The following items describe observational characteristics that could indicate that an object is either a white dwarf or a neutron star. Match each characteristic to the correct object.

•may be surrounded by a planetary nebula•emits most strongly in visible and ultraviolet•may be in a binary system that undergoes nova explosions•may be in a binary system that undergoes X-ray bursts•can have a mass of 1.5 solar masses•may be surrounded by a supernova remnant•may repeatedly dim and brighten more than once per second

Answers

Answer 1

Final answer:

Observational characteristics that could indicate a white dwarf or neutron star include being surrounded by a planetary nebula, emitting most strongly in visible and ultraviolet, and being in a binary system that undergoes nova explosions.

Explanation:

The observational characteristics that could indicate that an object is either a white dwarf or a neutron star are:

May be surrounded by a planetary nebula: A white dwarf can be surrounded by a planetary nebula, which is a glowing shell of gas and dust expelled by the dying star.

Emits most strongly in visible and ultraviolet: Both white dwarfs and neutron stars emit most of their energy in the visible and ultraviolet parts of the electromagnetic spectrum.

May be in a binary system that undergoes nova explosions: Some white dwarfs can be in a binary system where the companion star transfers material to the white dwarf, causing periodic nova explosions.


Related Questions

Individual sports are different from team sports in that they require an internal focus and dialogue. Please select the best answer from the choices provided. T F

Answers

Answer:

true

Explanation:

It is true that individual sports is different from team sports.

Individual sports depend upon the individual's hard work, focus,determination only he is responsible for his fate.

when we talk about team sports it is about co-ordination , team brilliance individual cannot team sport alone every one have to contribute for the team to succeed.

Individual sports are different from team sports in that they require an internal focus and dialogue. The statement is true.

Individual sports and team sports do have distinct characteristics, and one of the notable differences is the emphasis on internal focus and dialogue in individual sports.

In individual sports, athletes compete on their own without relying on teammates. They have sole responsibility for their performance, decision-making, and strategy execution.

As a result, individual athletes often rely heavily on their internal focus to stay motivated, maintain concentration, and push themselves to perform at their best.

They engage in internal dialogues to manage their thoughts, emotions, and self-motivation throughout the competition. This internal focus and dialogue help them stay focused, make quick decisions, and adapt to changing circumstances.

Know more about Individual sports:

https://brainly.com/question/872862

#SPJ6

The four lines observed in the visible emission spectrum of hydrogen tell us that
a) Only certains energies are allowed for the electron in a hydrogen atomb) There are four electrons in an excited hydrogen atomc) the hydrogen molecules they came from have the formula H₄d) We could observe more lines if we had a stronger prism

Answers

Final answer:

The visible emission lines of hydrogen indicate that only certain energies are permissible for its electron. This is due to quantum mechanics, affirming that electrons within atoms exist at distinct energy levels, and emit light of specific wavelengths when transitioning between levels.

Explanation:

The four lines in the visible emission spectrum of hydrogen tell us that only certain energies are allowed for the electron in a hydrogen atom. This is related to the principle of quantum mechanics where an electron in an atom can only exist in discrete energy levels.

When the electron jumps from a higher energy level to a lower one, it emits light of a specific wavelength. The lines we see in the hydrogen emission spectrum represent these wavelengths. Hence, these lines don't mean there are four electrons in an excited hydrogen atom, nor that the hydrogen molecules have the formula H₄. Also, using a stronger prism would not lead to the observation of more lines, but would merely spread the existing lines out more.

Learn more about Emission Spectrum here:

https://brainly.com/question/27268130

#SPJ3

Early black-and-white television sets used an electron beam to draw a picture on the screen. The electrons in the beam were accelerated by a voltage of 3.0 kV m kV; the beam was then steered to different points on the screen by coils of wire that produced a magnetic field of up to 0.67T

A

What is the speed of electrons in the beam?

B

What acceleration do they experience due to the magnetic field, assuming that it is perpendicular to their path? What is this acceleration in units of g Image for Early black-and-white television sets used an electron beam to draw a picture on the screen. The electrons in?

C

If the electrons were to complete a full circular orbit, what would be the radius?

Answers

A) [tex]3.25\cdot 10^7 m/s[/tex]

Assuming the electrons start from rest, their final kinetic energy is equal to the electric potential energy lost while moving through the potential difference [tex]\Delta V[/tex]:

[tex]K=\frac{1}{2}mv^2 = q\Delta V[/tex]

where

[tex]m=9.11\cdot 10^{-31}kg[/tex] is the mass of each electron

v is the final speed of the electrons

[tex]q=1.6\cdot 10^{-19}C[/tex] is the charge of the electrons

[tex]\Delta V=3.0 kV=3000 V[/tex] is the potential difference

Solving the equation for v, the speed, we find

[tex]v=\sqrt{\frac{2q\Delta V}{m}}=\sqrt{\frac{2(1.6\cdot 10^{-19}C)(3000 V)}{9.11\cdot 10^{-31} kg}}=3.25\cdot 10^7 m/s[/tex]

B) Centripetal acceleration, [tex]3.82\cdot 10^4 m/s^2[/tex], in units of g: 3898 g

When the electrons cross the region of the magnetic field, they experience a magnetic force which is perpendicular to their trajectory: therefore they start moving in a circular motion. The acceleration they experience is not tangential, but centripetal, and it is given by

[tex]a_c = \frac{v^2}{r}[/tex]

where v is the speed and r the radius of the trajectory.

We can equate the magnetic force exerted on the electrons to the centripetal force:

[tex]qvB=ma_c[/tex]

and isolate [tex]a_c[/tex] to find the centripetal acceleration:

[tex]a_c = \frac{qvB}{m}=\frac{(1.6\cdot 10^{-19} C)(3.25\cdot 10^7 m/s)(0.67 T)}{9.11\cdot 10^{-31} kg}=3.82\cdot 10^4 m/s^2[/tex]

And since [tex]g=9.81 m/s^2[/tex], the acceleration can be rewritten as

[tex]a_c = \frac{3.82\cdot 10^4 m/s^2}{9.81 m/s^2}=3898 g[/tex]

c)  [tex]2.76\cdot 10^{10} m[/tex]

The radius of the circular trajectory can be found by using the formula for the centripetal acceleration:

[tex]a_c = \frac{v^2}{r}[/tex]

Solvign for r, we find

[tex]r=\frac{v^2}{a_c}=\frac{(3.25\cdot 10^7 m/s)^2}{3.82\cdot 10^4 m/s^2}=2.76\cdot 10^{10} m[/tex]

Final answer:

In a black-and-white CRT television, electrons are accelerated by a voltage and then steered by a magnetic field. The speed of electrons can be found using a known formula, and the centripetal acceleration they experience is due to the magnetic force. The radius of their circular path is also calculable from the electron's mass, velocity, and the magnetic field strength.

Explanation:

When electrons are accelerated by a voltage of 3.0 kV (kilovolts) in a black-and-white CRT (cathode-ray tube) television, they gain kinetic energy that is converted from the electric potential energy supplied by the voltage. The formula to find the speed of an electron after acceleration is given by №(√m·V·e), where e is the charge of the electron (1.60 x 10-19 C) and m is the mass of the electron (9.11 x 10-31 kg). The speed is then given by velocity = √(2·V·e/m). Plugging in the numbers, we can find the speed of the electrons.

Regarding part B, since the magnetic force acts perpendicular to the velocity of the electrons, it does not do work on the electrons, meaning the speed of the electrons does not change, but rather, the direction of their velocity changes. Therefore, the acceleration the electrons experience is centripetal acceleration, which keeps the electrons in a circular path, and is given by ac = v2/r, where v is the velocity and r is the radius. To compare this acceleration to g (the acceleration due to gravity), we need the ratio ac/g.

The radius of the circular path, when the electron completes a full circular orbit influenced by a magnetic field, can be determined using the formula r = m·v/(e·B), where B is the magnetic field strength. The radius provides us with valuable information about the steering mechanism in the CRT display.

When unbalanced forces act on an object, __________________. the object accelerates friction becomes greater than the net force the objects speeds up the net force is zero?

Answers

When an unbalanced force acts on an object, the object accelerates. We can immediately rule out B and D, as friction changes based on the material and by applying a force the net force can’t be zero. It can be easy to say that the object will speed up after the force is applied (and it often does!), but take a braking car, for example. An external force of friction is applied to the brakes, causing an acceleration but in such a fashion that the car slows down. So, although an object can speed up after a force is applied, it isn’t always guaranteed.

Hope this helps!

Which of the following is the best thermal insulator?

A.Air

B.Aluminum

C.Iron

D.Water

Answers

B. Aluminum is possibly correct

Measure the length of the arrow in centimeters using correct significant figures.
l = 3 cm
l = 3.3 cm
l = 3.35 cm
l = 3.351 cm

Answers

Based on the very tip of the arrow the best answer would be; 3.3cm

But i could very well be wrong and it may be 3.35, but i would say 3.3 if it just wants to the nearest 10th

Answer:

The significant figures is 3.3 cm.

Explanation:

Significant :

Significant figures of a number are numbers that have significance to contribute to its resolution of measurements.

Centimeter is unit of length.

According to figure,

The significant figures is

[tex]l = 3.3\ cm[/tex]

Hence, The significant figures is 3.3 cm.

In a parallel circuit the current A stays in one path B splits and goes through two components C makes one circle

Answers

Answer:

B splits and goes through two components

Explanation:

- A series circuit is a circuit in which the components are all connected along the same branch: as a result, the current flowing through the components is the same, while the sum of the potential differences across each component is equal to the emf of the battery

- A parallel circuit is a circuit consisting of separate branches, so that each branch has a potential difference equal to the emf of the battery. As a result, in such a circuit the current in the circuit splits and goes through the different branches/components.

So, the correct answer is

B splits and goes through two components

In a parallel circuit, the current splits and travels through multiple components simultaneously. This results in a division of current among different pathways while maintaining consistent voltage across each component. Option B is correct.

In a parallel circuit, the current splits and goes through two components. This is because a parallel circuit provides multiple paths for electricity to flow. Each component in a parallel circuit is connected to the same two points, leading to a division of current among the different paths. However, the voltage across each component remains the same.

Resistors in parallel serve as current dividers, reducing the overall resistance compared to a single pathway. This characteristic allows parallel circuits to maintain the same potential difference across each branch, equal to the potential difference across the power source. Consequently, the sum of the currents across all branches equals the total current supplied to the circuit.

Parallel circuits find applications in everyday systems, such as building lighting, where several devices operate independently on the same voltage level. The setup of these circuits ensures a consistent voltage supply and allows individual components to function even if one branch fails.

Hence, B. is the correct option.

An electron has an initial speed of 5.85 106 m/s in a uniform 5.55 105 N/C strength electric field. The field accelerates the electron in the direction opposite to its initial velocity. (a) What is the direction of the electric field? opposite direction to the electron's initial velocity same direction as the electron's initial velocity not enough information to decide (b) How far does the electron travel before coming to rest? m (c) How long does it take the electron to come to rest? s (d) What is the electron's speed when it returns to its starting point? m/s

Answers

(a) same direction as the electron's initial velocity

The direction of the acceleration is opposite to the direction of the velocity of the electron. This means that the electron is feeling a repulsive force, in a direction opposite to its initial velocity.

For a negative charge, we know that the electrostatic force and the electric field have opposite directions, because in the formula

[tex]F=qE[/tex]

q is negative. Therefore, the electric field must be in the same direction as the initial velocity of the electron.

(b) [tex]1.76\cdot 10^{-4}m[/tex]

When the electron comes to rest, all its initial kinetic energy has been converted into electric potential energy. So we can write

[tex]K = \Delta U[/tex]

[tex]\frac{1}{2}mv^2= qEd[/tex]

where

[tex]m=9.11\cdot 10^{-31} kg[/tex] is the electron mass

[tex]v=5.85\cdot 10^6 m/s[/tex] is the electron initial speed

[tex]q=1.6\cdot 10^{-19}C[/tex] is the magnitude of the electron charge

[tex]E=5.55\cdot 10^5 N/C[/tex] is the electric field

[tex]d[/tex] is the distance covered

Solving the equation for d, we find

[tex]d=\frac{mv^2}{2qE}=\frac{(9.11\cdot 10^{-31} kg)(5.85\cdot 10^6 m/s)^2}{2(1.6\cdot 10^{-19}C)(5.55\cdot 10^5 N/C)}=1.76\cdot 10^{-4}m[/tex]

which corresponds to 0.17 mm.

(c) [tex]6\cdot 10^{-11} s[/tex]

First of all, we need to find the electrostatic force acting on the electron:

[tex]F=qE=(-1.6\cdot 10^{-16}C)(5.55\cdot 10^5 N/C)=-8.88\cdot 10^{-14} N[/tex]

Now we can find the acceleration of the electron:

[tex]a=\frac{F}{m}=\frac{-8.88\cdot 10^{14} N}{9.11\cdot 10^{-31} kg}=-9.75\cdot 10^{16} m/s^2[/tex]

(the acceleration is negative because it is opposite to the electron's direction of motion)

And now we can find the time taken for the electron to stop to a velocity of v=0 starting from [tex]u=5.85\cdot 10^6 m/s[/tex]:

[tex]a=\frac{v-u}{t}\\t=\frac{v-u}{a}=\frac{0-(5.85\cdot 10^6 m/s)}{-9.75\cdot 10^{16} m/s^2}=6\cdot 10^{-11} s[/tex]

(d)  [tex]5.85\cdot 10^6 m/s[/tex]

When it returns to the starting point, all the electric potential energy gained by the electron through the distance d will be re-converted back into kinetic energy. If there is no loss of energy, therefore, this means that the electron will have the same kinetic energy it had at the beginning of the motion: therefore, its speed will be equal to its initial speed, [tex]5.85\cdot 10^6 m/s[/tex].

How are the sun, the moon, and Earth related during a solar eclipse?


A.) Earth is located between the sun and the moon.


B.) The moon is located between the sun and Earth.


C.) The sun is located between the moon and Earth.


D.) Earth and the moon are located on opposite sides of the sun.

Answers

B. The moon is located between the Sun and Earth

Answer:

B.

hope this helps!!!!

Industrialized countries have begun to look at sustainable forms of energy to use to replace more harmful methods, yet poorer countries are more likely to use sources that are cheaper and easier to access. In this context, which of the following would be a more likely option in a poorer country? biomass coal hydroelectric solar

Answers

The correct answer is - coal.

The poorer countries do not put a lot of effort to protect the environment and not pollute it. The main reason for this is that they are struggling with poverty, thus they choose no means when it comes to making more profit. This leads to the usage of cheaper and easier to access natural resources in order to produce energy, as they make the most sense to make more profit. From the suggested options, the coal is the most likely source of energy to be used in poorer countries. The coal is cheap, it is found in lot of places around the world, and it is found in abundance. It is also a very powerful source of energy, and that is exactly what the economies of the poorer countries look for.

A resistor, an inductor, and a capacitor are connected in series to an AC source. What is the condition for resonance to occur?

The resistance must be equal to both the inductive reactance and the capacitive reactance.
The capacitive reactance must be greater than the inductive reactance.
The inductive reactance must be greater than the capacitive reactance.
The resistance must be greater than the inductive reactance.
The resistance must be greater than the capacitive reactance.
The capacitive reactance must be equal to the inductive reactance.

Answers

The last choice is the correct one.

Final answer:

Resonance in an electrical circuit comprising a resistor, an inductor, and a capacitor connected in series occurs when the inductive reactance equals the capacitive reactance. These reactances represent the effective resistance offered to alternating current by capacitors and inductors, respectively.

Explanation:

In an electrical circuit containing a resistor, an inductor, and a capacitor connected in series, resonance occurs when the inductive reactance equals the capacitive reactance. Reactance is a term used to describe the magnitude of the effective resistance offered by an inductor or a capacitor to the alternating current (AC). The capacitive reactance (Xc) varies inversely with the frequency of the AC and the capacitance, while the inductive reactance (Xl) varies directly with both the AC frequency and the inductance. In resonance, these two values balance each other out, resulting in the circuit behaving as if only the resistance is present.

Learn more about Resonance in AC circuits here:

https://brainly.com/question/28344758

#SPJ3

The strength of the Earth’s magnetic field B at the equator is approximately equal to 5 × 10−5 T. The force on a charge q moving in a direction perpendicular to a magnetic field is given by F = q v B, where v is the speed of the particle. The direction of the force is given by the right-hand rule. Suppose you rub a balloon in your hair and your head acquires a static charge of 6 × 10−9 C. If you are at the equator and driving west at a speed of 80 m/s, what is the strength of the magnetic force on your head due to the Earth’s magnetic field? Answer in units of N.

Answers

Answer:

[tex]2.4\cdot 10^{-11} N[/tex]

Explanation:

Since the Earth's magnetic field is perpendicular to your direction of motion, the strength of the magnetic force exerted on your head is given by:

[tex]F=qvB[/tex]

where:

[tex]q=6\cdot 10^{-9}C[/tex] is the charge on your head

[tex]v=80 m/s[/tex] is the speed at which you are moving

[tex]B=5\cdot 10^{-5} T[/tex] is the strength of the magnetic field of the Earth

By substituting these numbers into the equation, we find the strength of the magnetic force:

[tex]F=(6\cdot 10^{-9}C)(80 m/s)(5\cdot 10^{-5} T)=2.4\cdot 10^{-11} N[/tex]

You do a certain amount of work on an object initially at rest, and all the work goes into increasing the object’s speed. If you do work W, suppose the object’s final speed is v. What will be the object’s final speed if you do twice as much work? 1. 2 v 2. v/√ 2 3. √ 2 v 4. Still v 5. 4 v

Answers

Answer:

[tex]\sqrt{2}v[/tex]

Explanation:

The work done on the object at rest is all converted into kinetic energy, so we can write

[tex]W=\frac{1}{2}mv^2[/tex]

Or, re-arranging for v,

[tex]v=\sqrt{\frac{2W}{m}}[/tex]

where

v is the final speed of the object

W is the work done

m is the object's mass

If the work done on the object is doubled, we have W' = 2W. Substituting into the previous formula, we can find the new final speed of the object:

[tex]v'=\sqrt{\frac{2W'}{m}}=\sqrt{\frac{2(2W)}{m}}=\sqrt{2}\sqrt{\frac{2W}{m}}=\sqrt{2}v[/tex]

So, the new speed of the object is [tex]\sqrt{2}v[/tex].

What is the velocity of all electromagnetic waves in a vacuum?

The velocity of electromagnetic waves depends upon their wavelength. Electromagnetic waves do not propagate forward; hence, their velocity is zero. The velocity of electromagnetic waves is nearly equal to 3 × 108 m/s. The velocity of electromagnetic waves depends upon their frequency. The velocity of electromagnetic waves depends upon their amplitude.

Answers

Answer:

The velocity of electromagnetic waves is nearly equal to 3 × 108 m/s.

Explanation:

All electromagnetic waves travel at the same speed in a vacuum. The value of their velocity does not depend neither on their frequency, nor on their wavelength.

The magnitude of their velocity is known as speed of light (labelled with c), and it is one of the universal physical constant:

[tex]c=2.998 \cdot 10^8 m/s[/tex]

The velocity of electromagnetic waves changes instead when they travel in a medium (in particular, their speed decreases)

Final answer:

The velocity of all electromagnetic waves in a vacuum is 3 × 10^8 m/s, which is the speed of light and a fundamental physical constant.

Explanation:

In a vacuum, all electromagnetic waves travel at the same speed, which is the speed of light, approximately 3 × 10^8 m/s. This is one of the fundamental physical constants and is denoted by the symbol c. Regardless of their wavelength or frequency, electromagnetic waves propagate through space at this constant velocity. Therefore, the velocity of all electromagnetic waves in a vacuum is 3 × 10^8 m/s.

What factors affect how strong the electric force is between two charged objects

Answers

The size of the electric force between two objects is affected by the strength of the charge and the distancebetween the objects. Objects with strong positive and negative charges will have a greater electric force. As the distance between the objects decreases, the electrical force increases.

The size of the electric force between two objects is affected by the strength of the charge and the distance between the objects. Objects with strong positive and negative charges will have a greater electric force. As the distance between the objects decreases, the electrical force increases.

A 44.0-kg child takes a ride on a Ferris wheel that rotates four times each minute and has a diameter of 20.0 m.

(a) What is the centripetal acceleration of the child?
(b) What force (magnitude and direction) does the seat exert on the child at the lowest point of the ride?
(c) What force does the seat exert on the child at the highest point of the ride?
(d) What force does the seat exert on the child when the child is halfway between the top and bottom? (Assume the Ferris wheel is rotating clockwise and the child is moving upward.)

Answers

(a) 1.76 m/s^2

The centripetal acceleration of the child is given by:

[tex]a_c=\omega^2 r[/tex]

where

[tex]\omega[/tex] is the angular velocity

r is the radius of the wheel

The radius of the wheel is half the diameter:

[tex]r=\frac{d}{2}=\frac{20.0 m}{2}=10.0 m[/tex]

The wheel makes 4 revolution per minute, so the angular velocity is

[tex]\omega=4 rev/min[/tex]

Let's remind that

[tex]1 rev = 2 \pi rad[/tex]

[tex]1 min = 60 s[/tex]

So the angular velocity is

[tex]\omega=(4 rev/min) \cdot \frac{2 \pi rad/rev}{60 s/min}=0.42 rad/s[/tex]

So, the centripetal acceleration is

[tex]a_c=(0.42 rad/s)^2(10.0 m)=1.76 m/s^2[/tex]

(b) 509.1 N, upward

At the lowest point of the ride, we have the following forces:

- Normal force exerted by the seat on the child: N, upward

- Weight of the child: W = mg, downward

The resultant of these forces must be equal to the centripetal force, which is upward (towards the centre of the wheel), so we have the following equation

[tex]N-mg = ma_c[/tex]

From which we can find the normal reaction of the seat on the child:

[tex]N=m(g+a_c)=(44.0 kg)(9.81 m/s^2+1.76 m/s^2)=509.1 N[/tex]

(c) 354.2 N, upward

At the highest point of the ride, we have the following forces:

- Normal force exerted by the seat on the child: N, upward

- Weight of the child: W = mg, downward

The resultant of these forces must be equal to the centripetal force, which this time is downward (towards the centre of the wheel), so we have the following equation

[tex]mg-N = ma_c[/tex]

From which we can find the normal reaction of the seat on the child:

[tex]N=m(g-a_c)=(44.0 kg)(9.81 m/s^2-1.76 m/s^2)=354.2 N[/tex]

(d) 431.6 N, upward

When the child is halfway between the top and the bottom, the normal force exerted by the seat on the child is simply equal to the weight of the child; therefore we have:

[tex]N=mg=(44.0 kg)(9.81 m/s^2)=431.6 N[/tex]

Centripetal acceleration is towards the center. The force seat exerts on the child when the child is halfway between the top and bottom is 431.64 N.

What is centripetal acceleration?

The centripetal acceleration is caused due to change in direction of the body which is in a circular motion, the acceleration is towards the center of the circle. It is calculated using the formula,

[tex]a = \dfrac{v^2}{r}[/tex]

Given to us

Mass of the child, m = 44 kg

The angular velocity of the wheel, ω = 4 rev/ min. = 0.42 rev\sec

Diameter of the wheel, d = 20.0 m

The radius of the wheel, r = 10.0 m

A.) The centripetal acceleration of the child can be given as,

[tex]a = \dfrac{v^2}{r}[/tex]

Also, we know that the linear velocity is written as,

[tex]v = \omega \times r[/tex]

Substitute the value,

[tex]a = \dfrac{(\omega r)^2}{r} = \omega^2 r[/tex]

[tex]a = (0.42)^2 \times 10 = 1.764\ m/s^2[/tex]

B.) Force that the seat experts on the child,

At the point when the child is at the lowest point of the wheel,

there are three forces that will work on the child,

The normal force, that will act upwards on the child, N

The weight of the child that will act downwards, W = mg

The centripetal force that will act toward the center therefore upwards, [tex]F_c = m a[/tex]

Taking all the vertical forces,

[tex]\sum F_y = 0\\\\N + F_c = W\\\\N + ma = mg\\\\N = mg-ma\\\\N=m(g-a)\\\\\text{Substitute the values}\\\\N = 44(9.81-1.76)\\\\N = 354.2\ N[/tex]

C.) Force that the seat experts on the child,

At the point when the child is at the highest point of the wheel,

there are three forces that will work on the child,

The normal force, that will act upwards on the child, N

The weight of the child that will act downwards, W = mg

The centripetal force that will act toward the center therefore downwards, [tex]F_c = m a[/tex]

Taking all the vertical forces,

[tex]\sum F_y = 0\\\\N = F_c + W\\\\N = ma + mg\\\\N = mg+ma\\\\N=m(g+a)\\\\\text{Substitute the values}\\\\N = 44(9.81+1.76)\\\\N = 509.08\ N[/tex]

D.)C.) Force that the seat experts on the child,

At the point when the child is at the midway of the wheel,

there are three forces that will work on the child,

The normal force, that will act upwards on the child, N

The weight of the child that will act downwards, W = mg

The centripetal force that will act toward the center therefore Rightside, [tex]F_c = m a[/tex]

Taking all the vertical forces,

[tex]\sum F_y = 0\\\\N = W\\\\N = mg\\\\\text{Substitute the values}\\\\N = 44\times 9.81\\\\N = 431.64\ N[/tex]

Hence, the force seat exerts on the child when the child is halfway between the top and bottom is 431.64 N.

Learn more about Centripetal Force:

https://brainly.com/question/10596517

Suppose the car now accelerates from 0 m/s to 30.0 m/s in 5.00 s. If the wheels have a radius of 24.1 cm, what is their angular acceleration?

6.00 rad/s-2
125 rad/s2
0.25 rad/s2
25.0 rad/s

Answers

Answer:

[tex]25.0 rad/s^2[/tex]

Explanation:

First of all, we can calculate the tangential acceleration fo a point on the wheels, which is given by

[tex]a=\frac{v-u}{t}[/tex]

where

v = 30.0 m/s is the final velocity

u = 0 m/s is the initial velocity

t = 5.00 s is the time taken

Substituting,

[tex]a=\frac{30 m/s-0}{5.00 s}=6 m/s^2[/tex]

Now we can find the angular acceleration by using the following equation

[tex]\alpha=\frac{a}{r}[/tex]

where

a is the tangential acceleration

r = 24.1 cm = 0.241 m is the radius of the wheels

Substituting into the formula,

[tex]\alpha=\frac{6 m/s^2}{0.241 m}=24.9 rad/s^2 \sim 25.0 rad/s^2[/tex]

Final answer:

The angular acceleration of the car's wheels, given the radius and linear acceleration, is approximately 24.9 rad/s².

Explanation:

The angular acceleration of the wheels of a car can be calculated once we know the linear acceleration and the radius of the wheels. The car accelerates from 0 m/s to 30.0 m/s in 5.00 s, which means that the linear acceleration is 30.0 m/s divided by 5.00 s, or 6.0 m/s². Angular acceleration (α) can be calculated by dividing the linear acceleration (a) by the radius (r) of the wheels, i.e., α = a / r.

Firstly, we need to convert the radius from cm to m because the units of acceleration are in m/s². So, the radius is 24.1 cm = 0.241m. Now, α = 6.0 m/s² / 0.241 m = 24.9 rad/s² (approximately) which will be our final answer.

Learn more about Angular Acceleration here:

https://brainly.com/question/30238727

#SPJ3

What is the velocity of all electromagnetic waves in a vacuum?

Answers

Answer:

[tex]c=3\cdot 10^8 m/s[/tex]

Explanation:

All electromagnetic waves travel in a vacuum at the same speed, regardless of their frequency. The magnitude of their velocity is

[tex]c=3\cdot 10^8 m/s[/tex]

This value is one of the universal constant and it is called speed of light.

According to Einstein's theory of special relativity, the value of c is the same for all inertial frames (it means that we measure always the same value of c in a vacuum, even if we are moving with respect to the light).

However, the speed of the electromagnetic waves decreases as they move through a medium. In particular, their speed decreases according to the equation:

[tex]v=\frac{c}{n}[/tex]

where n is called index of refraction of the medium.

Determine the pressure acting on a surface of area equal to 2 m2 if the force applied to the surface is 4 N

Answers

Answer:

2 N/m²

Explanation:

Pressure is defined as the force acting on a unit area .

Therefore;

Pressure = Force /Area

Force = 4 N

Area = 2 m²

Therefore;

Pressure = 4 N/ 2m²

               = 2 N/m²

A monochromatic light passes through a narrow slit and forms a diffraction pattern on a screen behind the slit. As the wavelength of the light decreases, the diffraction patterna)spreads out with all the fringes getting wider.b)remains unchangedc)spreads out with all the fringes getting alternately wider and then narrower.d)becomes dimmere)shrinks with all the fringes getting narrower.

Answers

bvcdbcvfdnbgfbjdgfhdgfjghfjhvjbczdfsghdfshjdgfhdftgh

A piano string sounds a middle A by vibrating primarily at 220 Hz.a)Calculate its period.b)Calculate its angular frequency.c)Calculate the period for a soprano singing a "high A," two octaves up, which is four times the frequency of the piano string.d)Calculate the angular frequency for a soprano singing a "high A," two octaves up, which is four times the frequency of the piano string.

Answers

Final answer:

The period and angular frequency of a piano string playing a middle A and a soprano singing a high A are calculated using the given frequencies.

Explanation:

a) To calculate the period of a wave, we can use the formula: period = 1/frequency. In this case, the frequency is 220 Hz. Therefore, the period is 1/220 s, which is approximately 0.0045 s.

b) The angular frequency, represented by the symbol ω, is equal to 2π times the frequency. So, for the piano string with a frequency of 220 Hz, the angular frequency is 2π * 220 rad/s.

c) For a soprano singing a high A two octaves up, which has a frequency four times that of the piano string, the period would be 1/ (4 * 220) s.

d) Finally, to calculate the angular frequency for the soprano singing a high A two octaves up, we multiply the frequency by 2π. Therefore, the angular frequency is 2π * (4 * 220) rad/s.

Learn more about Period and Angular Frequency here:

https://brainly.com/question/35441793

#SPJ11

A transformer is a device used to increase or decrease the voltage through induction. Which fundamental force is responsible for this induction?ElectromagneticWeak NuclearStrong NuclearGravitational

Answers

The two nuclear forces are not responsible for this property.

Gravitational is far too weak to make a transformer work.

The answer is electromagnetic.

Final answer:

The electromagnetic force is responsible for the induction in a transformer. It's due to the production and interaction of electric and magnetic fields, following Faraday's Law of electromagnetic induction.

Explanation:

The fundamental force responsible for the induction in a transformer is the Electromagnetic Force. This is due to the production and interaction of electric and magnetic fields in the transformer. The function of a transformer is primarily based on Faraday's Law of electromagnetic induction which states that a change in magnetic field within a closed loop of wire induces an electromotive force (EMF) in the wire. When you apply alternating current in the primary coil, it creates a constantly changing magnetic field around the secondary coil. This changing magnetic field induces a voltage in the secondary coil, either increasing or decreasing it based on the number of turns in both the coils.

Learn more about Electromagnetic Force here:

https://brainly.com/question/10763830

#SPJ6

Which of the following is a measure of the average kinetic energy of the particles in a sample of matter? A. Chemical kinetics B. thermochemistryC. reaction rateD. temperature

Answers

Answer:

D. Temperature

Explanation:

The temperature of a substance is directly proportional to the average kinetic energy of the particles in the substance according to the equation (valid for monoatomic gases)

[tex]E_K = \frac{3}{2}kT[/tex]

where

Ek is the average kinetic energy

k is the Boltzmann's constant

T is the temperature

From the equation, we see that the temperarure is directly proportional to the average kinetic energy, so the correct answer is

D. temperature

The color of light most readily absorbed by water is _________.

Answers

answer is the color white

Suppose you have two capacitors and want to use them to store the maximum amount of energy by connecting them across a voltage source. You should connect them

Answers

Answer:

Connect them in parallel

Explanation:

The energy stored by two capacitors connected to the same voltage source is given by

[tex]U=\frac{1}{2}C_T V^2[/tex]

where

[tex]C_T[/tex] is the total capacitance of the two capacitors

V is the voltage of the source

In order to maximize the energy stored U, we need to maximize [tex]C_T[/tex]. We have:

- In parallel, the total capacitance is given by the sum of the individual capacitances:

[tex]C_T(p) = C_1 + C_2[/tex]

- In series, the total capacitance is given by:

[tex]C_T(s)=\frac{1}{\frac{1}{C_1}+\frac{1}{C_2}}[/tex]

Comparing the two equations, we notice that [tex]C_T(p)>C_T(s)[/tex], so the parallel configuration is the one that maximizes the energy stored.

Final answer:

To store the maximum amount of energy, capacitors should be connected in parallel as this configuration allows each capacitor to experience the same voltage as the source, maximizing the total stored charge and energy.

Explanation:

If you wish to store the maximum amount of energy in capacitors when connecting them across a voltage source, you should connect them in parallel. In a parallel configuration, each capacitor experiences the same voltage as the source. This setup ensures that the total capacitance is the sum of the individual capacitances, thus allowing for the storage of a maximum amount of energy. Capacitors in parallel have the advantage of maintaining the voltage across each capacitor equal to the source voltage, leading to a higher total charge stored in the system. Conversely, capacitors in series have a reduced total capacitance, as the voltage divides among them, making parallel connection the better choice for maximizing energy storage.

A light wave travels through space at a speed of 3 x 108 m/s. If the wavelength of some light wave is 2 x10-3 m, what is the frequency of the wave?


6.67 x 10-12 Hz

1.5 x1011 Hz

6 x105 Hz

2 x 10-3 Hz

Answers

Here is your answer

b) [tex]\huge 1.5× {10}^{11} Hz [/tex]

REASON :

We know that

Velocity= Frequency× Wavelength

So,

Frequency= Velocity/wavelength

Here,

V= 3× 10^8 m/s

Wavelength= 2×10^-3 m

Hence,

Frequency= 3×10^8/2×10^-3

= 3/2 × 10^11

= 1.5× 10^11 Hz

HOPE IT IS USEFUL

Final answer:

The frequency of a light wave with a given speed of 3 x 10^8 m/s and wavelength of 2 x 10^-3 m can be calculated using the formula: frequency = speed / wavelength. The frequency of this wave is 1.5 x 10^11 Hz.

Explanation:

The speed of a wave is related to its frequency and wavelength by the formula: speed = frequency * wavelength. So, to find the frequency of a light wave given its speed and wavelength, we can rearrange that formula to get: frequency = speed / wavelength. Substituting the given values:

frequency = (3 x 108 m/s) / (2 x 10-3 m) = 1.5 x 1011 Hz.

So, the frequency of the light wave is 1.5 x 1011 Hz.

Learn more about Light Wave Frequency here:

https://brainly.com/question/31753960

#SPJ3

Why would it be useful for a house to have sound-absorbing materials in the walls

Answers

Hey,

i am here to help you................

The house needs sound absorbing materials in the walls so that reveberation  dosen't happens and can here clearly what people will be saying in the house

It is also used in cinema halls also

I believe that this answer was heplful.

(a) A box with its contents has a total mass of 20 kg. It is dropped from a very high building. After reaching terminal speed, what is the magnitude of the air resistance force acting upward on the falling box? N (b) The box survived the fall and is returned to the top of the building. More objects are put into the box, and the box with its contents now has a total mass of 65 kg. The box is dropped, and it reaches a higher terminal speed than before. After reaching terminal speed, what is the magnitude of the air resistance force acting upward on the falling box? (The fact that the heavier object reaches a higher terminal speed shows that the air resistance force increases with increasing speed.)

Answers

(a) 196 N

At terminal speed, the velocity of the box is constant: this means that its acceleration is zero, so according to Newton's second Law, the resultant of the forces acting on the box is zero. Since there are only two forces acting on the box:

- The weight, acting downward: [tex]W = mg[/tex]

- The air resistance, acting upward: [tex]R[/tex]

It means that at terminal speed, the two forces are balanced:

[tex]W-R=0[/tex]

So we have:

[tex]R=W=mg=(20 kg)(9.8 m/s^2)=196 N[/tex]

(b) 637 N

The exercise is exactly identical as before, but this time the mass of the box is different: m = 65 kg. Therefore, the air resistance in this case will be:

[tex]R=W=mg=(65 kg)(9.8 m/s^2)=637 N[/tex]

At terminal speed, the air resistance force matches the gravitational force acting on the object. For a 20 kg box, the force is 196 N, and for a 65 kg box, it is 637 N. This shows that air resistance increases with speed and mass.

Air Resistance and Terminal Speed

When an object falls from a height, it initially accelerates due to gravity. However, as its speed increases, the air resistance acting upwards on it also increases. Eventually, the air resistance force becomes equal to the force of gravity, and the object stops accelerating; this constant speed is known as terminal velocity.

(a) Terminal Speed for 20 kg Box

For the box with a mass of 20 kg, the force of gravity (weight) is given by:

[tex]F_{gravity}[/tex] = m imes g

where m = 20 kg and g = 9.8 m/s² (acceleration due to gravity).

Therefore, the weight of the box is:

[tex]F_{gravity}[/tex] = 20 kg imes 9.8 m/s² = 196 N

When the box reaches terminal speed, the air resistance force acting upwards is equal in magnitude to the force of gravity acting downwards. Thus, the magnitude of the air resistance force is: 196 N

(b) Terminal Speed for 65 kg Box

For the box with a mass of 65 kg, the force of gravity is:

[tex]F_{gravity}[/tex] = 65 kg imes 9.8 m/s² = 637 N

At terminal speed, the air resistance force acting upwards balances the weight of the box. Thus, the magnitude of the air resistance force is: 637 N

In summary, the air resistance force is equal to the gravitational force acting on the object at terminal velocity, which depends on the mass of the object.

An object of mass m rests on a flat table. The earth pulls on this object with a force of magnitude mg. What is the reaction force to this pull?

Answers

The reaction force of the object on the flat table will be in upward direction with the same magnitude mg.

Explanation:

According to third law of motion, every action has equal and opposite reactions. So here, the action is the gravitational pull acting downward on the object kept on table with a magnitude of mg.

So as per third law, the reaction of the object will be in opposite direction to the action i.e., the pull will be in the upward direction as reaction to the gravitational pull toward downward direction and the magnitude should be same as mg.

Thus, the reaction exerted by the object on the table for the action of gravitational force of magnitude will be the upward pull of the object from the table with the magnitude mg and as both the action and reaction will be canceling each other, the object will remain at the same position on the table without any motion as there is no unbalanced force in the system.

Final answer:

The reaction force to Earth's gravitational pull on an object is the normal force, which has the same magnitude as the object's weight but in the opposite direction, thereby allowing the object to remain at rest on a table.

Explanation:

The reaction force to the pull of Earth on an object with mass m is known as the normal force. According to Newton's third law of motion, for every action, there is an equal and opposite reaction. Therefore, if the Earth is pulling on the object with a force of mg, where g is the acceleration due to gravity (approximately 9.80 m/s² on Earth), then the table must be pushing up on the object with an equal force. This upward force is the normal force exerted by the table on the object, and it has the same magnitude as the weight of the object but in the opposite direction. Thus, the reaction force is mg directed upward. This concept is also evident when we consider the object's weight—the gravitational force on a mass m—which is calculated using the formula F = ma = mg. If there were no reaction force, the object would not remain at rest on the table.

The air over Earth's surfaces absorbs heat from the materials of Earth. In Section 3 of the experiment, the air over the sand the air over the water because sand water. This difference in temperatures makes the air over the sand the air over the water so it rises. The air above the water takes the place of the air above the sand. This movement of air creates a sea breeze.

Answers

Answer:

1.) is warmer than

2.) heats up faster than

3.) less dense than

Explanation:

e2020

Answer:

1. 2:Is warmer than

2. 1:Heats up faster than

3. 1:Less dense than

Other Questions
Identify the relative location of the Mediterranean climate region in Europe. What are the three main characteristics of this climate region? Describe the plants and animals that are located in its ecosystem. Write your answer in complete sentences. Find the exact circumference of a circle with diameter equal to 8 ft. 8 ft. 16 ft. 64 ft. What would most likely happen to a species of bird if the forest in which it lives were cut down? what does the delta symbol represent in the equation If the annual coupon bond in #8 above is selling for $1,150, according to the approximate ytm formula, what is its annual ytm? In Act II, Scene 2, after he murders Duncan, Macbeth asks, "Will all great Neptunes ocean wash this blood / Clean from my hand?" Neptune was the Roman god of the sea. How does this allusion to Neptune affect the play? It reveals the great depth of Macbeth's guilt, suggesting that all the water in the ocean cannot cleanse him of it. It reveals that Macbeth is highly educated, a trait that will serve him well when he assumes the Scottish throne. It indicates that Macbeth is delusional, imagining blood on his hands where there is none. It suggests that Macbeth views Duncan as a figure of great power, one whose death he cannot comprehend. Which type of precipitation freezes when it comes into contact with a cold surface? What is a group or family on the periodic table Chen completed the division problem below. What devices should a photographer use to analyze the amount of light falling on a subject? 3/5 divided by 3/10 equals what 5.Challenge: A chemical equation is balanced when each side of the equation includes the same number of each type of atom.A.Is the equation balanced as written? Why or why not? B.If you are familiar with balancing equations, balance the photosynthesis equation. Write the balanced equation below. in a game the player wins if he rolls a 6 on a number cube .if the number cube is rolled 18 times then what is the reasonable prediction for the number of unsuccessful rolls I was supposed to determine the length of the winding path through the circle.my answer is [tex]12.56 \: in {}^{2} [/tex]Is this correct? What is the force, in units of femtoNewtons, on an electron moving at a velocity of 7.26 x 106 ms-1 perpendicularly to a magnetic field when the magnetic flux density of 0.049 T? Bible 800 Unit 6: The Early Churches REPORT: THE EARLY CHURCH The church is 2000 years old. What has changed? What has remained the same? This assignment gives you a chance to find out. Here is your goal for this assignment: Write a report comparing and contrasting the early church and the modern church Write a report of no less than 250 words describing the characteristics of the early church. Emphasize both similarities and differences as compared to the church today. Your report should address at least the following questions: Where did the early Christians meet? What were their activities and responsibilities? Who were their leaders? What problems did they face? Use the material in this unit, the Book of Acts, and the epistles of Paul and Peter as sources for your writing. Remember to use proper grammar, punctuation, and spelling when typing your report. What was the name of the play lincoln was watching when he was assassinated? which statement best expresses the connection between the supporting details and the key ideas in a menior If sinv=-5/13, pi1. cos(u+v)=2. sin(u-v)= Which of the following is true about cells? Steam Workshop Downloader