The impulse experienced by a body is equivalent to the body’s change in

Answers

Answer 1
Answer:

Momentum

Explanation:

The momentum of a particle is defined as the product of the particle mass and the particle velocity as follows:

[tex]\overrightarrow{p}=m\overrightarrow{v}[/tex]

On the other hand, the impulse of a constant force is defined as:

[tex]\overrightarrow{J}=\varSigma\overrightarrow{F}(t_{2}-t_{1})=\varSigma\overrightarrow{F}\Delta t[/tex]

We also know that the net force acting on  a particle equals the rate of change  of the particle’s momentum, so:

[tex]\varSigma\overrightarrow{F}=m\overrightarrow{a}=m\frac{d}{dt}(\overrightarrow{v})=\frac{d}{dt}(m\overrightarrow{v})=\frac{d\overrightarrow{p}}{dt}[/tex]

If the force is constant, then [tex]\frac{d\overrightarrow{p}}{dt}[/tex] equals the total change in momentum over a period of time:

[tex]\varSigma\overrightarrow{F}=\frac{\overrightarrow{p_{2}}-\overrightarrow{p_{1}}}{t_{2}-t_{1}} \\ \\ \varSigma\overrightarrow{F}(t_{2}-t_{1})=\overrightarrow{p_{2}}-\overrightarrow{p_{1}} \\ \\ \boxed{\overrightarrow{J}=\Delta \overrightarrow{p}}[/tex]

Answer 2
Final answer:

The impulse experienced by a body is equivalent to its change in momentum. This principle is based on Newton's second law of motion. Impulse is the product of the force and the duration over which it is applied.

Explanation:

The impulse experienced by a body is equivalent to the body’s change in momentum. This principle is based on Newton's second law, which in terms of momentum states that the net force applied to a system equals the rate of change of the momentum that the force causes. In simpler terms, when a force is applied on an object for a certain amount of time, the object experiences an impulse. This impulse is the difference between the initial and final momentum of the object.

For example, consider a ball bouncing off a floor. If the force of the floor on the ball is constant over a specific duration, then the resulting impulse or change in momentum can be calculated by multiplying the force by the duration of the force application. So, an impulse can cause the object's motion to change due to the effect it has on the ball's momentum.

Learn more about Impulse and Momentum here:

https://brainly.com/question/33450468

#SPJ3


Related Questions

What is the most common fuel used in nuclear power plants

Answers

Answer:

uranium

Explanation:

it is radioactive

Answer:

Uranium

Explanation:

uranium is the most common fuel used in a nuclear power because actinides produced by neutron capture

An object is located 5.0 cm from a concave mirror. The focal length is 15.0 cm. What is the image distance? Use the equation attached.

A.3.8 Cm
B.-3.8 Cm
C.-7.5 Cm
D.7.5 Cm

Answers

Answer:

-7.5 cm

Explanation:

OK so in the equation they're having you use the variables are:

[tex]d_o = 5.0 cm\\\\f = 15.0 cm\\\\d_i = ?[/tex]

So we simply plug in the variables:

[tex]d_i = \frac{d_of}{d_o-f} \\\\d_i = \frac{5.0 * 15.0}{5.0 - 15.0}\\\\d_i = \frac{75}{-10}\\\\d_i = -7.5 cm[/tex]

Answer:

C. -7.5 cm

Explanation:

got it right, trust

which of the boxes on the electromagnetic spectra shown below contains the range of frequencies with the most energy? Assume that all wave amplitudes are equal.

Answers

Answer:

A

Explanation:

The energy of an electromagnetic wave is directly proportional to its frequency, according to the equation:

E = hf

where

h is the Planck constant

f is the frequency

The frequency of a wave is the number of complete cycles per unit of time: in the figures shown, we see that the more we go towards the right, the higher the frequency is (because the wavelength becomes shorter, so the waves makes more complete cycles per second). This means that the more the box is on the right, the higher the frequency: the figure with the box located more on the right is A, so this is also the figure that represents the range of frequencies with most energy.

Answer:

B

Explanation:

Who was the first american to orbit the earth?

Answers

Answer:

John Glenn

Explanation:

Answer:

John Glenn was the first American to orbit the Earth. The first human in space was the Soviet cosmonaut Yuri Gagarin

Explanation:

Hope this helps. Feel free to let me know if you need any more help :)

How are the planets sizes related to their surface gravity

Answers

Answer:

The surface gravity is inversely proportional to the square of the radius of the planet

Explanation:

The gravity at the surface of a planet is given by:

[tex]g=\frac{GM}{R^2}[/tex]

where

G is the gravitational constant

M is the mass of the planet

R is the radius of the planet

We see from the formula that the surface gravity is inversely proportional to the square of the radius of the planet, R.

At the Earth's surface, the value of the surface gravity is approximately 9.81 m/s^2.

Two small spheres spaced 20.0 cm apart have equal charge. How many excess electrons must be present on each sphere if the magnitude of the force of repulsion between them is 4.57 x 10^(-21) N?

Answers

Answer:

894 electrons

Explanation:

The electrostatic force between the two charges is given by:

[tex]F=\frac{k q_1 q_2}{r^2}[/tex]

where we have

[tex]F=4.57\cdot 10^{-21} N[/tex] is the force

k is the Coulomb's constant

q1 = q2 =q is the magnitude of the charge on each sphere

r = 20.0 cm = 0.20 m is the distance between the two spheres

Substituting and solving for q, we find the charge on each sphere:

[tex]q=\sqrt{\frac{Fr^2}{k}}=\sqrt{\frac{(4.57\cdot 10^{-21} N)(0.20 m)^2}{9\cdot 10^9 Nm^2C^{-2}}}=1.43\cdot 10^{-16} C[/tex]

And since each electron has a charge of

[tex]e=1.6\cdot 10^{-19}C[/tex]

the net charge on each sphere will be given by

[tex]q=Ne[/tex]

where N is the number of excess electrons; solving for N,

[tex]N=\frac{q}{e}=\frac{1.43\cdot 10^{-16}C}{1.6\cdot 10^{-19}C}=894[/tex]

Using Coulomb's Law and the given values, we find that each sphere must have approximately 891 excess electrons to produce a repulsive force of [tex]4.57 \times 10^{-21} N[/tex] at a distance of 20 cm.

To solve this problem, we will use Coulomb's Law, which is given by:

[tex]F = k_e \times (q_1 \times q_2) / r^2[/tex]

Where:

F is the force of repulsion between the charges.[tex]k_e[/tex] is Coulomb's constant ([tex]8.99 \times 10^9 N m^2/C^2[/tex]).q₁ and q₂ are the charges (since the charges are equal, we can use q²).r is the distance between the charges.

Given data:

[tex]F = 4.57 \times 10^{-21} N[/tex][tex]r = 20.0\left cm = 0.20\left m[/tex]

We can rearrange Coulomb's Law to solve for the charge:

[tex](q_1 \times q_2) = F \times r^2 / k_e[/tex]

Since [tex]q_1 = q_2 = q[/tex], the equation becomes:

[tex]q^2 = F \times r^2 / k_e[/tex]

Now, we can plug in the values:

[tex]q^2 = (4.57 \times 10^{-21} N) \times (0.20 m)^2 / (8.99 \times 10^9 N m^2/C^2)[/tex][tex]q^2 = 4.57 \times 10^{-21} \times 0.04 / 8.99 \times 10^9[/tex][tex]q^2 = 1.828 \times 10^{-22} / 8.99 \times 10^9[/tex][tex]q^2 \approx 2.034 \times 10^{-32}[/tex]

Taking the square root of both sides, we get:

[tex]q \approx 1.426 \times 10^{-16} C[/tex]

Since we need to find the number of excess electrons, we divide by the elementary charge ([tex]e = 1.6 \times 10^{-19} C[/tex]):

Number of excess electrons [tex]\approx 1.426 \times 10^{-16} C / 1.6 \times 10^{-19} C/electron[/tex]Number of excess electrons [tex]\approx 891\left electrons[/tex]

So, each sphere must have approximately 891 excess electrons to produce the given force of repulsion.

PLEASE HELP!

Find the angle of the resultant vector for the vectors shown below. (nearest whole number and angles measured from the positive x-axis)
vector

A) 39 degrees


B) 51 degrees



C) 70 degrees

Answers

Answer:

[tex]38.6^{\circ}[/tex]

Explanation:

In order to find the resultant of the two vectors, we need to find the components of each vector along the x- and y- axis.

For the horizontal vector, we have:

x-component: [tex]A_x = 15[/tex]

y-component: [tex]A_y = 0[/tex]

For the vectors of 18 units:

x-component: [tex]B_x = 18 cos 70^{\circ}=6.16[/tex]

y-component: [tex]B_y = 18 sin 70^{\circ}=16.91[/tex]

So the components of the resultant vector are

[tex]R_x=A_x + B_x = 15 +6.16 = 21.16[/tex]

[tex]R_y=A_y + B_y = 0 +16.91 = 16.91[/tex]

And so the direction is given by

[tex]\theta = tan^{-1} (\frac{R_y}{R_x})=tan^{-1} (\frac{16.91}{21.16})=38.6^{\circ}[/tex]

A planet moves fastest in its orbit around the sun when it is at which position?

Answers

Answer:

When it's closest to the sun.

Explanation:

The force of gravity acting on a planet is equal to its mass times its centripetal acceleration.

Fg = m v^2 / r

The force of gravity is defined by Newton's law of universal gravitation as:

Fg = mMG / r^2

Therefore:

mMG / r^2 = m v^2 / r

MG / r = v^2

v increases as r decreases.  So the planet is moving fastest when it's closest to the sun, also known as the perihelion.

The force of gravity acting on a planet is equal to its mass times its centripetal acceleration.

Fg = m v² / r

The force of gravity is defined by Newton's law of universal gravitation as:

Fg = mMG / r²

Therefore:

mMG / r² = m v² / r

MG / r = v²

v increases as r decreases.  So the planet is moving fastest when it's closest to the sun, also known as the perihelion.

perihelion

The fastest a planet moves is at perihelion (closest) and the slowest is at aphelion (farthest). Law 3. The square of the total time period (T) of the orbit is proportional to the cube of the average distance of the planet to the Sun (R)

What is the Earth's perihelion?

The Earth is closest to the Sun, at its perihelion, about two weeks after the December solstice and farthest from the Sun, or at its aphelion, about two weeks after the June solstice. Earth is farthest from the Sun when it is summer in the Northern Hemisphere.

To learn more about perihelion, refer

https://brainly.com/question/14348974

#SPJ2

If we use 1 millimeter to represent 1 light-year, how large in diameter is the Milky Way Galaxy?
a.100 millimeters
b.100 kilometers
c.1 kilometer
d.100 meters
e.1 million millimeters

Answers

Answer:

d.100 meters

Explanation:

The diameter of the Milky Way Galaxy is approximately 100,000 light years.

Here we are using 1 millimiter (1 mm) to represent 1 light-year (1 ly). So, we can set the following proportion:

[tex]1 mm : 1 ly = x : 100,000 ly[/tex]

and by finding x, we find the diameter of the Milky Way Galaxy in the scale used:

[tex]x=\frac{(1mm )(100,000 ly)}{1 ly}=100,000 mm = 100 m[/tex]

so the correct answer is

d. 100 meters

Final answer:

Using a scale where 1 millimeter represents 1 light-year, the diameter of the Milky Way Galaxy at 100,000 light-years translates to 100,000 millimeters, which is equivalent to 100 meters. The correct answer is (d) 100 meters.

Explanation:

The Milky Way Galaxy has a diameter of approximately 100,000 light-years. To convert light-years to millimeters, we use a scale where 1 millimeter represents 1 light-year. Therefore, the Milky Way Galaxy's diameter would be 100,000 millimeters, which can be converted to meters by dividing by 1,000 (since there are 1,000 millimeters in a meter).

100,000 millimeters / 1,000 = 100 meters. So, the diameter of the Milky Way Galaxy, when represented at a scale of 1 millimeter per light-year, is 100 meters. Hence, the correct answer is (d) 100 meters.

Color depends on what characteristic of light?a) wavelengthb) frequencyc) both of these ( frequency x wavelength = speed )d) neither of these

Answers

Answer:

a) Wavelength .

Explanation:

Visible light is comprised of all the seven colors Violet , Indigo , Blue , Green , Yellow and Red .

Color depends up on the wave length of the light .

For example a red ball appears red because it absorbs wavelengths of all the other colors and reflects only wavelengths corresponding to red color.

Final answer:

Color in terms of light is determined by both the wavelength and frequency, with different combinations producing all the colors we humanly perceive.

Explanation:

In the context of light, color is dependent on both the wavelength and frequency of light. This is because the visible spectrum which represents the colors that can be seen by the human eye, is defined by varying wavelengths and frequencies. Shorter wavelengths (and correspondingly higher frequencies) are associated with cooler colors like blue and violet, while longer wavelengths (and correspondingly lower frequencies) are associated with warmer colors like red and orange. Therefore, the answer to this is option c) both frequency and wavelength determine the color of light.

Learn more about Light and Color here:

https://brainly.com/question/32134468

#SPJ6

PLEASE ANSWER!!!!
A set of water waves travels at 10.0 m/s, and 5.0 waves pass you in 4.0 s. What is the wavelength of the waves?

A.) 0.20 m

B.) 8.0 m

C.) 4.0 m

D.) 0.25 m

Answers

Answer:

B) 8.0 m

Explanation:

First of all, we can find the frequency of the wave, which is equal to the number of waves that pass a given point per second. Therefore:

[tex]f=\frac{N}{t}=\frac{5.0}{4.0 s}=1.25 Hz[/tex]

which means 1.25 waves/second.

Then we can find the wavelength of the water waves, which is given by:

[tex]\lambda=\frac{v}{f}[/tex]

where

v = 10.0 m/s is the speed of the wave

f = 1.25 Hz is the wave frequency

Substituting, we find

[tex]\lambda=\frac{10.0 m/s}{1.25 Hz}=8.0 m[/tex]

Which way does light bend when traveling from glass to air?

A. Toward the normal
B. Away from the normal
C. It does not bend

Answers

    I think its B. Away from the normal because light speeds up going into a less dense substance, and the ray bends away from the normal.

AnswEr :

Option B is the right answer!

Explanation :

When light rays travel from air into glass or from air into water, it bends towards normal. This is because the speed of light rays decrease while travelling from air into glass or water .

Cheer's ♡

⠀⠀━━━━━━━━━━━━

A spider spins a web with silk threads of density 1300 kg/m3 and diameter 3.0 μm . a typical tension in the radial threads of such a web is 7.0 mn. suppose a fly hits this web. part a which will reach the spider first: the very slight sound of the impact or the disturbance traveling along the radial thread of the web?

Answers

We have that The speed of the disturbance V is

[tex]V=872.9m/s[/tex]

From the Question we are told that

Density  [tex]\rho=1300 kg/m3[/tex]

Diameter [tex]d=3.0\mu m[/tex]

Tension [tex]T=7.0mn[/tex]

Generally the equation for the  length mass density is mathematically given as

[tex]\pho_{lm}=p \pir^2[/tex]

[tex]\pho_{lm}=1300* \pi (3 *10^{\frac{-6}{2}})^2[/tex]

[tex]\pho_{lm}=9.187*10{-9Kg/m}[/tex]

Therefore

The speed of the disturbance V is

[tex]V=\sqrt{(T/\pho_{lm})}[/tex]

[tex]V= \sqrt{(\frac{7 *10^{-3}}{(9.187 *10^{-9}}))}[/tex]

[tex]V=872.9m/s[/tex]

In conclusion

The speed of the disturbance V is

[tex]V=872.9m/s[/tex]

For more information on this visit

https://brainly.com/question/22610586

Final answer:

The disturbance traveling along the radial thread of the web will reach the spider first, as the speed of sound is significantly slower.

Explanation:

The speed of sound in a material depends on its properties. In the case of a spider's silk thread, sound travels at a much lower speed compared to the disturbance along the thread. Therefore, the disturbance traveling along the radial thread of the web will reach the spider first.

Thus, the disturbance traveling along the radial thread of the web will reach the spider first. The speed at which sound travels is significantly slower than the speed at which disturbances travel along a stretched string or thread. In this case, the radial thread of the web acts like a tensioned string, and the disturbance caused by the impact of the fly will propagate along it faster than the sound of the impact.


If the voltage across a circuit of constant resistance is doubled, the power dissipated by that circuit will

Answers

Answer:

The voltage will quadruple

Explanation:

The power dissipated in a circuit is given by

[tex]P=\frac{V^2}{R}[/tex]

where

V is the voltage

R is the resistance

In this problem, the voltage across the circuit is doubled:

V' = 2V

So the new power dissipated is

[tex]P'=\frac{V'^2}{R}=\frac{(2V)^2}{R}=4\frac{V^2}{R}=4 P[/tex]

so, the power dissipated will quadruple.

When the voltage across a circuit of constant resistance is doubled, the current doubles and the power dissipated increases by a factor of four.

To understand what happens when the voltage across a circuit of constant resistance is doubled, we need to refer to Ohm's Law and the formula for electrical power dissipation.

Ohm's Law states that the current  through a resistor is directly proportional to the voltage  across it and inversely proportional to the resistance

I = V / R

Therefore, if the voltage is doubled, the current will also double, assuming the resistance remains constant.

The power dissipated by a resistor can be calculated using the formula:

[tex]P = V^2 / R[/tex]

When the voltage is doubled, the expression for power becomes:

[tex]P = (2V)^2 / R \\= 4V^2 / R[/tex]

This means that doubling the voltage will result in the power being multiplied by a factor of four.

Thus,when the voltage across a circuit of constant resistance is doubled, the current will double, and the power dissipated by the circuit will increase by a factor of four.

What is the brightest star in the known universe

Answers

Answer:

Sirius

Explanation:

Sirius is known s the most brightest star in the sky the second brightest star is Canopus

The magnetic field about a straight length of current-carrying wire is _________.

a. similar to the shape of an electric field about a charged wire
b. circular in shape
c. aligned from north to south poles in the wire
d. in accord with the inverse-square law

Answers

Answer:

b. circular in shape

Explanation:

The magnetic field around a current-carrying wire forms concentric circles around the axis of the wire. In particular, the direction of the field lines can be found by using the right hand rule:

- the thumb must be placed along the direction of the current in the wire

- the other fingers, wrapped around the wire, give the direction of the magnetic field lines

The strenght of the magnetic field around the wire decreases linearly with the distance from the wire, according to the equation:

[tex]B=\frac{\mu_0 I}{2\pi r}[/tex]

where

[tex]\mu_0[/tex] is the vacuum permeability

I is the current in the wire

r is the distance from the wire

A circuit contains two light bulbs connected in parallel. What would happen to the brightness of each light bulb if two more light bulbs were added in parallel to the first ones? The brightness of each bulb would decrease because the total resistance of the circuit would decrease. The brightness of each bulb would increase because the total resistance of the circuit would increase. The brightness of each bulb would remain the same even though the total resistance of the circuit would decrease. The brightness of each bulb would remain the same even though the total resistance of the circuit would increase.

Answers

Answer:

The brightness of each bulb would remain the same even though the total resistance of the circuit would decrease.

Explanation:

Brightness of the bulb is given as

[tex]P= \frac{V^2}{R}[/tex]

since all bulbs are connected in parallel so here voltage across each bulb will remain same and resistance of each bulb is "R"

So here power across each bulb will remain the same always.

So there will be no effect on the power or brightness of bulb.

Now we also know that equivalent resistance is given as

[tex]\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}............[/tex]

[tex]R_{eq} = \frac{R}{n}[/tex]

so here equivalent resistance will decrease on adding more resistance in parallel.

so correct answer will be

The brightness of each bulb would remain the same even though the total resistance of the circuit would decrease.

Answer: C ON EDGE

Explanation:

When an alpha particle is emitted from the nucleus of an atom?

Answers

Answer:

During an alpha decay

Explanation:

An alpha particle is a particle consisting of 2 protons and 2 neutrons - basically it is equivalent to a nucleus of helium.

Alpha particles are emitted during alpha decays, which are one of the three types of radioactive decays (the other two being beta decay and gamma decay) in which an unstable nucleus decays emitting an alpha particle:

[tex]X \rightarrow Y + \alpha[/tex]

In the process, the original nucleus X loses 2 protons and 2 neutrons, so:

- its atomic number decreases by 2 units: Z --> Z-2

- its mass number decreases by 4 units: A --> A-4

Capacitor 2 has half the capacitance and twice the potential difference as capacitor 1. What is the ratio (U_{\rm C})_1/\,(U_{\rm C})_2.

Answers

Answer:

1/2

Explanation:

The energy stored in a capacitor is given by

[tex]U=\frac{1}{2}CV^2[/tex]

where

C is the capacitance

V is the potential difference

Calling [tex]C_1[/tex] the capacitance of capacitor 1 and [tex]V_1[/tex] its potential difference, the energy stored in capacitor 1 is

[tex]U=\frac{1}{2}C_1 V_1^2[/tex]

For capacitor 2, we have:

- The capacitance is half that of capacitor 1: [tex]C_2 = \frac{C_1}{2}[/tex]

- The voltage is twice the voltage of capacitor 1: [tex]V_2 = 2 V_1[/tex]

so the energy stored in capacitor 2 is

[tex]U_2 = \frac{1}{2}C_2 V_2^2 = \frac{1}{2}\frac{C_1}{2}(2V_1)^2 = C_1 V_1^2[/tex]

So the ratio between the two energies is

[tex]\frac{U_1}{U_2}=\frac{\frac{1}{2}C_1 V_1^2}{C_1 V_1^2}=\frac{1}{2}[/tex]

Elena (60.0 kg) and Madison (65.0 kg) are ice-skating at the Rockefeller ice rink in New Yok city. Their friend Tanner sees Elena move to the right with a speed of 1.20 m/s towards Madison. Madison is moving to the left at a speed of 2.50 m/s towards Elena.

1. What is Elena's momentum? (Assume the positive direction is to the right and the negative direction is to the left.)
2, What is Madison's momentum? (Assume the positive direction is to the right and the negative direction is to the left.)
3. What is the total momentum of Elena and Madison?
4. When Elena and Madison collide, they hold onto each other. With what speed and in what direction do both of them move at?

Answers

1. +72.0 kg m/s

The momentum of an object is given by:

p = mv

where

m is the mass of the object

v is its velocity

Taking "to the right" as positive direction, for Elena we have

m = 60.0 kg is the mass

v = +1.20 m/s is the velocity

So, Elena's momentum is

[tex]p_e=(60.0 kg)(+1.20 m/s)=+72.0 kg m/s[/tex]

2. -162.5 kg m/s

Here Madison is moving in the opposite direction of Elena (to the left), so her velocity is

v = -2.50 m/s

while her mass is

m = 65.0 kg

Therefore, her momentum is

[tex]p_m= (65.0 kg)(-2.50 m/s)=-162.5 kg m/s[/tex]

3. -90.5 kg m/s

The total momentum of Elena and Madison is equal to the algebraic sum of their momenta; taking into account the correct signs, we have:

[tex]p=p_e + p_m = +72.0 kg m/s - 162.5 kg m/s =-90.5 kg m/s[/tex]

4. 0.72 m/s to the left

We can find the final speed of Elena and Madison by using the law of conservation of momentum. In fact, the final momentum must be equal to the initial momentum (before the collision).

The initial momentum is the one calculated at the previous step:

[tex]p_i = -90.5 kg m/s[/tex]

while the final momentum (after the collision) is given by

[tex]p_f = (m_e + m_m) v[/tex]

where

[tex]m_e[/tex] is Elena's mass

[tex]m_m[/tex] is Madison's mass

v is their final velocity

According to the law of conservation of momentum,

[tex]p_i = p_f\\p_i = (m_e + m_m) v[/tex]

So we can find v:

[tex]v=\frac{p_i}{m_e + m_m}=\frac{-90.5 kg m/s}{60.0 kg+65.0 kg}=-0.72 m/s[/tex]

and the direction is to the left, since the sign is negative.

Final answer:

Elena's momentum is 72.0 kg*m/s to the right, Madison's is -162.5 kg*m/s to the left. The total system momentum is -90.5 kg*m/s to the left. After colliding, they move together with a speed of 0.724 m/s to the left.

Explanation:

The subject here is Physics, specifically the conservation of momentum. Momentum is calculated as mass times velocity. The positive and negative signs denote direction (right, left).

Elena's momentum is the product of her mass (60.0 kg) and velocity (1.20 m/s). Hence, momentum = 60.0 kg * 1.20 m/s = 72.0 kg*m/s towards the right (positive).

Madison's momentum is the product of her mass (65.0 kg) and velocity (2.50 m/s). Because she's moving to the left, the velocity is negative. Hence, momentum = 65.0 kg * -2.50 m/s = -162.5 kg*m/s towards the left (negative).

The total momentum of Elena and Madison is the sum of their individual momenta: 72.0 kg*m/s + (-162.5 kg*m/s) = -90.5 kg*m/s to the left.

When they collide and hold onto each other, they move together, so their combined mass is 60.0 kg + 65.0 kg = 125.0 kg. The total system's momentum should still be conserved, so -90.5 kg*m/s = 125.0 kg * velocity. Solving for the speed gives velocity = -90.5 kg*m/s / 125.0 kg = -0.724 m/s. The negative sign indicates they move in the negative direction or to the left.

Learn more about Momentum here:

https://brainly.com/question/30677308

#SPJ11

What is the source of energy across the entire spectrum

Answers

The answer to your question is Sun.

Acceleration is defined as the change in velocity divided by

Answers

The acceleration of the object is defined as the rate of change of velocity divided by change in time. Acceleration is the vector quantity.

Acceleration of the object is obtained by a change in velocity. Velocity defines the how speed the object travels in a particular direction. Velocity is also defined as the rate of change of displacement per unit time.

Acceleration depends on the velocity. Acceleration, (a) = Δv/Δt, where Δv changes in velocity and Δt is a change in time. When velocity changes with time gives acceleration. Velocity is the vector quantity and hence, acceleration is also a vector quantity. The SI unit of velocity is m/s².

If the velocity increases with time, it is acceleration and if the velocity decreases with time, it is called deceleration. Hence, the change in velocity divided by the change in time gives, acceleration.

To learn more about acceleration:

https://brainly.com/question/2303856

#SPJ6

Acceleration is defined as the change in velocity divided by the time period over which the change occurs, and it is measured in meters per second squared (m/s²).

Acceleration is defined as the change in velocity divided by the period of time during which the change occurs. In mathematical terms, average acceleration (a) can be expressed as: a = Δv / Δt

where Δv is the change in velocity and Δt is the change in time. The SI units for velocity are meters per second (m/s), and for time, they are seconds (s).

Therefore, the SI unit for acceleration is meters per second squared (m/s²). For example, if a car's velocity changes from 10 m/s to 20 m/s over 5 seconds, the average acceleration is (20 m/s - 10 m/s) / 5 s = 2 m/s².

Complete Question :  Acceleration is defined as the change in velocity divided by:

Final Velocity

Distance

Time

Speed

Why you cannot use an elastic measuring tape to measure distance. What problem you may face if you use it

Answers

The problem you would encounter is measuring the height of two different people, a tall one and a short one, and getting the same answer for both of them.

No matter WHAT we're hearing out of the White House these days, you CAN'T bend and stretch your standard measuring devices, or any other 'facts', to make them fit the thing that you're measuring.  This does not work.  You're always entitled to your own opinions, but you're not entitled to your own facts.

Final answer:

An elastic measuring tape should not be used to measure distance because its stretchability can lead to inaccurate and unreliable measurements.

Explanation:

You cannot use an elastic measuring tape to measure distance accurately because it can stretch, which would result in an unreliable measurement. The problem you may face if you use an elastic measuring tape is that the stretching of the tape will lead to incorrect measurements, especially if the distances being measured require precise and firm measurement tools. Measuring tapes are typically flexible but maintain their length without stretching to ensure that measurements are consistent. For accurate measurement of length or distance, you should select a measuring tool that is suited to the size you are trying to measure, ranging from a ruler for small items to a yardstick or a non-elastic measuring tape for larger distances.

A cheetah can run at 105 feet per second, but only for 7 seconds, at which time the animal must stop and rest. A fully rested cheetah at (0, 0) notices a nearby antelope, which is moving according to the parametric equation (x, y) = (−39 + 40t, 228 + 30t), where t is measured in seconds and x and y are measured in feet. If it started to run at t = 0, the cheetah could catch the antelope. For how many more seconds can the cheetah afford to wait before starting? Assume that the cheetah does not change direction when it runs.

Answers

Answer:

5 seconds

Explanation:

The straight line distance between (0, 0) and the antelope's position (x, y) at time t can be found using distance formula:

d² = x² + y²

d² = (-39 + 40t)² + (228 + 30t)²

d² = 1521 - 3120t + 1600t² + 51984 + 13680t + 900t²

d² = 53505 + 10560t + 2500t²

The cheetah can run a total distance of:

105 * 7 = 735

The time t at this distance is:

735² = 53505 + 10560t + 2500t²

540225 = 53505 + 10560t + 2500t²

0 = -486720 + 10560t + 2500t²

0 = -24336 + 528t + 125t²

t = 12, -16.224

t can't be negative, so t = 12.

Therefore, the cheetah can wait 5 seconds before it has to start running.

Answer:

Wait time = 5 s

Explanation:

As we know that the position vector of the antelope is given as

[tex]x = -39 + 40 t[/tex]

[tex]y = 228 + 30 t[/tex]

so here at any instant of time its distance from origin is given as

[tex]d^2 = x^2 + y^2[/tex]

so we have

[tex]d^2 = (-39 + 40t)^2 + (228 + 30t)^2[/tex]

[tex]d^2 = 53505 + 2500 t^2 + 10560 t[/tex]

now when cheetah catch the antelope then distance of cheetah and antelope from origin must be same

so distance covered by cheetah in 7 s is given as

[tex]d = 105 \times 7[/tex]

[tex]d = 735 ft[/tex]

now from the above two equation

[tex]735^2 = 53505 + 2500 t^2 + 10560t[/tex]

by solving above equation we got

t = 12 s

so Cheetah must have to waith for

[tex]\Delta t = 12 - 7 = 5 s[/tex]

Am I matching the right definitions:

Trade winds:
These are persistent tropical winds that blow from the subtropical high pressure centers towards the equatorial low. They blow northeasterly in the Northern Hemisphere.

Westerlies:
North and south of the trade wind belt lie regions where winds tend to blow from west to east. The winds are highly variable and unsteady, especially so during winter. during wintertime, midlatitude storms and their frontal systems travel from west to east bringing frequent changes in weather.

Subtropics:
Sunny weather with little clouds and no rain prevails. In the days of sailing these latitudes were referred to as the horse latitudes.

Polar easterlies:
Winds with a generally easterly component prevail. The air here is cold, dry and stable, especially during winter

Polar front:
It separates between the cold (and dry) polar air, and the relatively warm (and more humid) midlatitude air.

Answers

Yes they are all correct

You can check your answers at

https://eesc.columbia.edu/courses/ees/climate/lectures/gen_circ/index.html

In what order do the three types of seismic waves arrive at a seismograph

Answers

Answer: Seismic waves arrive at a seismograph in the order of fastest to slowest:primary waves, secondary waves, surface waves.

Explanation:

Final answer:

P-waves, S-waves, and surface waves arrive at a seismograph in a specific order.

Explanation:

The three types of seismic waves arrive at a seismograph in a specific order. First, P-waves (also known as pressure waves or longitudinal waves) arrive at the seismograph. These waves are compressional and travel faster than the other two types. Next, S-waves (also known as shear waves or transverse waves) arrive. These waves move the ground perpendicular to their path. Finally, surface waves arrive, which are similar to surface waves on water and cause the most damage during an earthquake.

Learn more about Order of seismic waves here:

https://brainly.com/question/32361333

#SPJ3

Which portion of the electromagnetic spectrum is used in a television?

a) infrared waves
b) X-rays
c) radio waves
d) gamma waves

Answers

Answer: Radio waves  

Radio waves are a type of electromagnetic radiation with wavelengths between 10 m to 10,000 m. In the electromagnetic spectrum this wavelength is longer than infrared light and therefore, it goes beyond the visible spectrum.  

This type of electromagnetic waves is very well reflected in the ionosphere, the layer of the atmosphere through which they travel directly or using repeaters.  

In addition, they are very useful to transport information, being important in telecommunications. They are used not only for conventional radio transmissions but also in mobile telephony and TV.  

It should be noted that since radio signals have large wavelengths, they can be diffracted around certain obstacles, such as hills and mountain ranges, preventing the signal from reaching its destination.  

Therefore, the correct option is C.

The Milky Way is often considered to be an intermediately wound,barred spiral, which would be type ________ according to Hubble.A) E4B) SaC) SBbD) SBVE) B2S

Answers

Answer: SBb

On 1930 the astronomer Edwin Hubble classified the galaxies based on their visual appearance into elliptical, spiral and irregular, being the first two classes the most frequent.  

So, according to this classification, the Milky Way is a barred spiral galaxy (SBb in Hubble's notation system) because it has a central bar-shaped structure of bright stars that spans from one side of the galaxy to the other. In addition, its spiral arms seem to emerge from the end of this "bar".

Scientifics considered this, after measuring the the disk and central bulge region of the galaxy, and the conclusion is the Milky Way fulfills these conditions, because is a galaxy that orbits on its same axis and with this rotation its arms are twisted in opposite directions around the mentioned axis.

Therefore the correct answer is option C.

A wooden block with mass 1.45 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 29.0 degrees (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 4.60 m up the incline from A, the block is moving up the incline at a speed of 5.10 m/s and is no longer in contact with the spring. The coefficient of kinetic friction between the block and incline is μk=0.45. The mass of the spring is negligible.A.Calculate the amount of potential energy that was initially stored in the spring.Take free fall acceleration to be 9.80 m/s2 .

Answers

Answer:

76.3 J

Explanation:

I'm assuming the distance of 4.60 m is along the incline, not the vertical distance from the bottom.  I'll call this distance d, so h = d sin θ.

Initial energy = final energy

Energy in spring = gravitational energy + kinetic energy + work by friction

E = mgh + 1/2 mv² + Fd

We need to find the force of friction.  To do that, draw a free body diagram.

Normal to the incline, we have the normal force pointing up and the normal component of weight (mg cos θ).

Sum of the forces in the normal direction:

∑F = ma

N - mg cos θ = 0

N = mg cos θ

Friction is defined as:

F = Nμ

Plugging in the expression for N:

F = mgμ cos θ

Substituting:

E = mgh + 1/2 mv² + (mgμ cos θ) d

E = mg (d sin θ) + 1/2 mv² + (mgμ cos θ) d

E = mgd (sin θ + μ cos θ) + 1/2 mv²

Given:

m = 1.45 kg

g = 9.90 m/s²

d = 4.60 m

θ = 29.0°

μ = 0.45

v = 5.10 m/s

Solving:

E = mgd (sin θ + μ cos θ) + 1/2 mv²

E = (1.45) (9.80) (4.60) (sin 29.0 + 0.45 cos 29.0) + 1/2 (1.45) (5.10)²

E = 76.3 J

Final answer:

The amount of potential energy initially stored in the spring is 49.3 J.

Explanation:

To calculate the amount of potential energy initially stored in the spring, we need to consider the conservation of mechanical energy. At the bottom of the slope, the initial potential energy stored in the spring is converted to a combination of kinetic energy and gravitational potential energy as the block moves up the incline. We can use the equation:

PE(initial) = KE(final) + PE(final)

Substituting the given values and using the fact that the block is moving at a constant velocity up the incline, we can solve for the initial potential energy and find that it is 49.3 J.

Learn more about potential energy here:

https://brainly.com/question/24284560

#SPJ3

The strength of the force of gravity depends on

Answers

The masses of the objects and how much distance there is between them

Other Questions
The length of a rectangle is 3 meters more than the width. The perimeter of the rectangle is 26 meters. If the width is b, which equation represents the situation? How many solutions will this equation have? What is the importance of Preston Blair and the peace process? What is the period for the cotangent function? ...I really think that you had better not meddle with little American girls that are uncultivated... (Daisy Miller: A Study) What connotations does Winterbournes aunt, Mrs. Costello, have in mind when she refers to Daisy Miller as uncultivated? lacking culture or learning natural and fresh shunned by people of good society wild and unpolished In Shakespeares tragedies, the protagonist or hero usually fails in his or her quest due to a fatal flaw, or __________. A denouement B hamartia C static D paradox What landforms does china share with other countries A 150 pound woman would receive 24 grams of a certain medicine. How many grams should a 120 pound woman receive? Maryanne began a job that gives her 3 days of vacation each year she is employed up to a maximum of 24 days of vacation time. How many years will she be at the company before she reaches the maximum amount of vacation time? PLS HELP ASAP WILL GIVE BRAINLY AND 20 POINTS!!!!!What effect does the use of literary device have on the meaning of this passage ?Some people like to believe that they can make it in the world alone, but in reality, we all depend on each others goodwill. An act of kindness is an invitation to live.a. it extends a heartfelt invitation to the readerb. it illustrates the nature of a problem that is too often ignored.c. it explains the main point by referencing a familiar figure.d. it sums up the message in a short memorable statement. Invasive species can enter a habit in many ways. How were these invasive species introduced? What was the cause of Frida Kahlos death? what is a treasury note? A. a government bond that is repaid in two to ten years B. a government bond that is repaid in three months to a year C. a government bond that can be issued for as long as 30 years D. all the enemy the federal government owes to bondholders Elements are___1 - a chemical substance composed of atoms of two or more different types of atoms2- substances that are made up of only one type of atom 3- subatomic particles with a positive charge 4- only found on earth Simplify the expression below -3(10x + 4y) + 6(6x 2y) Select the true statement for the following reaction: N2 + 3 H2 2 NH3 1. Each N atom is reduced from 0 to +3. Each H atom is oxidized from 0 to 1. 2. Each N atom is reduced from 0 to 3. Each H atom is oxidized from 0 to +1. 3. Each N atom is oxidized from 0 to +3. Each H atom is reduced from 0 to 1. 4. Each N atom is oxidized from 0 to 3. Each H atom is reduced from 0 to +1. 5. Each N atom is reduced from +1 to 3. Each H atom is oxidized from +1 to 0. 6. Each N atom is oxidized from +1 to +3. Each H atom is reduced from +1 to 0. 7. Each N atom is oxidized from 0 to 6. Each H atom is reduced from 0 to +2. 8. Each N atom is reduced from 0 to 6 PLEASE ANSWER RIGHT AWAY Help!!!helppppppppppppppp Which is not a strong electrolyte? Some basesWaterSome acidsSalts Find the volume of the rectangular prism. Write answer as a fraction. Length=2/3 mm. Width=1/3mm. Height=2/3 mm. A decagon has angles that measure 156, 135, 147, 160, 116, 150, 150.2, 119.2, 146.6, and z. What is z? Steam Workshop Downloader