The legs of a weight lifter must ultimately support the weights he has lifted. A human tibia (shinbone) has a circular cross section of approximately 3.6 cm outer diameter and 2.30 cm inner diameter. (The hollow portion contains marrow.)If a 90.0 kg lifter stands on both legs, what is the heaviest weight he can lift without breaking his legs, assuming that the breaking stress of the bone is 150 MPa ?

Answers

Answer 1
Final answer:

To determine the heaviest weight a weight lifter can lift without breaking his legs, we need to calculate the stress on the bones. By using the dimensions of the tibia and the breaking stress of bone, we can calculate the maximum weight the lifter can lift.

Explanation:

To determine the heaviest weight a weight lifter can lift without breaking his legs, we need to calculate the stress on the bones. Stress is defined as the force applied per unit area. In this case, we can calculate the stress on the tibia using the formula stress = force/area. The area of the cross section of the tibia can be found by subtracting the area of the inner circle from the area of the outer circle. Once we have the stress, we can use it to determine the maximum weight the lifter can lift without breaking his legs.

Using the given dimensions of the tibia, we can calculate the area and stress:

Outer radius = 3.6 cm / 2 = 1.8 cm = 0.018 m

Inner radius = 2.3 cm / 2 = 1.15 cm = 0.0115 m

Area of outer circle = π * (0.018 m)^2 = 0.001018 m^2

Area of inner circle = π * (0.0115 m)^2 = 0.000415 m^2

Area of tibia = Area of outer circle - Area of inner circle = 0.001018 m^2 - 0.000415 m^2 = 0.000603 m^2

Force on the tibia = weight lifted = mass * acceleration due to gravity = 90.0 kg * 9.8 m/s^2 = 882 N

Stress on the tibia = force/area = 882 N / 0.000603 m^2 = 1,460,070 Pa (or 1.46 MPa)

Therefore, the lifter can lift a maximum weight without breaking his legs if the stress on the tibia is less than or equal to the breaking stress of bone. In this case, the lifter can lift:

Maximum weight = breaking stress * area = 150 MPa * 0.000603 m^2 = 90.45 N

So, the lifter can lift a maximum weight of approximately 90.45 N without breaking his legs.

Learn more about Weight lifter's leg strength here:

https://brainly.com/question/41332779

#SPJ3


Related Questions

A small segment of wire contains 10 nC of charge. The segment is shrunk to one-third of its original length. A proton is very far from the wire. What is the ratio Ff/Fi of the electric force on the proton after the segment is shrunk to the force before the segment was shrunk?

Answers

The ratio of the electric force on the proton after the wire segment is shrunk to three times its original length to the force before the segment was shrunk is 3.

The electric force between a point charge and a segment of wire with a distributed charge is given by Coulomb's law.

The formula for the electric force on a point charge q due to a segment of wire with charge Q distributed along its length L is:

[tex]F=\frac{k.q.Q}{L}[/tex]

where:

F is the electric force on the point charge,  

k is Coulomb's constant ( 8.988 × 1 0⁹ Nm²/ C²),

q is the charge of the point charge,  

Q is the charge distributed along the wire segment, and

L is the length of the wire segment.

When the wire segment is shrunk to one-third of its original length, the new length becomes 1/3 L.

The charge distribution remains the same, only the length changes.

So, the new electric force [tex]F_f[/tex] ​ on the proton after the segment is shrunk becomes:

[tex]F_f=\frac{k.q.Q}{\frac{1}{3}L}[/tex]

The original electric force [tex]F_i[/tex]​ on the proton before the segment was shrunk is:

[tex]F_i = \frac{k.q.Q}{L}[/tex]

let's find the ratio [tex]\frac{F_f}{F_i}[/tex] ​:

[tex]\frac{F_f}{F_i}=\frac{\frac{k.q.Q}{\frac{1}{3}L}}{\frac{k.q.Q}{L}}[/tex]

[tex]\frac{F_f}{F_i}=3[/tex]

Hence,  the ratio of the electric force on the proton after the wire segment is shrunk to the force before the segment was shrunk is 3.

To learn more on Electric force click here:

https://brainly.com/question/31696602

#SPJ12

Final answer:

The ratio of the electric force on the proton after the wire segment is shrunk is equal to the ratio of their charges.

Explanation:

The ratio of the electric force on the proton after the wire segment is shrunk to the force before the segment was shrunk can be found using Coulomb's law. Coulomb's law states that the electric force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

In this case, the charges involved are the charge of the wire segment and the charge of the proton. Since the wire segment contains 10 nC of charge, we can consider it as one of the charged objects. The proton is very far from the wire, so we can assume that the distance between them remains the same before and after the wire segment is shrunk. Therefore, the ratio of the electric force on the proton after the segment is shrunk to the force before the segment was shrunk is equal to the ratio of their charges.

Let's assume that the initial force on the proton is Fi and the final force on the proton is Ff. Using the given information, we have:

Fi = k(q1 * q2) / r^2

where k is the electrostatic constant, q1 and q2 are the charges of the wire segment and the proton respectively, and r is the distance between them.

After the wire segment is shrunk to one-third of its original length, the charge of the wire segment remains the same and the distance between the wire segment and the proton also remains the same. Therefore, the ratio Ff/Fi can be calculated as:

Ff/Fi = (q1 * q2) / (q1 * q2) = 1

If we know the moon's position in the sky and its phase, we can estimate the ____________. In general, knowing any two of the following three things allows us to estimate the third:

Answers

Answer:

we can estimate the _time__.

The three things are;

1. Moon's position in the sky

2. The moon phase

3. The time

Explanation:

In general, knowing any two of the following three things; (the moon's position in the sky, the moon phase, and the time) will allows us to estimate the third. Yes, this statement is true because, position and phase of moon is used to determine the hour of the day and night most especially in the morning. Example of this is the determination of prayer time by Muslims community as it was the major time determinant in the past before the advent of clock or watch.

Also, if will know the time and moon position, we can determine the phase of the moon likewise using time and moon phase to know the moon position.

The different phases of the moon cause changes in the size of the moon. If we know the moon's position in the sky and its phase. we can easily estimate the time.

What is the moon phase?

The moon changes shape every day. This is due to the fact that the celestial body has no light of its own and can only reflect sunlight.

Only the side of the moon facing the sun can reflect this light and seem bright. The opposite side appears black. this is a full moon.

We can only see the black section when it lies between the sun and the earth when a new moon occurs. We witness intermediate phases like a half-moon and crescent in between these two extremes.

In general, we may estimate the third by knowing any two of the following three things

(1) the moon's position in the sky

(2) the moon phase

(3) the time

Yes, this statement is correct since the moon's location and phase are utilized to define the time of day and night, particularly in the morning.

Also, if we know the time and moon position, we can figure out the moon phase by utilizing the time and moon phase to figure out the moon position.

Hence If we know the moon's position in the sky and its phase. we can easily estimate the time.

To learn more about the moon's phase refer to the link;

https://brainly.com/question/2285324

A planet is discovered orbiting around a star in the galaxy Andromeda at the same distance from the star as Earth is from the Sun. If that star has four times the mass of our Sun, how does the orbital period of the planet compare to Earth's orbital period? A planet is discovered orbiting around a star in the galaxy Andromeda at the same distance from the star as Earth is from the Sun. If that star has four times the mass of our Sun, how does the orbital period of the planet compare to Earth's orbital period? The planet's orbital period will be four times Earth's orbital period. The planet's orbital period will be one-half Earth's orbital period. The planet's orbital period will be one-fourth Earth's orbital period. The planet's orbital period will be equal to Earth's orbital period. The planet's orbital period will be twice Earth's orbital period.

Answers

Answer:

The planet´s orbital period will be one-half Earth´s orbital period.

Explanation:

The planet in orbit, is subject to the attractive force from the sun, which is given by the Newton´s Universal Law of Gravitation.

At the same time, this force, is the same centripetal force, that keeps the planet in orbit (assuming to be circular), so we can put the following equation:

Fg = Fc ⇒ G*mp*ms / r² = mp*ω²*r

As we know to find out the orbital period, as it is the time needed to give a complete revolution around the sun, we can say this:

ω = 2*π / T (rad/sec), so replacing this in the expression above, we get:

Fg = Fc ⇒   G*mp*ms / r² = mp*(2*π/T)²*r

Solving for T²:

T² = (2*π)²*r³ / G*ms (1)

For the planet orbiting the sun in Andromeda, we have:

Ta² = (2*π)*r³ / G*4*ms (2)

As the radius of the orbit (distance to the sun) is the same for both planets, we can simplify it in the expression, so, if we divide both sides in (1) and (2), simplifying common terms, we finally get:

(Te / Ta)² =  4  ⇒ Te / Ta = 2 ⇒ Ta = Te/2

So, The planet's orbital period will be one-half Earth's orbital period.

The planet´s orbital period should be considered as the one-half Earth´s orbital period.

What is planet in orbit:

It is subjected to the attractive force from the sun that we called as the

Newton´s Universal Law of Gravitation.

Also, the following equation should be used

Fg = Fc ⇒ G*mp*ms / r² = mp*ω²*r

Now

ω = 2*π / T (rad/sec),

So,

Fg = Fc ⇒   G*mp*ms / r² = mp*(2*π/T)²*r

Now

T² = (2*π)²*r³ / G*ms (1)

And,

Ta² = (2*π)*r³ / G*4*ms (2)

So,

(Te / Ta)² =  4  ⇒ Te / Ta = 2 ⇒ Ta = Te/2

Learn more about planet here: https://brainly.com/question/20893131

A rigid tank internal energy of fluid 800kJ. Fluid loses 500kJ of heat and padle wheel does 100kJ of work. Find final internal energy in tank.

Answers

Answer:

 U₂ = 400 KJ      

Explanation:

Given that

Initial energy of the tank ,U₁= 800 KJ

Heat loses by fluid ,Q= - 500 KJ

Work done on the fluid ,W= - 100 KJ

Sign -

1.Heat rejected by system - negative

2.Heat gain by system - Positive

3.Work done by system = Positive

4.Work done on the system-Negative

Lets take final internal energy =U₂

We know that

Q= U₂ - U₁ + W

-500 = U₂ - 800 - 100

U₂ = -500 +900 KJ

U₂ = 400 KJ

Therefore the final internal energy = 400 KJ

Earth travels around the Sun at an average speed of 29.783 km/skm/s. Convert this speed to miles per hour. Express your answer using five significant figures.

Answers

Final answer:

The given speed of Earth in km/sec is converted first to miles/sec and then to miles/hour, resulting in an average speed of Earth around the Sun of approximately 66,661.6 miles/hour.

Explanation:

To solve this, we need to convert kilometers to miles and seconds to hours. First, we should know that 1 kilometer is approximately 0.621371 miles, and 1 hour has 3600 seconds.

Given that, we can first convert Earth's speed from kilometers per second to miles per second by multiplying by the conversion factor:

29.783 km/sec * 0.621371 mile/km = 18.5171 miles/sec.

Next, we convert seconds to hours:

18.5171 miles/sec * 3600 sec/hour = 66,661.6 miles/hour.

So, the average speed of the Earth around the Sun, in miles per hour, to five significant figures is 66,661.6 miles/hour.

Learn more about Speed Conversion here:

https://brainly.com/question/34421469

#SPJ3

Final answer:

The Earth travels around the Sun at an average speed of 29.783 km/s, which is approximately 66,636.7 miles per hour when converted using the steps of multiplying by 3600 to get km/hr and then by the conversion factor for km to mi.

Explanation:

The student's question is about converting the speed of the Earth's orbit around the Sun from kilometers per second to miles per hour. The given speed is 29.783 km/s. To convert this to miles per hour, we can follow these steps:

Multiply the kilometres per second by 3600, which is the number of seconds in an hour, to get the kilometres per hour.

Convert kilometers per hour to miles per hour by multiplying by the conversion factor (1 kilometer is approximately 0.621371 miles).

Performing these calculations:

29.783 km/s × 3600 s/hr = 107218.8 km/hr

107218.8 km/hr × 0.621371 mi/km = 66636.7 miles per hour

Therefore, Earth travels around the Sun at an average speed of 66,636.7 miles per hour, expressed with five significant figures.

You measure the intensity of a sound wave to be 9.80 W/m2 . The power output of the signal is 75 W and the signal is emitted in all directions.

Part A

How far away from the source are you?

r = ?

Answers

Answer:

r = 0.78 m

Explanation:

If the sound source is emitting the signal evenly in all directions (as from a point source) this means that at any time, the source power is distributed over the surface of a sphere of radius r.

At a distance r of the source, the intensity of the sound is defined as the power per unit area:

I = P/A

As the area is the area of a sphere, we can say the following:

I = P / 4*π*r²

Replacing I and P by the values given, we can solve for r (which is the distance from the listener to the source) as follows:

r² = P / I*4*π ⇒ r = [tex]\sqrt{P/(4*\pi*I)}[/tex] = 0.78 m

The distance between you and the source is 0.78 m.

The given parameters:

Intensity of the sound, I = 9.8 W/m²Output power of the signal, P = 75 W

The area of the source is calculated as follows;

[tex]A = \frac{P}{I} \\\\ A = \frac{75}{9.8} \\\\ A = 7.65 \ m^2[/tex]

The distance between you and the source is calculated as follows;

[tex]A = 4\pi r^2\\\\ r^2 = \frac{A}{4\pi} \\\\ r = \sqrt{\frac{A}{4\pi}} \\\\ r = \sqrt{\frac{7.65}{4\pi}} \\\\ r = 0.78 \ m[/tex]

Learn more about intensity of sound here: https://brainly.com/question/4431819

A hunter is aiming horizontally at a monkey who is sitting in a tree. The monkey is so terrified when it sees the gun that it falls off the tree. At that very instant, the hunter pulls the trigger. What will happen?

a) The bullet will miss the monkey because the monkey falls down while the bullet speeds straight forward.
b) The bullet will hit the monkey because both the monkey and the bullet are falling downward at the same rate due to gravity.
c) The bullet will miss the monkey because although both the monkey and the bullet are falling downward due to gravity, the monkey is falling faster.
d) It depends on how far the hunter is from the monkey.

Answers

Answer:a) The bullet will miss the monkey because the monkey falls down while the bullet speeds straight forward.

Explanation: The bullet keeps as it aim( the monkey) unless it is redirected by an external force that could redirect it. Hence, the bullet speeds straight forward.

Final answer:

(b) The bullet will hit the monkey because both the monkey and the bullet are subject to gravity's acceleration equally upon being released or fired; both will fall downward at the same rate. Hence, (b) is the correct option.

Explanation:

When a hunter aims horizontally at a monkey in a tree and the monkey drops at the moment the gun is fired, the outcome is determined by Newtonian physics.

According to Newton's laws, the bullet and the monkey are both subject to gravity and will start to fall toward the ground at the same rate, regardless of any horizontal motion. Therefore, the correct answer is:

b) The bullet will strike the monkey because gravity causes both the bullet and the monkey to fall at the same speed.

This scenario illustrates the principle that horizontal and vertical motions are independent of each other. When the gun is fired, the bullet travels forward while also accelerating downward due to gravity.

Since the monkey begins to fall at the same moment the bullet is fired, both the bullet and the monkey undergo the same downward acceleration, meaning they will fall together.

Solar energy strikes earth’s atmosphere at 343 W m-2 . About 30% is reflected and the rest is absorbed

Answers

Answer:

The black body temperature of Earth T_e= 180.4 K

Explanation:

Assuming we have to find Black body temperature of the earth.

[tex]T_e =(\frac{s_o(1-\alpha)}{4\sigma})^{0.25}[/tex]

S0= solar energy striking the earth= 343 Wm^{-2}

\alpaha = 30% = 0.3

\sigma = stephan boltsman constant.= 5.67×10^{-8} Wm^{-2}K^4

[tex]T_e =(\frac{343(1-0.3)}{4\times5.67×10^{-8}})^{0.25}[/tex]

T_e= 180.4 K

Julie drives 100 mi to Grandmother's house. On the way to Grandmother's, Julie drives half the distance at 44.0mph and half the distance at 65.0 . On her return trip, she drives half the time at 44.0mph and half the time at 65.0mph .


1)What is Julie's average speed on the way to Grandmother's house?

2)What is her average speed on the return trip?



*Express your answer with the appropriate units.

Answers

Answer:

52.47706 mph

54.5 mph

Explanation:

The average speed is given by

[tex]V_{av}=\dfrac{Distance}{Time}[/tex]

[tex]V_{av}=\dfrac{100}{\dfrac{50}{44}+\dfrac{50}{65}}\\\Rightarrow V_{av}=52.47706\ mph[/tex]

Julie's average speed on the way to Grandmother's house is 52.47706 mph

[tex]V_{av}=\dfrac{44+65}{2}\\\Rightarrow V_{av}=54.5\ mph[/tex]

Average speed on the return trip is 54.5 mph

You are 9.0 m from the door of your bus, behind the bus, when it pulls away with an acceleration of 1.0 m/s2. You instantly start running toward the still-open door at 5.7 m/s.

How long does it take for you to reach the open door and jump in?

What is the maximum time you can wait before starting to run and still catch the bus?

Answers

Final answer:

To determine the time it takes for you to reach the open door and jump in, we can use the equations of motion. We know that you are initially 9.0 m away from the door, and the bus is accelerating at 1.0 m/s². The final velocity of the bus is not given, so we can't find the exact time it takes for you to reach the door. However, we can find the maximum time you can wait before starting to run and still catch the bus.

Explanation:

To determine the time it takes for you to reach the open door and jump in, we can use the equations of motion. We know that you are initially 9.0 m away from the door, and the bus is accelerating at 1.0 m/s². The final velocity of the bus is not given, so we can't find the exact time it takes for you to reach the door. However, we can find the maximum time you can wait before starting to run and still catch the bus.



To find the maximum time you can wait, we need to calculate when the distance between you and the door is equal to 0. Since you are moving towards the door at a constant speed of 5.7 m/s and the bus is accelerating away from you, the distance between you and the door will decrease over time. Let's call the time you wait before starting to run as 't'.



The distance traveled by the bus can be calculated using the equation:

S = ut + (1/2)at^2

Where S is the distance traveled, u is the initial velocity which is 0 m/s, a is the acceleration which is 1.0 m/s², and t is the time.



The distance traveled by you can be calculated using the equation:

S = vt

Where S is the distance traveled, v is your constant velocity which is 5.7 m/s, and t is the time.



After the time 't', both the bus and you will be at the same position which is the door. So the total distance traveled by you and the bus will be equal. We can set up the equation:

ut + (1/2)at^2 = vt

Simplifying this equation, we get:

(1/2)at^2 - vt = 0

Since we know that you can wait a maximum of 't' seconds, we need to solve this quadratic equation for 't'.



Using the quadratic formula:

t = (-b ± sqrt(b^2 - 4ac))/2a

Where a = (1/2)a, b = (-v), and c = 0

Substituting the values, we get:

t = (-(-v) ± sqrt((-v)^2 - 4(1/2)a(0)))/2(1/2)a

t = v + sqrt(v^2)/a



Now we can substitute the values of 'v' and 'a' to find the maximum time you can wait before starting to run:



t = 5.7 + sqrt((5.7)^2)/1.0



t = 5.7 + sqrt(32.49)/1.0 ≈ 5.7 + 5.7 = 11.4 seconds



Therefore, the maximum time you can wait before starting to run and still catch the bus is approximately 11.4 seconds.

a projectile is shot at an inclination of 45 frin tge horizontial with a speed of 250 m/s. how far will it travek ub the horizontal direction

Answers

Answer:

6250 m  

Explanation:

When an object is projected into the air, the distance along the horizontal direction is called the Range.

The Range of a projectile is expressed as;

                                   [tex]R = \frac{u^{2}sin2\alpha }{g}[/tex]

Where,

R is the range of the projectile

α is the angle of inclination with the horizontal

g is the acceleration due to gravity = 9.8 m/s ≈ 10 m/s

Given; α =45° , u = 250 m/s

                                [tex]R = \frac{250^{2}sin2(45)}{10}[/tex]

                                [tex]R = \frac{62500sin90}{10}[/tex]

                                [tex]R = \frac{62500}{10}[/tex]

                                R =  6250 m

The range is 6250 m                              

In a projectile motion, the given object travel 6377.55 m in the horizontal direction.

 

In a projectile motion, the distance of the object along the horizontal direction is called the Range.  

The Range of a projectile                    

[tex]\bold {R = \dfrac {u^2 sin2\alpha }{g}}[/tex]

Where,  

R - range of the projectile

u - initial speed = 250 m/s  

α - angle of inclination with the horizontal = 45°  

g - gravitational acceleration = 9.8 m/s  

Put the values in the formula,

[tex]\bold {R = \dfrac {(250)^2 sin2(45) }{9.8}}\\\\\bold {R = \dfrac {62500\ sin 90 }{9.8}}\\\\\bold {R =6377.55}[/tex]  Since, sin 90 = 1

Therefore, in a projectile motion, the given object travel 6377.55 m in the horizontal direction.

To know more about projectile motion,  

https://brainly.com/question/11049671                                                              

 

The pressure rise p associated with wind hitting a window of a building can be
estimated using the formula p = rho(V2
/2), where rho is density of air and V is the speed of the
wind. Apply the grid method to calculate pressure rise for rho = 1.2 kg/m3
and V = 100 km/h.
(20%)
a. Express your answer in pascals.
b. Express your answer in meters of water column (m-H2O).

Answers

Answer:

a)P=462.70 Pa

b)h = 0.047 m of water

Explanation:

Given that

Pressure ,[tex]P=\dfrac{1}{2}\rho V^2[/tex]

[tex]\rho = 1.2\ kg/m^3[/tex]

V= 100 km/h

[tex]V=100\times \dfrac{1000}{3600}\ m/s[/tex]

V=27.77 m/s

The pressure P

[tex]P=\dfrac{1}{2}\rho V^2[/tex]

[tex]P=\dfrac{1}{2}\times 1.2\times 27.77^2\ Pa[/tex]

P=462.70 Pa

We know that density of the water [tex]\rho=1000\ kg/m^3[/tex]

Lets height of the water column = h m

We know that

[tex]_P=\rho _w g h[/tex]

462.70 = 1000 x 9.81 h

[tex]h=\dfrac{462.7}{1000\times 9.81}\ m[/tex]

h = 0.047 m of water

a)P=462.70 Pa

b)h = 0.047 m of water

a)The presuure rise will be P=462.70 Pa

b) The height of the water column h = 0.047 m of water

What will be the pressure rise and the height of the water column of the fluid?

It is given that

Pressure,

[tex]p= \dfrac{1}{2} \rho v^2[/tex]

Here   [tex]\rho =1.2 \ \dfrac{kg}{m^3}[/tex]

[tex]V=100\ \frac{km}{h} =\dfrac{100\times 1000}{3600} =27.77 \ \dfrac{m}{s}[/tex]

Now to calculate the pressure P

[tex]P=\dfrac{1}{2} \rho v^2[/tex]

[tex]P= \dfrac{1}{2}\times 1.2\times (27.77)^2[/tex]

[tex]P=462.70 \ \frac{N}{m^2}[/tex]

As we know that the density of water

[tex]\rho = 1000\ \frac{kg}{m^3}[/tex]

Lets height of the water column = [tex]h_m[/tex]

As We know that

[tex]P= \rho_w gh[/tex]

[tex]462.70=1000\times 9.81\times h_m[/tex]

[tex]h_m=0.047\ m \ of \ water[/tex]

Thus

a)The presuure rise will be P=462.70 Pa

b) The height of the water column h = 0.047 m of water

To know more about the pressure of fluids follow

https://brainly.com/question/24827501

One pipe has successive harmonics of 165 Hz, 275 Hz, and 385 Hz, and another pipe has successive harmonics of 165 Hz, 220 Hz, and 275 Hz. (a) Which pipe is closed at one end and which is open at both ends

Answers

Answer:

165 Hz, 220 Hz, and 275 Hz belongs to pipe open at both ends

165 Hz, 275 Hz, and 385 Hz belongs to pipe closed at one end

Explanation:

Open ended pips have harmonic frequencies that are multiple of the fundamental frequency

Find the fundamental frequency for each of the samples:

165Hz, 275Hz, 385Hz

(275-165)=110

(385-275)= 110

165 Hz, 220 Hz, and 275 Hz

(220-165)=55

(275-220)=55

F= 55

Note that 165 =3f

220=4f

275=5f

SO these frequencies are multiples of the fundamental frequency

A 1100 kg car rounds a curve of radius 68 m banked at an angle of 16 degrees. If the car is traveling at 95 km/h, will a friction force be required? If so, how much and in what direction?

Answers

Final answer:

Determining if a friction force is required for a car rounding a banked curve depends on the car's speed relative to the curve's ideal speed. At 95 km/h, a frictional force may be needed if this speed is not the ideal speed for the 68 m radius curve banked at 16 degrees.

Explanation:

When a 1100 kg car rounds a curve of radius 68 m banked at an angle of 16 degrees, we need to determine if a friction force is required when the car is traveling at 95 km/h. If the car is traveling at the correct banked curve speed, it could complete the turn without any frictional force. However, if the car travels at a speed higher or lower than this optimal speed, a frictional force will be necessary either to prevent the car from slipping outward or to prevent it from falling inward towards the center of the curve.

To find out whether a friction force is needed, we first need to calculate the ideal speed for this banked turn. This involves calculating the speed at which the components of the normal force provide enough centripetal force for the turn. The ideal speed is reached when no friction force is needed to keep the car on the path, meaning the force of gravity, the normal force, and the centripetal force are in perfect balance.

However, if the car is indeed traveling at 95 km/h, faster or slower than this ideal speed, then either a static frictional force acting upwards along the bank or a static frictional force opposite to the car's direction would be required to maintain its circular path without slipping.

An athlete at high performance inhales 4.0L of air at 1 atm and 298 K. The inhaled and exhaled air contain 0.5% and 6.2% by volume of water,respectively. For a respiration rate of 40 breaths per minute, how many moles of water per minute are expelled from the body through the lungs?

Answers

To solve this problem we will calculate the total volume of inhaled and exhaled water. From the ideal gas equation we will find the total number of moles of water.

An athlete at high performance inhales 4.0L of air at 1atm and 298K.

The inhaled and exhaled air contain 0.5% and 6.2% by volume of water, respectively.

During inhalation, volume of water taken is

[tex]V_i = (4L)(0.5\%)[/tex]

[tex]V_i = 0.02L[/tex]

During exhalation, volume of water expelled is

[tex]V_e = (4L)(6.2\%)[/tex]

[tex]V_e = 0.248L[/tex]

During 40 breathes, total volume of water taken is

[tex]V_{it} = (40L)(0.02L) = 0.8L[/tex]

During 40 breathes, total volume of water expelled out is

[tex]V_{et} = (40L)(0.248L) = 9.92L[/tex]

Therefore resultant volume of water expelled out from the lung is

[tex]\Delta V = 9.92L-0.8L = 9.12[/tex]

From the body through the lung we have that

[tex]n = \frac{PV}{RT}[/tex]

Here,

P = Pressure

R= Gas ideal constant

T= Temperature

V = Volume

Replacing,

[tex]n = \frac{(1atm)(9.12L)}{(8.314J/mol \cdot K)(298K)}[/tex]

[tex]n = 0.373mol/min[/tex]

Therefore the moles of water per minute are expelled from the body through the lungs is 0.373mol/min

Final answer:

The athlete expels 8.89 x 10^-2 moles of water per minute through the lungs.

Explanation:

To calculate the number of moles of water per minute expelled by the athlete through the lungs, we need to determine the amount of water evaporated with each breath and then multiply it by the respiration rate. According to the information provided, an average breath is about 0.5 L, and each breath evaporates 4.0 x 10^-2 g of water. We can convert grams of water to moles by dividing by the molar mass of water (18.02 g/mol). So, the moles of water evaporated with each breath are (4.0 x 10^-2 g)/(18.02 g/mol) = 2.22 x 10^-3 mol/breath.

Next, we can calculate the number of breaths per minute multiplied by the moles of water evaporated per breath to find the moles of water expelled per minute. The respiration rate is given as 40 breaths per minute. Therefore, the moles of water expelled per minute are (2.22 x 10^-3 mol/breath) x 40 breaths/minute = 8.89 x 10^-2 mol/minute.

Masses are stacked on top of the block until the top of the block is level with the waterline. This requires 20 g of mass. What is the mass of the wooden block

Answers

Answer:

Mass of the wooden Block is 20g.

Explanation:

The buoyant force equation will be used here

Buoyant Force= ρ*g*1/2V Here density used is of water

m*g= ρ*g*1/2V

Simplifying the above equation

2m= ρ*V Eq-1

Also we know from the question that

ρ*V = m + 0.020 Eq-2 ( Density = (Mass+20g)/Volume )

Equating Eq-1 & Eq-2 we get

2m = m+0.020

m = 0.020kg

m = 20g

When the spring, with the attached 275.0 g mass, is displaced from its new equilibrium position, it undergoes SHM. Calculate the period of oscillation, T , neglecting the mass of the spring itself.

Answers

Answer:

The period of oscillation is 1.33 sec.

Explanation:

Given that,

Mass = 275.0 g

Suppose value of spring constant is 6.2 N/m.

We need to calculate the angular frequency

Using formula of angular frequency

[tex]\omega=\sqrt{\dfrac{k}{m}}[/tex]

Where, m = mass

k = spring constant

Put the value into the formula

[tex]\omega=\sqrt{\dfrac{6.2}{275.0\times10^{-3}}}[/tex]

[tex]\omega=4.74\ rad/s[/tex]

We need to calculate the period of oscillation,

Using formula of time period

[tex]T=\dfrac{2\pi}{\omega}[/tex]

Put the value into the formula

[tex]T=\dfrac{2\pi}{4.74}[/tex]

[tex]T=1.33\ sec[/tex]

Hence, The period of oscillation is 1.33 sec.

What is the electric field 3.3 m from the center of the terminal of a Van de Graaff with a 7.20 mC charge, noting that the field is equivalent to that of a point charge at the center of the terminal?

Answers

Answer:

Electric Field is [tex]5.943801*10^6 N/C[/tex]

Explanation:

Electric Field:

It originates from positive charge and ends at negative charge.

General Formula for electric Field:

[tex]E=\frac{kq}{r^2}[/tex]

where:

k is the Coulomb Constant

q is the charge

r is the distance

Given:

q=7.20 mC

r=3.3 meters

k=[tex]8.99*10^9 N.m^2/C^2[/tex]

Find:

Electric Field=?

Solution:

[tex]E=\frac{kq}{r^2}[/tex]

[tex]E=\frac{(8.99*10^9)(7.20*10^{-3})}{3.3^2}\\E=5943801.653 N/C\\E=5.943801653*10^6 N/C[/tex]

Electric Field is [tex]5.943801*10^6 N/C[/tex]

A device called a parallel-plate capacitor consists of two large, flat, metal plates held parallel to each other and separated by a small gap. One plate is positively charged and the other plate is negatively charged. A positive point charge is placed in the gap between the two plates and near the center of each plate. Does the charge experience an electric force, and if so, in which direction does the force on the charge point?a. No, there is no force on the negative charge. b. Yes, but electric force on the negative charge points equally in both directions, towards the positive plate and towards the negative plate. c. Yes, the electric force on the negativc charge is directed away from negative plate to and towards the positive plate. d. Yes, the electric force on the negative charge is directed parallel to both plates. e. Yes, the electric force on the negative charge is directed away from the positive plate and towards the negative plate.

Answers

Answer:

Yes, there will a force acting on the positive point charge. The options provided are that of negative point charge, rather than a positive point charge stated in the question

Explanation:

Here is the explanation:

When a capacitor is charged, one plate is positively charge and the other is negatively charged. In between the oppositely charged plates, there exist a potential difference. A positive point charge placed in the distance between the two plate will experience an electric force due to the potential difference. The direction of the force will be directed away from the positvely charged plate and towards the negatively charged plate. The reason is due to the law of electrostatic force, which states: like charges repel and unlike charges attract.

Final answer:

A parallel-plate capacitor consists of two large, flat, metal plates held parallel to each other. A positive point charge placed in the gap between the plates and near the center will experience an electric force directed away from the positive plate and towards the negative plate.

Explanation:

A device called a parallel-plate capacitor consists of two large, flat, metal plates held parallel to each other and separated by a small gap. When a positive point charge is placed in the gap between the two plates and near the center of each plate, it experiences an electric force.

The direction of the electric force on the negative charge is from the positive plate towards the negative plate. This means the electric force is directed away from the positive plate and towards the negative plate.

Learn more about electric force here:

https://brainly.com/question/21093704

#SPJ3

If the gap between C and the rigid wall at D is initially 0.15 mm, determine the magnitudes of the support reactions at A and D when the force P

Answers

Answer / Explanation

The question in the narrative is incomplete.

Kindly find the complete question below:

If the gap between C and the rigid wall at D is  initially 0.15 mm, determine the support reactions at A and  D when the force is applied. The assembly  is made of A36 steel

Procedure

Recalling the the equation of equilibrium and referencing the free body diagram of the assembly,

Therefore, ∑fₓ  = 0 ,

where, 20 ( 10³) - Fₐ - Fₙ = 0 --------------equation (1)

Now, recalling the compatibility equation, while utilizing the superposition method,

Therefore, δₓ - δfₓ

= 0.15  = 200(10³)(600) ÷ π/4 (0.05²)(200)(10⁹) - [ Fₐ (600) / π/4 (0.05²)(200)(10⁹) + Fₐ (600) π / 4 (0.05²)(200)(10⁹) ]

Solving this further,

We get: Fₐ = 20365.05 N

 Which is equivalent to = 20.4 kN.

Now, substituting the answer (Fₐ) into equation (1)

                Fₙ = 179634.95 N

                        = 180 kN

If the distance between two charges is doubled, by what factor is the magnitude of the electric force changed? F_e final/F_e, initial =____

Answers

To solve this problem we will apply the concepts related to Coulomb's law for which the Electrostatic Force is defined as,

[tex]F_{initial} = \frac{kq_1q_2}{r^2}[/tex]

Here,

k = Coulomb's constant

[tex]q_{1,2}[/tex] = Charge at each object

r = Distance between them

As the distance is doubled so,

[tex]F_{final} = \frac{kq_1q_2}{( 2r )^2}[/tex]

[tex]F_{final} = \frac{ kq_1q_2}{ 4r^2}[/tex]

[tex]F_{final} = \frac{1}{4} \frac{ kq_1q_2}{r^2}[/tex]

[tex]F_{final} = \frac{1}{4} F_{initial}[/tex]

[tex]\frac{F_{final}}{ F_{initial}} = \frac{1}{4}[/tex]

Therefore the factor is 1/4

A rocket is launched upward with a constant acceleration of 165 m/s^2. After 8.00 seconds of ascension a passenger on the rocket drops a rock out of it. How long does it take for this rock to hit the ground?

Answers

To solve this problem we will apply the concepts related to the linear kinematic movement. We will start by finding the speed of the body from time and the acceleration given.

Through the position equations we will calculate the distance traveled.

Finally, using this same position relationship and considering the previously found speed, we can determine the time to reach your goal.

For time (t) and acceleration (a) we have to,

[tex]t = 8s, a = 165m/s^2[/tex]

The velocity would be,

[tex]u = a*t \\u = 165*8\\u = 1320m/s[/tex]

Now the position is,

[tex]h= \frac{1}{2} at^2[/tex]

[tex]h = \frac{1}{2} 165*8^2[/tex]

[tex]h = 5280m[/tex]

Now with the initial speed and position found we will have the time is,

[tex]h=ut +\frac{1}{2} at^2[/tex]

[tex]-5280=1320t - \frac{1}{2} 9.8t^2[/tex]

[tex]4.9t^2-1320t-5280=0[/tex]

Solving the polynomian we have,

[tex]t = 273.33s = 4.56minutes[/tex]

Therefore  the rocket will take to hit the ground around to 4.56min

First, we need to determine the velocity of the rocket at the time the rocket is dropped after 8 seconds of powered ascent.
Given the constant acceleration of 165 m/s^2, the velocity (v) at 8 seconds can be found using the formula
v = at
where 'a' is the acceleration and 't' is the time.
Therefore, v = 165 m/s^2 x 8 s = 1320 m/s.

Now that the rocket is dropped, it will initially have the velocity of the rocket at that instant, which is 1320 m/s upward. To find out how long it takes for the rock to reach the highest point, we use the formula
v = u + at
where 'u' is initial velocity, 'v' is final velocity (0 m/s at the highest point), 'a' is the acceleration due to gravity (which is negative since it is in the opposite direction to the initial motion), and 't' is the time.
Solving for time, we get
t = -u/g. With g ≈ 9.81 m/s^2, the time to reach the highest point is
t ≈ -1320 m/s / -9.81 m/s^2 ≈ 134.6 s.

After reaching the highest point, the rocket will start falling back to the ground. Since the rocket starts from rest at the highest point, we can use the formula
s = 0.5gt^2
where 's' is the distance and 't' is time, to calculate the time it takes to fall to the ground.
But since we already have the time to reach the highest point, we can simply double that time to find the total time taken for the round trip, because the time to go up is the same as the time to come down in free fall. So the total time taken for the rocket to hit the ground is
134.6 s up + 134.6 s down = 269.2 s.

A parallel-plate capacitor is connected to a battery. What happens to the stored energy if the plate separation is doubled while the capacitor remains connected to the battery?

(a) It remains the same
(b) It is doubles
(c) It decreases by a factor of 2
(d) It decreases by a factor of 4
(e) It increases by a factor of

Answers

Answer:

(c)  As 'd' becomes doubled, energy decreases by the factor of 2

Explanation:

Energy stored in a parallel plate capacitor is given by:

[tex]U=\frac{1}{2}CV^2\\\\C=\frac{A\epsilon_{o}}{d}\\\\then\\\\U=\frac{1}{2}\frac{A\epsilon_{o}}{d}V^2--(1)\\\\[/tex]

As capacitor remains connected to the battery so V remains constant. As can be seen from (1) that energy is inversely proportional to the separation between the plates so as 'd' becomes doubled, energy decreases by the factor of 2.

Answer:

(c) It decreases by a factor of 2

Explanation:

Since the capacitor is still connected to the power source, the potential difference remain the same even when the distance is a doubled.

The energy stored in a capacitor can be written as:

E = (1/2)CV^2 .....1

And the capacitance of a capacitor is inversely proportional to the distance between the two plates of the capacitor.

C = kA/d ....2

Therefore, when d doubles, and every other determinant of capacitance remains the same, the capacitance is halved.

Cf = kA/2d = C/2

Cf = C/2

Since the capacitance has been halved and potential difference remains the same, the energy stored would also be halved since the energy stored in the capacitor is directly proportional to the capacitance.

Ef = (1/2)(Cf)V^2

Ef = (1/2)(C/2)V^2 = [(1/2)CV^2]/2

Ef = E/2

Where;

E and Ef are the initial and final energy stored in the capacitor respectively

C and Cf are the initial and final capacitance of the capacitor.

d is the distance between the plates

A is the area of plates

k is the permittivity of dielectrics

Therefore the energy stored in the capacitor is decreased by a factor of 2, when the distance is doubled.

A block with velocity v>0 slides along the floor (with no friction). It hits an ideal spring at time t=0 (configuration #1). The spring starts to compress until the block comes to a (momentary) stop (configuration #2). (Figure 1) (Later, the spring will of course expand, pushing the block back). Here we show you some plots relating to the motion of the block and spring. You will need to identify what these plots represent. In each plot, the point we label as "1" refers to configuration #1 (when the block first comes in contact with the spring). The point we label "2" refers to configuration #2 (which is the moment the block comes to rest, with the spring fully compressed). Here, "force" refers to the x-component of the force of the spring on the block and "position" (and "velocity") refer to the x-components of the position (and velocity) of the block. In all cases, consider the origin to be (0,0); that is, the x-axis represents y=0 and the y-axis represents x=0.

Part A

Look first a t graph A. (Figure 2)

Which of the choices given could this graph represent?

1. position (x) vs. time
2. velocity (v) vs. time
3. force (F) vs. time
4. force (F) vs. position

Part B

Now look at graph B. (Figure 3)

Which of the choices given could this graph represent?

1. position (x) vs. time
2. velocity (v) vs. time
3. force (F) vs. time
4. force (F) vs. position

Part C

Next look at graph C. (Figure 4)

Which of the choices given could this graph represent?

1. position (x) vs. time
2. velocity (v) vs. time
3. force (F) vs. time
4. force (F) vs. position

Answers

Answer:

(A) position vs time

(B) Force vs position

(C) velocity vs time

Explanation:

Part A

This graph shows that the position of the block increases with time along the x-axis exponentially (that is it increases in unequal amounts in equal time intervals). This is because the velocity of the block is changing with time and as a result the position changes in unequal amounts per time

PartB

The force on the spring increases in a negative direction going from zero to a negative value. This is because the spring is being compressed from configuration 1 to 2. The force of compression on a spring is usually taken to have a negative sign and expansion to have a positive sign. So in this case force becomes increasingly negative with time.

Part C

The velocity of the block decreases from a positive nonzero value (v>0) to zero because the spring resists the motion of the block. As a result the block comes to a stop momentarily. The velocity decreases exponentially because the acceleration of the block is also changing with time since the force of the block is decreasing with time.

Thank you for reading.

To get up on the roof, a person (mass 92.0 kg) places a 5.60 m aluminum ladder (mass 14.0 kg) against the house on a concrete pad with the base of the ladder 2.00 m from the house. The ladder rests against a plastic rain gutter, which we can assume to be frictionless. The center of mass of the ladder is 2 m from the bottom. The person is standing 3 m from the bottom. What are the magnitudes (in N) of the forces on the ladder at the top and bottom?

Answers

Answer:

Down

       F1ₓ = 219.6N

       [tex]F1_{y}[/tex]  = 1038.8 N

Top

       F2ₓ = 219.6 N

       [tex]F2_{y}[/tex] = 0  

Explanation:

For this exercise we must make a free body diagram of the ladder, see attached, then use the balance equations on each axis

Transnational Balance

X axis

        F1ₓ -F2ₓ = 0

        F1ₓ = F2ₓ

Y Axis  

         [tex]F1_{y}[/tex] -  [tex]F2_{y}[/tex] - W - W_man = 0           (1)

Rotational balance

The reference system is placed at the bottom of the stairs and we can turn the anti-clockwise direction of rotation as positive

           F2ₓ y - [tex]F2_{y}[/tex] x - W x - W_man x_man = 0

Let us write the data they give, the masses of the ladder (m = 14.0 kg), the mass of man (m_man = 92 kg), the center of mass of the ladder that is 2m from the bottom (the height) and the position of the man which is 3 m high

Let's look with trigonometry for distances

The angle of the stairs is

           cos θ = x / L

           θ = cos⁻¹ x / L

           θ = cos⁻¹ 2 / 5.6

           θ = 69⁰

Height y

          tan 69 = y / x

          y = x tan 69

          y = 2 tan 69

          y = 5.21 m

Distance x

          tan 69 = 2 / x

          x = 2 / tan 69

          x = 0.7677 m

The distance x_man

          x_man = 3 / tan 69

          x_man = 1,152 m

They indicate that between the scalars and the support there is no friction so the vertical force at the top is zero

          [tex]F2_{y}[/tex] = 0

Let's replace in the translational equilibrium equation

         F2ₓ y - [tex]F2_{y}[/tex] x - W x - W_man x_man = 0

         F2ₓ 5.21 -0 - 14.0 9.8 0.7677 - 92.0 9.8 1,152 = 0

         F2ₓ = 1143.97 / 5.21

         F2ₓ = 219.6 N

 

We use equation 1

         [tex]F1_{y}[/tex] + 0 - W - W_man = 0

        [tex]F1_{y}[/tex] = W + W_man

        [tex]F1_{y}[/tex]  = (m + m_man) g

         [tex]F1_{y}[/tex]  = (14 +92) 9.8

         [tex]F1_{y}[/tex]  = 1038.8 N

We can write the force on each part of the ladder

Down

       F1ₓ = 219.6N

       [tex]F1_{y}[/tex]  = 1038.8 N

Top

       F2ₓ = 219.6 N

       [tex]F2_{y}[/tex] = 0  

When energy is converted from one form to another in a chemical or physical change, which of the following also changes by a measureable amount? Select the correct answer below:

a.The total mass in the system
b.The force of gravity
c.The total energy
d.None of the above

Answers

Answer:

None of the above

Explanation:

When energy is converted from one form to another in a chemical or physical change, none will change. This is due to the law of conservation of energy. It states that the total energy of the system remains constant. It only changes energy from one form of energy to another. So, the correct option is (d) "none of the above".

Answer: None of the above

Explanation:

The total mass of a system does not change during normal (non-nuclear) chemical reactions or during other processes where energy changes form. The force of gravity is constant and will not change when energy is converted. While energy can be converted between forms or exchanged between species, no additional energy can be created or removed.

A 5.00 kg crate is suspended from the end of a short vertical rope of negligible mass. An upward force F(t) is applied to the end of the rope, and the height of the crate above its initial position is given by y(t)=(2.80 m/s)t +(0.61 m/s^3)t^3.
a. What is the magnitude of the force F when 4.10s ?b. is the magnitude's unit N but the system doesn't accept it?

Answers

Answer

F = 124 N

Explanation:

given,

mass, m = 5 Kg

time, t = 4.1 s

displacement = y(t)=(2.80 m/s)t +(0.61 m/s³)t³

velocity

[tex]\dfrac{dy(t)}{dt}=2.80 + 1.83 t^2[/tex]

[tex]v=2.80 + 1.83 t^2[/tex]

again differentiating to get the equation of acceleration

[tex]\dfrac{dv}{dt}= 3.66 t[/tex]

[tex]a= 3.66 t[/tex]

force at time t = 4.10 s

F = m a

F = 5 x 3.66 x 4.1

F = 75 N

the net force when crate is moving upward

F = Mg + Ma

F = 5 x 9.8 + 75

F = 124 N

the magnitude of force is equal to 124 N

Newton's law of motions worksheet answer solutions What is the mass of an object that needs a force of 6 600 N to increase its speed from rest to 107 m/s in 2.3 seconds?

Answers

Answer:

141.87 kg.

Explanation:

Deduction From Newton's second law of motion.

F = ma....................... Equation 1

Where F = Force acting on the object, m = mass of the object, a = acceleration  of the object.

Making m the subject of the equation,

m = F/a .................. Equation 2

But

a = (v-u)/t............... Equation 3

Where v = final velocity, u = initial velocity, t = time.

Given: v = 107 m/s, u = 0 m/s ( fro rest), t = 2.3 s.

Substituting into equation 3

a = (107-0)/2.3

a = 107/2.3

a = 46.52 m/s².

Also Given, F = 6600 N

Substitute into equation 2

m = 6600/46.52

m = 141.87 kg.

Hence the mass of the object = 141.87 kg.

A block of wood is floating in water; it is depressed slightly and then released to oscillate up and down. Assume that the top and bottom of the block are parallel planes which remain horizontal during the oscillations and that the sides of the block are vertical. Show that the period of the motion (neglecting friction) is 2π ph/g, where h is the vertical height of the part of the block under water when it is floating at rest. Hint: Recall that the buoyant force is equal to the weight of displaced water.

Answers

Explanation:

Equilibrium position in y direction:

W = Fb (Weight of the block is equal to buoyant force)

m*g = V*p*g

V under water = A*h

hence,

m = A*h*p

Using Newton 2nd Law

[tex]-m*\frac{d^2y}{dt^2} = Fb - W\\\\-m*\frac{d^2y}{dt^2} = p*g*(h+y)*A - A*h*p*g\\\\-A*h*p*\frac{d^2y}{dt^2} = y *p*A*g\\\\\frac{d^2y}{dt^2} + \frac{g}{h} * y =0[/tex]

Hence, T time period

T = 2*pi*sqrt ( h / g )

A small drop of water is suspended motionless in air by a uniform electric field that is directed upward and has a magnitude of 11000 N/C. The mass of the water drop is 3.37 × 10-9 kg. How many excess electrons or protons reside on the drop?

Answers

To solve this problem we will apply the concepts related to the electric field such as the smelting of the Force and the load (In this case the force is equivalent to the weight). Later we will apply the ratio of the total charge as a function of the multiplication of the number of electrons and their individual charge.

[tex]E = \frac{mg}{q}[/tex]

Here,

m = mass

g = Acceleration due to gravity

Rearranging to find the charge,

[tex]q = \frac{mg}{E}[/tex]

Replacing,

[tex]q = \frac{(3.37*10^{-9})(9.8)}{11000}[/tex]

[tex]q = 3.002*10^{-12}C[/tex]

Since the field is acting upwards the charge on the drop should be negative to balance it in air. The equation to find the number of electrons then is

[tex]q = ne[/tex]

Here,

n = Number of electrons

e = Charge of each electron

[tex]n = \frac{q}{e}[/tex]

Replacing,

[tex]n = \frac{3.002*10^{-12}}{1.6*10^{-19}}[/tex]

[tex]n = 2.44*10^7[/tex]

Therefore the number of electrons that reside on the drop is [tex]2.44*10^7[/tex]

To determine the number of excess electrons or protons residing on the water drop, we can use the principle of electrostatics. When an electric field is applied to a charged object, the electrostatic force acting on it can be calculated using the equation:

[tex]F = qE[/tex]

Where:

F is the electrostatic force

q is the charge on the object

E is the electric field strength

In this case, the electrostatic force acting on the water drop is balanced by the gravitational force, so we have:

F = mg

Where:

m is the mass of the water drop

g is the acceleration due to gravity

We can equate these two forces and solve for the charge q:

qE = mg

From this equation, we can isolate the charge q:

q = mg / E

Now we can calculate the charge on the water drop:

m = 3.37 × 10^(-9) kg

g = 9.8 m/s^2

E = 11000 N/C

Substituting the values into the equation:

q = (3.37 × 10^(-9) kg * 9.8 m/s^2) / 11000 N/C

Calculating this expression:

q = 3.037 × 10^(-15) C

The elementary charge of an electron or proton is approximately 1.602 × 10^(-19) C. To find the number of excess electrons or protons, we can divide the calculated charge by the elementary charge:

Number of excess electrons or protons = q / elementary charge

Number of excess electrons or protons = (3.037 × 10^(-15) C) / (1.602 × 10^(-19) C)

Calculating this expression:

Number of excess electrons or protons ≈ 1.895 × 10^(4)

Therefore, the water drop has approximately 18,950 excess electrons or protons.

Learn more about electric field on:

https://brainly.com/question/14557875

#SPJ6

Other Questions
Why did various colonists go to the New World? How did the increasing integration of the Atlantic world affect the movement of peoples between its different regions? Place each of the labels in the box designating which plane or section is being referred to. whats the square root of 49 Cascade Order in Classical Activation Once activated, the complement cascade is an ordered process. Each reaction leads to another reaction. This activity asks you to place the cascade reactions in the order they occur, starting with the C1.1) C1 interacts with an antibody that is bound to a pathogen2) C3 is split into C3a and C3b3) C2a and C4b combine to form an enzyme4) C1 cleaves C2 and C4 what is the solution to this system of equations?5x-3y=103x+3y=3 Simple sweat glands dispersed over the body surface that respond to increases in core and/or skin temperature and facilitate thermoregulation? Why did the British Parliament impose taxes on the colonists after 1763?___________________________To pay the British off the debts from the french and Indian war.___________________________ To pay for king George's lavish lifestyle.___________________________to pay for a new building for Parliament. ___________________________To pay the french to keep out american affairs. Solve v^2-7v-33=0 by factoring Factor and solve the equation x^3-x^2-30x=0 A large institution, such as a bank, may have thousands of transactions to process in which no user interaction is required; which type of computer system are you most likely to use?A) high-end workstationB) mainframeC) Windows PCD) real-time system Who though that aging was attributable to a loss of irritability in nervous and muscular tissue? According to Thomas Friedman, The World is Flat, we have progressed from the globalization of countries to the globalization of multinational corporations to the globalization of ______. Divide the following polynomials, then place the answer in the proper location on the grid. Use synthetic division. Write the answer in descending powers of x.(3x2 + 7x - 18) (x - 3) A 5.000 gram sample of lenthionine contains 0.6357 g carbon and 0.1070 g hydrogen, and the remainder is sulfur. The molar mass of lenthionine is 188.4 g/mol. Determine the chemical formula for lenthionine. Apex Fitness Club uses straight-line depreciation for a machine costing $23,860, with an estimated four-year life and a $2,400 salvage value. At the beginning of the third year, Apex determines that the machine has three more years of remaining useful life, after which it will have an estimated $2,000 salvage value. Compute (1) the machines book value at the end of its second year and (2) the amount of depreciation for each of the final three years given the revised estimates. Suppose you see a photo showing Jupiter half in sunlight and half in shadow (that is, a first quarter Jupiter). This photo might have been taken by _________. A 0.1014 g sample of a purified CHO compound was burned in a combustion apparatus and produced 0.1486 g CO2 and 0.0609 g of H2O. What is the empirical formula of this CHO compound? Enter as C#H#O#, e.g. C2H3O2 There are 1,198 souvenir paperweights that need to be packed in boxes. Each box will hold 12 paperweights. How many boxes will be needed? Claim: High School teachers have incomes with a standard deviation that is more than $22,500. A recent study of 126 high school teacher incomes shower a standard deviation of $24,500.A. Express the original claim in symbolic form.B. Identify the null and the alternative hypotheses that should be used to arrive at the conclusion that supports the claim. Which of the following statements is a reason for NOT classifying viruses in one of the three domains of life (Bacteria, Archaea, Eukarya) rather than in a fourth separate domain? A) Some viruses can incorporate their genome into a host's genome. B) Viruses direct anabolic pathways of host cells. C) Viruses are obligate parasites. D) Viruses are not composed of cells. E) All of the answers are correct. Steam Workshop Downloader