414=7.228[/tex]

So the value of height that separates the bottom 2.5% of data from the top 97.5% is 7.228.

iv) [tex] z = \frac{7.228-10}{1.414}= -1.96[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the blade length of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(10,\sqrt{2})[/tex]  

Where [tex]\mu=10[/tex] and [tex]\sigma=1.414[/tex]

Part i

For this case we want this probability:

[tex] P(9.5 < X<11)[/tex]

And we can solve this problem using the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(9.5<X<11)=P(\frac{9.5-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{11-\mu}{\sigma})=P(\frac{9.5-10}{1.414}<Z<\frac{11-10}{1.414})=P(-0.354<z<0.707)[/tex]

And we can find this probability with this difference:

[tex]P(-0.354<z<0.707)=P(z<0.707)-P(z<-0.354)[/tex]

And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.  

[tex]P(-0.354<z<0.707)=P(z<0.707)-P(z<-0.354)=0.7602-0.3617=0.3985[/tex]

Part ii

The z scores for this case are:

[tex] z_1 = \frac{9.5-10}{1.414}= -0.354[/tex]

[tex] z_2 = \frac{11-10}{1.414}= 0.707[/tex]

And we can check the answer with the following excel code:

=NORM.DIST(0.707,0,1,TRUE)-NORM.DIST(-0.354,0,1,TRUE)

Part iii

For this part we want to find a value a, such that we satisfy this condition:

[tex]P(X>a)=0.975[/tex]   (a)

[tex]P(X<a)=0.025[/tex]   (b)

Both conditions are equivalent on this case. We can use the z score again in order to find the value a.  

As we can see on the figure attached the z value that satisfy the condition with 0.025 of the area on the left and 0.975 of the area on the right it's z=-1.96. On this case P(Z<-1.96)=0.025 and P(z>-1.96)=0.975

If we use condition (b) from previous we have this:

[tex]P(X<a)=P(\frac{X-\mu}{\sigma}<\frac{a-\mu}{\sigma})=0.975[/tex]  

[tex]P(z<\frac{a-\mu}{\sigma})=0.975[/tex]

But we know which value of z satisfy the previous equation so then we can do this:

[tex]z=-1.96<\frac{a-10}{1.414}[/tex]

And if we solve for a we got

[tex]a=10 -1.96*1.414=7.228[/tex]

So the value of height that separates the bottom 2.5% of data from the top 97.5% is 7.228.

Part iv

The z score for this value is given by:

[tex] z = \frac{7.228-10}{1.414}= -1.96[/tex]

Final answer:

The question involves calculating probabilities and finding values within a normal distribution regarding the length of grass blades. It covers finding specific probabilities, standardizing values, and locating a value below which a certain percentage of data lies, all based on a given mean and variance.

Explanation:

A meticulous gardener is interested in the length of blades of grass on his lawn. He believes that blade length X follows a normal distribution centered on 10 mm with a variance of 2 mm.

Find the probability that a blade of grass is between 9.5 and 11 mm long.

What are the standardized values of 9.5 and 11 in the context of this distribution? Using the standardized values, confirm that you can obtain the same probability you found in (i) with the standard normal density.

Below which value is the shortest 2.5 percent of blade lengths found?

Standardize your answer from (iii).

The standard deviation (sqrt(variance)) is sqrt(2) mm. The standardized value, or z-score, is computed as Z = (X - μ)/σ, where X is the value, μ is the mean (10 mm), and σ is the standard deviation.

For X = 9.5, Z = (9.5 - 10) / sqrt(2) = -0.3536.

For X = 11, Z = (11 - 10) / sqrt(2) = 0.7071.

To find the probability between 9.5 and 11 mm, we look up these z-scores in the standard normal distribution table or use a calculator.

To find the value below which the shortest 2.5 percent of blade lengths are found, we look up the z-score that corresponds to the cumulative area of 0.025 in the standard normal distribution table. Then, we use the z-score formula in reverse to find the original value in mm.

Full-time college students report spending a mean of 29 hours per week on academic activities, both inside and outside the classroom. Assume the standard deviation of time spent on academic activities is 5 hours. Complete parts (a) through (d) below.

a. If you select a random sample of 25 full-time college students, what is the probability that the mean time spent on academic activities is at least 28 hours per week? ___(Round to four decimal places as needed.)

b. If you select a random sample of 25 full-time college students, there is an 84 % chance that the sample mean is less than how many hours per week? ___ (Round to two decimal places as needed.)

c. What assumption must you make in order to solve (a) and (b)? (choose between A through D)

A. The population is symmetrically distributed, such that the Central Limit Theorem will likely hold for samples of size 25.

B. The sample is symmetrically distributed, such that the Central Limit Theorem will likely hold.

C. The population is uniformly distributed.

D. The population is normally distributed.

d. If you select a random sample of 64 full-time college students, there is an 84 % chance that the sample mean is less than how many hours per week? ___(Round to two decimal places as needed.)

Answers

Answer:

a) 0.8413

b) 30

c) A. The population is symmetrically distributed, such that the Central Limit Theorem will likely hold for samples of size 25.

d) 29.63

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central limit theorem:

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]

In this problem, we have that:

[tex]\mu = 29, \sigma = 5[/tex]

a. If you select a random sample of 25 full-time college students, what is the probability that the mean time spent on academic activities is at least 28 hours per week?

25 students, so [tex]n = 25, s = \frac{5}{\sqrt{25}} = 1[/tex]

This is 1 subtracted by the pvalue of Z when X = 28. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{28 - 29}{1}[/tex]

[tex]Z = -1[/tex]

[tex]Z = -1[/tex] has a pvalue of 0.1587

1 - 0.1587 = 0.8413

0.8413 is the answer.

b. If you select a random sample of 25 full-time college students, there is an 84 % chance that the sample mean is less than how many hours per week?

Value of X when Z has a pvalue of 0.84. So X when Z = 1.

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]1 = \frac{X - 29}{1}[/tex]

[tex]X - 29 = 1[/tex]

[tex]X = 30[/tex]

c. What assumption must you make in order to solve (a) and (b)? (choose between A through D)

Central limit theorem works if the population is normally distributed, or if the sample means are of size at least 30

So the correct answer is:

A. The population is symmetrically distributed, such that the Central Limit Theorem will likely hold for samples of size 25.

d. If you select a random sample of 64 full-time college students, there is an 84 % chance that the sample mean is less than how many hours per week?

Now we have n = 64, so [tex]s = \frac{5}{\sqrt{64}} = 0.63[/tex]

Value of X when Z has a pvalue of 0.84. So X when Z = 1.

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]0.63 = \frac{X - 29}{1}[/tex]

[tex]X - 29 = 0.63[/tex]

[tex]X = 29.63[/tex]

Final answer:

In this statistics problem related to full-time college students' time spent on academic activities, Z scores and the Central Limit Theorem are used to find probabilities and mean values for different sample sizes. Assumptions about the symmetry of population distribution are also discussed.

Explanation:

This question is about understanding and applying concepts of probability, sample means, and Central Limit Theorem in statistics.

a. The probability that the mean time is at least 28 hours can be found by calculating a Z score. The formula for Z score is (X - μ) ⸫ (σ ⸫ √n), where X is the value we are testing (28 hours in this case), μ is the population mean (29 hours), σ is the standard deviation (5 hours), and n is the sample size (25 students). After calculating the Z score, use a standard normal distribution table to find the probability.

b. To solve this, we will again use the Z score formula but in a different way. Use the given % chance and look up the corresponding Z score on a standard normal distribution table. Then use this Z score in the Z score formula to find the X value, which is the number of hours.

c. The assumption we have to make here is option A. For the Central Limit Theorem to hold, the population distribution does not have to be normal but it should be symmetric. Moreover, for sample sizes of 30 or greater, Central Limit Theorem holds regardless of the shape of the population distribution.

d. This is similar to part b but with a larger sample size (64 students). Use the same procedures to find the answer.

Learn more about Statistics here:

https://brainly.com/question/31538429

#SPJ3

A plane delivers two types of cargo between two destinations. Each crate of cargo I is 9 cubic feet in volume and 187 pounds in weight, and earns $30 in revenue. Each crate of cargo II is 9 cubic feet in volume and 374 pounds in weight, and earns $45 in revenue. The plane has available at most 540 cubic feet and 14,212 pounds for the crates. Finally, at least twice the number of crates of I as II must be shipped. Find the number of crates of each cargo to ship in order to maximize revenue. Find the maximum revenue. crates of cargo I crates of cargo II maximum revenue $

Answers

Answer:

So maximum when 46 of I grade and 16 of II grade are produced.

Max revenue = 2100

Step-by-step explanation:

Given that a plane delivers two types of cargo between two destinations

                     Crate I                       Crate II

Volume            9                                  9

Weight           187                               374

Revenue         30                                45

Let X be the no of crate I and y that of crate II

Then

[tex]9x+9y\leq 540\\187x+374y\leq 14212\\x\geq 2y[/tex]

Simplify these equations to get

[tex]x+y\leq 60\\x+2y\leq 76\\x\geq 2y[/tex]

Solving we get

[tex]y\leq 16\\x\leq 46 and x\geq 32\\32\leq x\leq 46[/tex]

REvenue = 30x+45y

The feasible region would have corner points as (60,0) or (32,16) or (46,16)

Revenue for (60,0) = 1800

                     (32,16) = 1680

                     (46,16)=2100

So maximum when 46 of I grade and 16 of II grade are produced.

Max revenue = 2100

Final answer:

To maximize revenue, we need to determine the number of crates of each cargo that should be shipped. The problem can be solved using linear programming techniques to find the optimal solution.

Explanation:

To maximize revenue, we need to determine the number of crates of each cargo that should be shipped. Let's assume the number of crates of cargo I is x and the number of crates of cargo II is y.

Based on the given information, the constraints for the problem are:

Volume constraint: 9x + 9y ≤ 540Weight constraint: 187x + 374y ≤ 14,212Relationship constraint: x ≥ 2y

To find the maximum revenue, we need to maximize the objective function: Revenue = 30x + 45y.

The problem can be solved using linear programming techniques, such as graphical or simplex method, to find the optimal solution. However, since these methods require plotting and iterations, the detailed calculations are beyond the scope of this response. The optimal solution will provide the values of x and y, which can be used to determine the maximum revenue.

Learn more about Optimizing revenue for cargo shipment here:

https://brainly.com/question/34408399

#SPJ3

Private colleges and universities rely on money contributed by individuals and corporations for their operating expenses. Much of this money is put into a fund called an​ endowment, and the college spends only the interest earned by the fund. A recent survey of 8 private colleges in the United States revealed the following endowments​ (in millions of​ dollars): 60.2,​ 47.0, 235.1,​ 490.0, 122.6,​ 177.5, 95.4, and 220.0. Summary statistics yield Upper X overbarequals180.975 and Sequals143.042. Calculate a​ 95% confidence interval for the mean endowment of all the private colleges in the United States assuming a normal distribution for the endowments.

Answers

Answer:

[tex]180.975 - 2.365\frac{143.042}{\sqrt{8}}=61.370[/tex]  

[tex]180.975 + 2.365\frac{143.042}{\sqrt{8}}=300.580[/tex]  

So on this case the 95% confidence interval would be given by (61.370;300.580)  

Step-by-step explanation:

Previous concepts

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

Solution to the problem

[tex]\bar X=180.975[/tex] represent the sample mean  

[tex]\mu[/tex] population mean (variable of interest)  

[tex]s=143.042[/tex] represent the sample standard deviation  

n=8 represent the sample size  

The confidence interval on this case is given by:

[tex]\bar X \pm t_{\alpha/2} \frac{s}{\sqrt{n}} [/tex]   (1)

We can find the degrees of freedom and we got:

[tex] df = n-1= 8-1=7[/tex]

The next step would be find the value of [tex]\t_{\alpha/2}[/tex], [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2=0.025[/tex]  

Using the t table with df =7, excel or a calculator we see that:  

[tex]t_{\alpha/2}=2.365[/tex]

Since we have all the values we can replace:

[tex]180.975 - 2.365\frac{143.042}{\sqrt{8}}=61.370[/tex]  

[tex]180.975 + 2.365\frac{143.042}{\sqrt{8}}=300.580[/tex]  

So on this case the 95% confidence interval would be given by (61.370;300.580)  

The number of square feet per house are normally distributed with a population standard deviation of 137 square feet and an unknown population mean. A random sample of 19 houses is taken and results in a sample mean of 1350 square feet. Find the margin of error for a 80% confidence interval for the population mean. z0.10z0.10z0.05z0.05z0.025z0.025z0.01z0.01z0.005z0.005 1.2821.6451.9602.3262.576 You may use a calculator or the common z values above. Round the final answer to two decimal places.

Answers

Answer:

The MOE for 80% confidence interval for μ is 5.59.

Step-by-step explanation:

The random variable X is defined as the number of square feet per house.

The random variable X is Normally distributed with mean μ and standard deviation σ = 137.

The margin of error for a (1 - α) % confidence interval for population mean is:

[tex]MOE=z_{\alpha /2}\times\frac{\sigma}{\sqrt{n}}[/tex]

Given:

n = 19

σ = 137

[tex]z_{\alpha /2}=z_{0.20/2}=z_{0.10}=1.282[/tex]

Compute MOE for 80% confidence interval for μ as follows:

[tex]MOE=1.282\times\frac{137}{\sqrt{19}}=1.282\times4.36=5.58952\approx5.59[/tex]

Thus, the MOE for 80% confidence interval for μ is 5.59.

The research question below describes a relationship between two quantitative variables. Which variable should be plotted on the horizontal X-axis? Is the sales price of a townhouse in San Francisco related to the number of square feet in the townhouse?

Answers

Answer:

number of square feet in the townhouse.

Step-by-step explanation:

When the relationship of two quantitative variables is assessed through plot then the scatter plot is made. Scatter plot shows relationship between two qualitative variables by showing dependent variable on y axis and independent variable on x axis.

When the relation between sale price of house and number of square feet in house is assessed then the sale price is dependent variable and square feet in house. Sale price is dependent variable because the price of house depends on the number of square feet of house. Thus, number of square feet in the town house will be plotted on the horizontal X-axis.    

Derek walks along a road which can be modeled by the equation y =2x, where (0,0) represents his starting point. When he reaches the point (7, 14), he turns right, so that he is traveling perpendicular to the original road, until he stops at a point which is due east of his starting point (in other words, on the x-axis). What is the point where Derek stops? Select the correct answer below: (39,0) (38, 0) (31,0) (29, 0) (35, 0) (30,0)

Answers

Answer:

(35,0)

Step-by-step explanation:

Consider the diagram below, the starting point is given as A and the finish point given as C.

Using similar right-angle triangle, we have that:

[tex]\frac{|AM|}{|BM|}= \frac{|BM|}{|MC|}\\\frac{7}{14}= \frac{14}{x}\\7x=14 X 14\\x=196/7=28[/tex]

Therefore to find the point where Derek stops at C, we first determine the distance |AC|

|AC|=7+28=35

The Coordinates at C where Derek stops is (35,0)

Final answer:

Derek walks along a road described by the equation y = 2x. At the point (7,14), he turns right and walks perpendicularly to his original path until he reaches the x-axis. Upon reaching the x-axis, his stopping point is at (35,0).

Explanation:

When Derek reached the point (7,14), he turned right and started walking perpendicular to the original road. Given that this road is represented by the linear equation y = 2x, a perpendicular path would have a negative reciprocal slope. Therefore, the path he took after turning is represented by y = -1/2x + b. As he turned at the point (7, 14), substituting these coordinates into the equation provides b = 17.5. Since he stopped on the x-axis where y = 0, putting this into the equation gives x = 35. So, Derek stopped at (35,0).

Learn more about Coordinate Geometry here:

https://brainly.com/question/34726936

#SPJ3

Suppose that we have collected a sample of 8 observations with values 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, and 13.1. What are the observed sample mean, observed sample variance, and observed sample standard deviation

Answers

Answer:

The sample mean is 13.

The sample variance is 0.2286.

The sample standard deviation is 0.4781.

Step-by-step explanation:

The sample is:

S = {12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1}

The sample is of size n = 8.

The formula to compute the sample mean, sample variance and sample standard deviation are:

[tex]\bar x=\frac{1}{n} \sum x[/tex]

[tex]s^{2}=\frac{1}{n}\sum (x-\bar x)^{2} \\s=\sqrt{\frac{1}{n}\sum (x-\bar x)^{2} }\\[/tex]

Compute the sample mean as follows:

[tex]\bar x=\frac{1}{n} \sum x\\=\frac{1}{8}(12.6+ 12.9+ 13.4+ 12.3+ 13.6+ 13.5+ 12.6+ 13.1)\\=\frac{104}{8}\\ =13[/tex]

The sample mean is 13.

Compute the sample variance as follows:

[tex]s^{2}=\frac{1}{n-1}\sum (x-\bar x)^{2} \\=\frac{1}{8-1}[(12.6-13)^{2}+(12.9-13)^{2}+(13.4-13)^{2}+...+(13.1-13)^{2}] \\=\frac{1}{7}\times1.6\\=0.2286[/tex]

The sample variance is 0.2286.

Compute the sample standard deviation as follows:

[tex]s=\sqrt{s^{2}}\\=\sqrt{0.2286}\\=0.4781[/tex]

The sample standard deviation is 0.4781.

Answer:

The sample mean is 13.

The sample variance is 0.2286.

The sample standard deviation is 0.4781.

Step-by-step explanation:

Good luck

A VCR manufacturer receives 70% of his parts from factory F1 and the rest from factory F2. Suppose that 3% of the output from F1 are defective while only 2% of the output from F2 are defective. a. What is the probability that a received part is defective? b. If a randomly chosen part is defective, what is the probability it came from factory F1?

Answers

Answer:

See the explanation.

Step-by-step explanation:

Lets take 1000 output in total.

From these 1000 outputs, 700 are from F1 and 300 are from F2.

Defective from F1 is [tex]\frac{700\times3}{100} = 21[/tex] and defective from F2 is [tex]\frac{300\times2}{100} = 6[/tex].

a.

Total received part is 1000.

Total defectives are (21+6) = 27.

The probability of a received part being defective is [tex]\frac{27}{1000}[/tex].

b.

The probability of the randomly chosen defective part from F1 is [tex]\frac{21}{27} = \frac{7}{9}[/tex].

Final answer:

The probability that a received part is defective is 2.7%, while the probability that a randomly chosen defective part came from factory F1 is 77.78%.

Explanation:

To find the probability that a received part is defective, we need to consider the probabilities of receiving a defective part from each factory. Let's assume that the VCR manufacturer receives 100 parts. From factory F1, 70% of the parts are received, which means 70 parts. The probability of a part from F1 being defective is 3%, so the number of defective parts from F1 is 70 * (3/100) = 2.1. From factory F2, which accounts for the remaining 30% of the parts (30 parts), the probability of a part being defective is 2%, resulting in 30 * (2/100) = 0.6 defective parts. Therefore, the total number of defective parts is 2.1 + 0.6 = 2.7. Since there are 100 parts in total, the probability that a received part is defective is 2.7/100 = 0.027, or 2.7%.

To find the probability that a randomly chosen defective part came from factory F1, we can use the concept of conditional probability. The probability of a part coming from F1 given that it is defective can be found using the formula P(F1|Defective) = P(F1 and Defective) / P(Defective). We already know that P(F1 and Defective) = 2.1/100 and P(Defective) = 2.7/100. Substituting these values, we get P(F1|Defective) = (2.1/100) / (2.7/100) = 2.1/2.7 = 0.7778, or 77.78%.

Some parts of California are particularly earthquake-prone. Suppose that in one metropolitan area, 31% of all homeowners are insured against earthquake damage. Four homeowners are to be selected at random. Let X denote the number among the four who have earthquake insurance.



(a) Find the probability distribution of X. [Hint: Let S denote a homeowner that has insurance and F one who does not. Then one possible outcome is SFSS, with probability (0.31)(0.69)(0.31)(0.31) and associated X value 3. There are 15 other outcomes.] (Round your answers to four decimal places.)
(b) What is the most likely value for X?
(c) What is the probability that at least two of the four selected have earthquake insurance? (Round your answer to four decimal places.)

Answers

Answer:

a.) 0.0822

b.) 1

c.) 0.3659

Step-by-step explanation:

Probability distribution formula is often denoted by :

P(X=r) = nCr × p^r × q^n-r

Where n = total number of samples

r = number of successful outcome of sample

p = probability of success

q = probability of failure.

If we take 4 samples,

3 of this 4 samples are successful

the success rate =S= 31% = 0.31

Failure rate = F= 0.69

a.) Then probability distribution of X becomes:

P(X=3) = 4C3 × 0.31³ × 0.69¹

P(X=3) = 0.0822 (4d.p),

b. Most likely value of X = expected value = np

= 4 × 0.31

= 1.24 ≈ 1

c.) probability that at least 2 out of the 4 have insurance = Probability that 2 have insurance) + probability that 3 have insurance + probability that 4 have insurance.

P(X=2) = 4C2 × 0.31² × 0.69² = 0.2745

P(X=3), as calculated earlier = 0.0822

P(X=4) = 4C4 × 0.31^4 × 0.69^0 = 0.0092

Total probability of having at least 2 out of those 4 insured = 0.2745 + 0.0822 + 0.0092 =0.3659.

A group of students bakes 100 cookies to sell at the school bake sale. The students want to ensure that the price of each cookie offsets the cost of the ingredients. If all the cookies are sold for $0.10 each, the net result will be a loss of $4. If all the cookies are sold for $0.50 each. The students will make a $36 profit. First, write the linear function p(x) that represents the net profit from selling all the cookies, where x is the price of each cookie. Then, determine how much profit the students will make if they sell the coolies for $0.60 each. Explain. Tell how your answer is reasonable.

Answers

Answer:

(a) [tex]p=100x-14[/tex]

(b) [tex]p=\$46[/tex]

Step-by-step explanation:

Linear Modeling

It consists of finding an equation of a line that fits the conditions of a certain situation in real life. We'll use a linear model for the cookies of the students.

(a) We know that we have a total of n=100 cookies. If sold for $0.10 each, they lose $4. We have an initial condition (x,p) = (0.10,-4), where x is the price of each cookie and p(x) is the net profit from selling all the cookies. The second conditions are that when then the price is $0.50 each, there is a positive profit of $36, which is a second point (0.5,36). That is enough to build the linear function, that can be found by

[tex]\displaystyle p-p_1=\frac{p_2-p_1}{x_2-x_1}(x-x_1)[/tex]

[tex]\displaystyle p+4=\frac{36+4}{0.5-0.1}(x-0.1)[/tex]

Reducing

[tex]p=100x-14[/tex]

(b) If the students sell the cookies for x=0.60 each, the profit will be

[tex]p=100(0.6)-14=46[/tex]

[tex]p=\$46[/tex]

It's a reasonable answer because we have found that increasing the price, the profit will increase also. The model doesn't have any restriction for the price

A food processor packages orange juice in small jars. The weights of the filled jars are approximately normally distributed with a mean of 10.5 ounces and a standard deviation of 0.3 ounce. Find the proportion of all jars packaged by this process that have weights that fall above 10.983 ounces.

Answers

Answer:

[tex]P(X>10.983)=P(\frac{X-\mu}{\sigma}>\frac{10.983-\mu}{\sigma})=P(Z>\frac{10.983-10.5}{0.3})=P(z>1.61)[/tex]

And we can find this probability using the complement rule and with excel or the normal standard table:

[tex]P(z>1.61)=1-P(z<1.61)=1-0.946=0.054[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the weights of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(10.5,0.3)[/tex]  

Where [tex]\mu=10.5[/tex] and [tex]\sigma=0.3[/tex]

We are interested on this probability

[tex]P(X>10.983)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X>10.983)=P(\frac{X-\mu}{\sigma}>\frac{10.983-\mu}{\sigma})=P(Z>\frac{10.983-10.5}{0.3})=P(z>1.61)[/tex]

And we can find this probability using the complement rule and with excel or the normal standard table:

[tex]P(z>1.61)=1-P(z<1.61)=1-0.946=0.054[/tex]

A climber on Mount Everest is meters from the start of his trail and at elevation meters above sea level. At meters from the start, the elevation of the trail is meters above sea level. If for near , what is the approximate elevation another 8 meters along the trail

Answers

We are not given the value of

Mount Everest

Elevation

h'(x)

So we are going to based our parameters needed to solve this question o assumptions. The main thing is to understand the process in solving this question.

So here is it!.

A climber on Mount Everest is 8000 meters from the start of his trail and at elevation  10000 meters above sea level. At (x) meters from the start, the elevation of the trail is h(x) meters above sea level. If  h' (x) = 0.5 for near , what is the approximate elevation another 8 meters along the trail

Answer:

10004 meters

Step-by-step explanation:

The rate of change of elevation, h' (x) = 0.5 near 8000 meters.

Thus; we can say that the elevation increases by 0.5 for each meter traveled at a given distance(x)

So, we need to determine the new elevation after 8 meters traveled from ( 8000 to 8008).Then the elevation change can now be written as:

=  (0.5 × 8)

= 4 meters.

And also the new elevation will be:

10000 + 4 meters

= 10004 meters

Which of the following random variables is geometric? The number of 1s in a row of 50 random digits. The number of tails when a coin is tossed 60 times. The number of digits in a randomly selected row until a 1 is found. The number of diamond cards obtained in a seven-card deal-out of a shuffled deck of 52 cards. The number of 1s when rolling a die 5 times.

Answers

Answer:

The number of digits in a randomly selected row until a 1 is found.

Final answer:

The random variable describing 'The number of digits in a randomly selected row until a 1 is found' is geometric, as it fits the criteria of a geometric distribution, which includes the number of trials needed for the first success, with constant success probability and independent trials.

Explanation:

The student has asked which of the given random variables is geometric. Among the options provided, the one describing a geometric random variable is "The number of digits in a randomly selected row until a 1 is found." A geometric distribution is concerned with the number of Bernoulli trials required to get the first success. In this case, obtaining a '1' when randomly selecting digits can be considered a success, and all trials are independent with the probability of success (getting a '1') remaining constant with each trial.

Other options such as the number of 1s in a row of 50 random digits or the number of tails when a coin is tossed 60 times describe binomial random variables, where we are interested in the number of successes within a fixed number of trials, not the trial number of the first success.

Which of the following meets the requirements of a stratified random sample? Multiple Choice A population contains 10 members under the age of 25 and 20 members over the age of 25. The sample will include six people who volunteer for the sample. A population contains 10 members under the age of 25 and 20 members over the age of 25. The sample will include six people chosen at random, without regard to age. A population contains 10 members under the age of 25 and 20 members over the age of 25. The sample will include six males chosen at random, without regard to age. A population contains 10 members under the age of 25 and 20 members over the age of 25. The sample will include two people chosen at random under the age of 25 and four people chosen at random over 25.

Answers

Answer:

Correct option is D.

Step-by-step explanation:

Random sampling implies the selection of of values or individuals in a random pattern.

A stratified random sampling is a sampling method where:

First divide the entire population into homogeneous subgroups, known as strata.Then take a random sample form each of the strata such that the sample size is proportional to the size of the strata.

In this case the it is provided that the population consists of 30 members, 10 under the age of 25 and 20 over the age of 25.

So the stratas are:

10 members under the age of 25.20 members over the age of 25.

Now to a random sample of size 2 is selected from strata 1 and a random sample of size 4 is selected from strata 2.

This forms a stratified random sample.

Correct option is:

A population contains 10 members under the age of 25 and 20 members over the age of 25. The sample will include two people chosen at random under the age of 25 and four people chosen at random over 25.

Final answer:

The correct choice for a stratified random sample is selecting two people randomly under the age of 25 and four people randomly over 25, as it ensures that the sample is proportional and representative of the two age groups within the population.

Explanation:

To determine which option meets the requirements of a stratified random sample, let's first define it. A stratified random sample divides the population into separate groups, known as strata, and a random sample is taken from each group. The key point here is that the sample from each stratum is proportional to the size of the stratum within the whole population, ensuring the sample is representative.

Given the multiple-choice options provided:

Sampling based on volunteers is a convenience sample, not stratified.Choosing people at random without regard to age is simple random sampling.Selecting only males is not stratified, as it does not account for another relevant characteristic, such as age.Selecting two people randomly under the age of 25 and four people randomly over 25 is the correct choice, as it ensures the sample is representative of the two age groups within the population.

This type of sampling accounts for the different proportions of the sub-groups (under and over 25) in the population, which is a key aspect of stratified sampling.

Suppose a computer engineer is interested in determining the average weight of a motherboard manufactured by a certain company. A summary of a large sample provided to the engineer suggest a mean weight of 11.8 ounces and an estimated standard deviation, sigma = 0.75. How large a sample size is required if want a 99% confidence interval, with a tolerable interval width of 0.4? How large a sample would we need if were interested in a 95% confidence interval with a tolerable width of 0.5?

Answers

Answer:

We need a sample size of at least 23 for a 99% confidence interval, with a tolerable interval width of 0.4.

We need a sample size of at least 9 for a 95% confidence interval with a tolerable width of 0.5,

Step-by-step explanation:

How large a sample size is required if want a 99% confidence interval, with a tolerable interval width of 0.4?

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.99}{2} = 0.005[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.005 = 0.995[/tex], so [tex]z = 2.575[/tex]

Now, find the margin of error(width) as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

For this item, we have:

[tex]M = 0.4, \sigma = 0.75[/tex]. So

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

[tex]0.4 = 2.575*\frac{0.75}{\sqrt{n}}[/tex]

[tex]0.4\sqrt{n} = 1.93125[/tex]

[tex]\sqrt{n} = \frac{1.93125}{0.4}[/tex]

[tex]\sqrt{n} = 4.828125[/tex]

[tex]\sqrt{n}^{2} = (4.828125)^{2}[/tex]

[tex]n = 23[/tex]

We need a sample size of at least 23 for a 99% confidence interval, with a tolerable interval width of 0.4.

How large a sample would we need if were interested in a 95% confidence interval with a tolerable width of 0.5?

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.95}{2} = 0.025[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.025 = 0.975[/tex], so [tex]z = 1.96[/tex]

Now, find the margin of error(width) as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

For this item, we have:

[tex]M = 0.5, \sigma = 0.75[/tex]. So

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

[tex]0.5 = 1.96*\frac{0.75}{\sqrt{n}}[/tex]

[tex]0.5\sqrt{n} = 1.47[/tex]

[tex]\sqrt{n} = \frac{1.47}{0.5}[/tex]

[tex]\sqrt{n} = 2.94[/tex]

[tex]\sqrt{n}^{2} = (2.94)^{2}[/tex]

[tex]n \cong 9[/tex]

We need a sample size of at least 9 for a 95% confidence interval with a tolerable width of 0.5,

Suppose you work for Fender Guitar Company and you are responsible for testing the integrity of a new formulation of guitar strings. To perform your analysis, you randomly select 52 'high E' strings and put them into a machine that simulates string plucking thousands of times per minute. You record the number of plucks each string takes before failure and compile a dataset. You find that the average number of plucks is 5,314.4 with a standard deviation of 116.68. A 90% confidence interval for the average number of plucks to failure is (5,287.3, 5,341.5).
From the option listed below, what is the appropriate interpretation of this interval?

1) We are 90% confident that the average number of plucks to failure for all 'high E' strings tested is between 5,287.3 and 5,341.5
2) We cannot determine the proper interpretation of this interval.
3) We are 90% confident that the proportion of all 'high E' guitar strings fail with a rate between 5,287.3 and 5,341.5
4) We are certain that 90% of the average number of plucks to failure for all 'high E' strings will be between 5,287.3 and 5,341.5 5
5) We are 90% confident that the average number of plucks to failure for all 'high E' strings is between 5,287.3 and 5,341.5

Answers

Answer:

[tex]5314.4-1.675\frac{116.68}{\sqrt{52}}=5287.30[/tex]  

[tex]5314.4+1.675\frac{116.68}{\sqrt{52}}=5341.5[/tex]  

So on this case the 90% confidence interval would be given by (5287.3;5341.5)

And the best intrpretation is:

 5) We are 90% confident that the average number of plucks to failure for all 'high E' strings is between 5,287.3 and 5,341.5

Step-by-step explanation:

Previous concepts  

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

[tex]\bar X=5314.4[/tex] represent the sample mean  

[tex]\mu[/tex] population mean (variable of interest)  

[tex]s=116.68[/tex] represent the sample standard deviation  

n=52 represent the sample size  

90% confidence interval  

The confidence interval for the mean is given by the following formula:  

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)  

The degrees of freedom are given by:

[tex] df = n-1= 52-1=51[/tex]

Since the Confidence is 0.90 or 90%, the value of [tex]\alpha=0.1[/tex] and [tex]\alpha/2 =0.05[/tex], and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-T.INV(0.05,51)".And we see that [tex]t_{\alpha/2}=1.675[/tex]  

Now we have everything in order to replace into formula (1):  

[tex]5314.4-1.675\frac{116.68}{\sqrt{52}}=5287.30[/tex]  

[tex]5314.4+1.675\frac{116.68}{\sqrt{52}}=5341.5[/tex]  

So on this case the 90% confidence interval would be given by (5287.3;5341.5)

And the best intrpretation is:

 5) We are 90% confident that the average number of plucks to failure for all 'high E' strings is between 5,287.3 and 5,341.5

A survey is conducted of students enrolled during both the Winter 2013 and Winter 2014 semesters. 12% of students got the flu during Winter 2013. 18% of students came got the flu during Winter 2014. 5% of students got the flu during both years. What is the probability that a randomly selected survey participant didnt?

Answers

Answer:

The probability that a randomly selected survey participant didn't got the flew = 0.75

Step-by-step explanation:

Students got the flu during Winter 2013 = 12 %

Students got the flu during Winter 2014 = 18 %

Students got the flu during both years = 5 %

Students got the flu at least in one year = 12 + 18 - 5 = 25 %

Students didn't got the flew = 100 - 25 = 75 %

⇒ The probability that a randomly selected survey participant didn't got the flew =  [tex]\frac{75}{100}[/tex]

⇒ 0.75

This is the probability that a randomly selected survey participant didn't got the flew.

 

A penny is tossed. We observe whether it lands heads up or tails up. Suppose the penny is a fair coin; that is, the probability of heads is one-half and the probability of tails is one-half. What does this mean?A) if I flip the coin many, many times, the proportion of heads will be approximately 1/2, and this proportion will tend to
get closer and closer to 1/2 as the number of tosses increases.
B) regardless of the number of flips, half will be heads and half tails.
C) every occurrence of a head must be balanced by a tail in one of the next two or three tosses.
D) all of the above.

Answers

Answer:

So we conclude that the answer is under (B).

Step-by-step explanation:

We know that the penny is a fair coin; that is, the probability of heads is one-half and the probability of tails is one-half.

So when we throw a coin we have an equal chance of getting either a head or a tail.

So we conclude that the answer is under (B).

B) regardless of the number of flips, half will be heads and half tails.

You collect 100 samples from a large butterfly population. Fifty specimens are dark brown, 20 are speckled, and 30 are white. Coloration in this species of butterfly is controlled by one gene locus: BB individuals are brown, Bb are speckled, and bb are white. What are the allele frequencies for the coloration gene in this population

Answers

Answer:

Total Allele: 100

BB = 100 ;  Bb = 40 ;  bb = 60

[tex]\rho = 0.6\\\delta = 0.4[/tex]

Step-by-step explanation:

There are two allele in each gene. Since we have 100 samples of butterfly genes, the total number of allele are 100 x 2 = 200.

For each species:

Dark Brown (BB) → 50 x 2 = 100 allele

Speckled (Bb) → 20 x 2 = 40 allele

White (bb) → 30 x 2 = 60 allele

So, if we let [tex]\rho[/tex] be the frequency of the B allele and [tex]\delta[/tex] be the frequency of the b alleles, then:

[tex]\rho = \frac{ ((50 \times 2) + 20)}{200} \\\ \\\rho = \frac{100+20}{200} = \frac{120}{200}\\\\\\rho = 0.6[/tex]

[tex]\delta = \frac{((30 x 2) + 20)}{200}\\\\\delta = \frac{60+20}{200} = \frac{80}{200}\\\\\delta = 0.4[/tex]

We want to get the allele frequencies for the coloration gene in the population of butterflies, we will get:

The frequency for BB (brown) is 50%The frequency for Bb (speckled) is 20%The frequency for bb (white) is 30%

How to get the frequencies?

Assuming that the sample is a good representation of the butterfly population, the frequencies are just given by the quotient between the number of each type of butterflies and the total number of butterflies in the sample, times 100%.

There are 100 butterflies, 50 are dark brown, 20 are speckled, and 30 are white.

The frequency for BB (brown) is:

[tex]F_{BB} = (50/100)*100\% = 50\% [/tex]

The frequency for Bb (speckled) is:

 [tex]F_{Bb} = (20/100)*100\% = 20\%[/tex]

The frequency for bb (white) is:

[tex]F_{bb} = (30/100)*100\% = 30\%[/tex]

If you want to learn more about frequencies, you can read:

https://brainly.com/question/1809498

Before the distribution of certain statistical software, every fourth compact disk (CD) is testedfor accuracy. The testing process consists of running four independent programs and checking the results. The failure rates for the four testing programs are, respectively, 0.01, 0.03, 0.02, and 0.01.a.(4pts) What is the probability that a CD was tested and failed any test

Answers

Answer:

P(T∩E) = 0.017

Step-by-step explanation:

Since every fourth CD is tested. Thus if T is the event that represents 4 disks being tested,

P(T) = 1/4 = 0.25

Let Fi represent event of failure rate. So from the question,

P(F1) = 0.01 ; P(F2) = 0.03 ; P(F3) =0.02 ; P(F4) = 0.01

Also Let F'i represent event of success rate. And we have;

P(F'1) = 1 - 0.01 = 0.99 ; P(F'2) = 1 - 0.03 = 0.97; P(F'3) = 1 - 0.02 = 0.98; P(F'4) = 1 - 0.01 = 0.99

Since all programs run independently, the probability that all programs will run successfully is;

P(All programs to run successfully) =

P(F'1) x P(F'2) x P(F'3) x P(F'4) =

0.99 x 0.97 x 0.98 x 0.97 = 0.932

Now, that all 4 programs failed will be = 1 - 0.932 = 0.068

Let E be denote that the CD fails the test. Thus P(E) = 0.068

Now, since testing and CD's defection are independent events, the probability that one CD was tested and failed will be =P(T∩E) = P(T) x P(E)= 0.25 x 0.068 = 0.017

Final answer:

The probability that a CD fails any of the four independent tests, given individual failure rates of 0.01, 0.03, 0.02, and 0.01, is approximately 6.88%.

Explanation:

To calculate the probability that a CD fails any test, we should first understand that the probability of failing any particular test is the same as 1 minus the probability of passing that test. Given the failure rates of 0.01, 0.03, 0.02, and 0.01 for the four independent tests, the probabilities of a CD passing each test are 0.99, 0.97, 0.98, and 0.99, respectively.

The probability that the CD passes all four tests is the product of the individual probabilities of passing each test (since the tests are independent):

P(pass all tests) = 0.99 * 0.97 * 0.98 * 0.99

Subtracting this from 1 gives the probability that a CD fails at least one test:

P(fail any test) = 1 - P(pass all tests)

Let's perform the calculation:

P(pass all tests) = 0.99 * 0.97 * 0.98 * 0.99 ≈ 0.9312

P(fail any test) = 1 - 0.9312 ≈ 0.0688

Therefore, the probability that a CD fails any test is approximately 0.0688 or 6.88%.

A market research firm conducts telephone surveys with a 44% historical response rate. What is the probability that in a new sample of 400 telephone numbers, at least 150 individuals will cooperate and respond to the questions?

Answers

Answer:

So, the probability is P=0.9953.

Step-by-step explanation:

We know  that a market research firm conducts telephone surveys with a 44% historical response rate.

We get that:

[tex]p=44\%=0.44=\mu_{\hat{x}}\\\\n=400\\\\\hat{p}=\frac{150}{400}=0.375\\\\[/tex]

We calculate the standar deviation:

[tex]\sigma_{\hat{p}}=\sqrt{\frac{0.44(1-0.44)}{400}}\\\\\sigma_{\hat{p}}=0.025[/tex]

So, we get

[tex]z=\frac{\hat{p}-\mu_{\hat{p}}}{\sigma{\hat{p}}}\\\\z=\frac{0.375-0.44}{0.025}}\\\\z=-2.6[/tex]

We use a probability table to calculate it

[tex]P(\hat{p}>0.375)=P(z>-2.6)=1-P(z<-2.6)=1-0.0047=0.9953[/tex]

So, the probability is P=0.9953.

Final answer:

To find the probability of at least 150 of 400 individuals responding given a 44% response rate, calculate the mean and standard deviation and then find the z-score for 150 responses. The probability of getting at least 150 responses is the area to the right of the z-score in the standard normal distribution.

Explanation:

The question asks for the probability that in a new sample of 400 telephone numbers, at least 150 individuals will respond, given a historical response rate of 44%. To determine this probability, we can approximate the binomial distribution to a normal distribution because the sample size is large (n=400).

First, we calculate the mean (μ) and the standard deviation (σ) for the number of responses. The mean is given by μ = np = 400 × 0.44 = 176. The standard deviation is σ = √(np(1-p)) = √(400 × 0.44 × 0.56) ≈ 9.92.

To calculate the probability of getting at least 150 responses, we would find the z-score for 150, which is z = (X - μ)/σ = (150 - 176)/9.92 ≈ -2.62. We then look up this z-score in a standard normal distribution table or use a calculator to determine the area to the right of this z-score, which represents the probability of getting more than 150 responses.

The question is related to market research and involves using statistical methods to calculate probabilities, which requires an understanding of binomial distributions and normal approximations.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ2

A developmental psychologist is i nterested in assessing t he "" emotional i ntelligence"" o f co llege s tudents. The e xperimental des ign ca lls f or a dministering a questionnaire that measures emotional intelligence to a sample of 100 undergraduate student volunteers who are enrolled in an introductory psychology course currently b eing t aught at her u niversity. A ssume t his is the only sample being used for this study and discuss the adequacy of the sample

Answers

Answer:

In terms of size it is adequate . Sample isn't randomly selected

Step-by-step explanation:

In order for the sampling ot be adequate the sample size must be large enough which in this case it is. The samples must also be randomly selected. Here, the sample includes students from one course only. In order for the study to represent whole population that is college students, students from other courses must also be included. Junior as well as senior students must also be part of this study.

According to one theory of learning, the number of items, w(t), that a person can learn after t hours of instruction is given by: w(t) = 15 3 t2, 0 ≤ t ≤ 64 Find the rate of learning at the end of eight hours of instruction.

Answers

Answer:

The rate of study is 5 items per hour.

Step-by-step explanation:

Number of items a person can learn after t hours of instruction, w(t) is given by:

[tex]w(t)=15\sqrt[3]{t^{2}}[/tex]

We want to determine the rate of learning at any time t. The rate is the derivative of w(t) with respect to time.

[tex]\frac{dw(t)}{dt} =\frac{d}{dt} 15\sqrt[3]{t^{2}}[/tex]

[tex]\frac{dw(t)}{dt} =15\frac{d}{dt} {t^{2/3}}[/tex]

[tex]\frac{dw(t)}{dt} =15X\frac{2}{3} {t^{2/3-1}}[/tex]

[tex]\frac{dw(t)}{dt} =10 {t^{-\frac{1}{3} }}=\frac{10}{t^\frac{1}{3}}[/tex]

Therefore, the rate of learning at any time t

[tex]\frac{dw(t)}{dt} =\frac{10}{t^\frac{1}{3}}[/tex]

At the end of 8 hours, t=8

[tex]\frac{dw(t)}{dt} =\frac{10}{8^\frac{1}{3}}[/tex]

[tex]\frac{dw(t)}{dt} =\frac{10}{2}[/tex]=5

The rate of study is 5 items per hour.

Other Questions
What is the exact value of tan(3009)? Which statement is true based on the exchange rate table below?Japan YEN101.96China YUAN 6.2471Mexico PESO 12.8575Canada DOLLAR 1.0853One hundred Japanese yen is able to buy 7.93 Mexican pesos.The exchange rate between the Chinese yuan and the U.S. dollar is 1.0853.One U.S. dollar is able to buy 1.0853 Canadian dollars. You have just won the lottery and will receive a lump sum payment of $22.57 million after taxes. Instead of immediately spending your money, you plan to deposit all of the money into an account that will earn 4.84 percent. If you make equal annual withdrawals for the next 30 years, how much can you withdraw each year starting exactly one year from now? Which type of spectrum does illustration C show? Help...bright linecontinuousdark line What did Nicolaus Copernicus contribute to the scientific revolution?OA. He proposed the idea of gravity and used mathematical equationsto explain orbits.OB. He proposed a heliocentric system that Earth orbits the sun.OC. He came up with a scientific method of observing andexperimenting.experimentingD. He experimented with gases to study the properties of air.O The histogram to the right represents the weights (in pounds) of members of a certain high-school math team. How many team members are included in the histogram? Chancellor's is a high-end men's clothing store that frequently resorts to discount blowouts to get rid of excess merchandise. Which of the following best explains the reason for these sales? A. Overestimating demand B. Ineffective tracking of the inventory C. An increase in the price of raw materials D. A decrease in inventory costs E. Increased competition in the local market Where is most of Earth's carbon stored? How much of it is stored there? how do you find volume of a octagonal prism? In a series RCL circuit the generator is set to a frequency that is not the resonant frequency. This nonresonant frequency is such that the ratio of the inductive reactance to the capacitive reactance of the circuit is observed to be 5.68. The resonant frequency is 240 Hz. What is the frequency of the generator given h(x) = 4x + 3, find h(-1) Select the correct answer.What factors contributed to the United States becoming a world leaders The answer will be d Eulis Co. has identified an investment project with the following cash flows. Year Cash Flow 1 $ 1,190 2 1,090 3 1,540 4 1,900 If the discount rate is 10 percent, what is the present value of these cash flows? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) Present value $ What is the present value at 18 percent? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) Present value $ What is the present value at 24 percent? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) Present value $ How did America's involvement in World War II impact race relations in the military? Find an equation in slope-intercept form of the line that has slope 2 and passes through point A(-8, 7) Some highly degraded DNA was collected from a crime scene. Upon analysis, forensic scientists were only able to accurately sequence one 450-nucleotide-long segment of DNA from a Y chromosome. There are five suspects in the case, but they have fled the state. However, they all have large extended families in the area. How can the police narrow the search to just one suspect? What is the perimeter of the isosceles triangle shown below?A) 27 unitsB) 22 unitsC) 32 unitsD) 24 units An incident is geographically dispersed, and it is not feasible for the incident base to support the incident logistical needs. Assuming that you do not want to divide the incident in two separate incidents, what is another option for managing this incident? Which character from Gilgamesh: A New English Version is an example of a supernatural force who intervenes? On the moon, all free-fall distance functions are of the forms(t)=0.81t^2 where t is in seconds and s is in meters. An object is dropped from a height of 200meters above the moon. After 9 sec, consider parts (a) through(d) below.a)How far has the object fallen?b)How fast is it traveling?c)What is its acceleration?d)Explain the meaning of the second derivative of this free-fall function. Steam Workshop Downloader