Answer:
2,520 pounds
Step-by-step explanation:
Step 1: For this question, all you have to do is multiply 4,000 * 0.63. In other words, you are multiplying the amount you have by the conversion rate. 4,000 * 0.63 is 2,520. That's our answer.
Jack estimates that the cost per mile, in dollars, for operating a certain truck is between 15% and 21% of the number of miles driven. This is shown by the system of inequalities below, where x represents the number of miles driven and y represents the cost of operating the truck.
y ≥ 0.15x
y ≤ 0.21x
Based on this information, which statement is true?
A) If Jack drives over 15 miles, it will cost 15 · 0.15 to operate the truck.
B) If Jack drives less than 21 miles, it will cost 21 · 0.21 to operate the truck.
C) If Jack drives the truck 100 miles, it will cost either $15 or $21.
D) If Jack drives 200 miles, it will cost anywhere between $30 and $42.
Answer:
D) If Jack drives 200 miles, it will cost anywhere between $30 and $42
Step-by-step explanation:
The cost is said to be a range of possibilities. The first three answer choices seem to assume the cost is at one extreme or the other. They incorrectly interpret the statement of cost.
Find the value of x.
Answer:
[tex]\large\boxed{2\sqrt7}[/tex]
Step-by-step explanation:
Look at the picture.
ΔADC and ΔACB are similar. Therefore the corresponding sides are in proportion:
[tex]\dfrac{AC}{AD}=\dfrac{AB}{AC}[/tex]
We have
[tex]AC=x,\ AD=2,\ AB=2+12=14[/tex]
Substitute:
[tex]\dfrac{x}{2}=\dfrac{14}{x}[/tex] cross multiply
[tex]x^2=(2)(14)\\\\x^2=28\to x=\sqrt{28}\\\\x=\sqrt{4\cdot7}\\\\x=\sqrt4\cdot\sqrt7\\\\x=2\sqrt7[/tex]
A diesel train traveled to the repair yards and
back. It took two hours longer to go there than
it did to come back. The average speed on the
trip there was 70 km/h. The average speed on
the way back was 80 km/h. How many hours
did the trip there take?
A) 15 hours
C) 25 hours
B) 16 hours
D) 10 hours
Answer:
B. 16 hrs
Step-by-step explanation:
Distance = rate × time
The best way to do this is to make a table with the info. We are concerned with the trip There and the Return trip. Set it up accordingly:
d = r × t
There
Return
The train made a trip from A to B and then back to A again, so the distances are both the same. We don't know what the distance is, but it doesn't matter. Just go with it for now. It'll be important later.
d = r × t
There d
Return d
We are also told the rates. There is 70 km/hr and return is 80 km/hr
d = r × t
There d = 70
Return d = 80
All that's left is the time column now. We don't know how long it took to get there or back, but if it took 2 hours longer to get There than on the Return, the Return trip took t and the There trip took t + 2:
d = r × t
There d = 70 × t+2
Return d = 80 × t
The distances, remember, are the same for both trips, so that means that by the transitive property of equality, their equations can be set equal to each other:
70(t + 2) = 80t
70t + 140 = 80t
140 = 10t
14 = t
That t represents the Return trip's time. Add 2 hours to it since the There trip's time is t+2. So 14 + 2 = 16.
B. 16 hours
Please help. what is the quotient of 4m^12/x-1÷x^2/8m^3 assume x ≠ 0 and m≠0
Answer:
[tex]\frac{32m^{15}}{x^3-x^2}[/tex]
Step-by-step explanation:
The given expression is: [tex]\frac{4m^{12}}{x-1}\div \frac{x^2}{8m^3}[/tex]
We multiply by the reciprocal of the second fraction:
[tex]\frac{4m^{12}}{x-1}\times \frac{8m^3}{x^2}[/tex]
We cancel out the common factors to get;
[tex]\frac{32m^{12+3}}{x^2(x-1)}[/tex], where [tex]x\ne0[/tex] and [tex]m\ne0[/tex]
We simplify to get:
[tex]\frac{32m^{15}}{x^3-x^2}[/tex]
Answer:
To simplify all that its D
Step-by-step explanation:
Help with this question, please!!
Answer:
V = 135π in³A = 105π in²Step-by-step explanation:
Area of a circle is ...
A = πr² . . . r is the radius
Area of a sphere is ...
A = 4πr²
Lateral area of a cylinder is ...
A = πdh = 2πrh . . . h is the height
Volume of a cylinder is ...
V = πr²h
Volume of a sphere is ...
V = (4/3)πr³
___
The area of the composite figure is the sum of the areas ...
total area = base circle area + cylinder lateral area + 1/2 sphere area
= πr² + 2πrh + (1/2)4πr² = (πr)(r +2h +2r)
= πr(3r +2h)
For the given dimensions, r=3 in, h = 13 in, this is ...
total area = π(3 in)((3·3 +2·13) in) = 105π in²
___
The volume of the composite figure is the sum of the volumes ...
total volume = cylinder volume + 1/2 sphere volume
= πr²h + (1/2)(4/3)πr³ = πr²(h + 2/3r)
= π(3 in)²((13 +2/3·3) in) = 135π in³
Which statement is correct for 45-45-90 triangles?
Final answer:
The correct statement for a 45-45-90 triangle is that the legs are equal in length, and the hypotenuse is the length of a leg multiplied by √2, following from the Pythagorean Theorem.
Explanation:
The correct statement for 45-45-90 triangles is that they are special right triangles featuring two 45-degree angles and one 90-degree angle. In such triangles, the lengths of the legs are equal, and the length of the hypotenuse is √2 times the length of a leg. This arises from the fact that in a 45-45-90 triangle, the two legs opposite the 45-degree angles are congruent, which also means that their corresponding sides are in a ratio of 1:1, and the hypotenuse can be found by multiplying one of the legs by √2.
This is a consequence of the Pythagorean Theorem where, for a right-angle triangle with sides 'a' and 'b' and hypotenuse 'c', the relationship is c^2 = a^2 + b^2. Since 'a' and 'b' are equal in a 45-45-90 triangle (let's call each side 's'), the equation simplifies to c^2 = 2s^2, implying c = s√2. This ratio is essential to understanding the properties of these triangles and is used frequently in various geometry and trigonometry problems.
Which choice is equivalent to the fraction below? Hint: Rationalize the denominator and simplify.
Please show work.
Answer:
[tex]\boxed{\text{D. }3\sqrt{2}}[/tex]
Step-by-step explanation:
Multiply numerator and denominator by √2
[tex]\dfrac{6}{\sqrt{2}} = \dfrac{6}{\sqrt{2}} \times \dfrac{\sqrt{2}}{\sqrt{2}}\\\\= \dfrac{6\sqrt{2}}{2}\\\\= \boxed{3\sqrt{2}}[/tex]
Answer: D. [tex]3\sqrt{2}[/tex]
Step-by-step explanation:
The given fraction : [tex]\dfrac{6}{\sqrt{2}}[/tex]
Here, the denominator is in radical form which makes it not an simplified form.
So , we rationalize it by multiplying [tex]\sqrt{2}[/tex] to the numerator and the denominator , we get
[tex]\dfrac{6}{\sqrt{2}}\times\dfrac{\sqrt{2}}{\sqrt{2}=\dfrac{6\sqrt{2}}{2}}\\\\=\dfrac{2\times3\times\sqrt{2}}{2}\\\\=3\sqrt{2}[/tex] [Cancel 2 from the numerator and the denominator.]
Hence, the choice is equivalent to the given fraction = [tex]3\sqrt{2}[/tex]
Hence, the correct option is D. [tex]3\sqrt{2}[/tex]
Find the value of x, rounded to the nearest tenth
Answer:
x = 12.5
Step-by-step explanation:
The given triangle is a right angle triangle.
We cannot use the Pythagoras theorem as the lengths of all sides are not known. We will use triangular ratios here to solve the given problem.
As it is clear from the diagram that x is the hypotenuse of the triangle and 11 is the length of the base. We will use a ratio in which base and hypotenuse are used.
So,
cos θ= base/hypotenuse
cos 28=11/x
x=11/cos28
x=11/0.8829
x=12.45
Rounding off to nearest 10
x=12.5
The value of x is 12.5 in the triangle by using cosine function, option B is correct.
We need to find the value of x in the triangle.
The given triangle is a right angles triangle.
We find value of x by using cosine function.
Cosine function is a ratio of Adjacent side and hypotenuse.
Cosθ = Adj side/hypotenuse.
Here θ = 28 degrees.
Adjacent side = 11.
Hypotenuse = x.
Plug in these values in above formula:
Cos28 degrees = 11/x
x=11/cos28
x=11/0.882
x=12.47
x=12.5
Hence, the value of x is 12.5.
To learn more on trigonometry click:
https://brainly.com/question/25122835
#SPJ6
William put $500 into a savings account that earned 2% simple intrest after 3 years how much interest did william earn
Answer:
$30
Step-by-step explanation:
$500 x 0.02 x 3 = 30
Answer:
$30 is the answer
Given: F(x) = 3x and G(x) = x 2 + 1 Find (F + G)(x).
3x³ + 1
x² + 3x + 1
3x² + 1
For this case we have the following functions:
[tex]f (x) = 3x\\g (x) = x ^ 2 + 1[/tex]
We must find (f + g) (x). By definition of operations with functions we have to:
(f + g) (x) = f (x) + g (x)
So we have to:
[tex](f + g) (x) = 3x + (x ^ 2 + 1)\\(f + g) (x) = x ^ 2 + 3x + 1[/tex]
Answer:
[tex](f + g) (x) = x ^ 2 + 3x + 1[/tex]
Option B
What is the domain of this graph?
[tex](-\infty, +\infty)[/tex]
Hope this helps.
r3t40
Write the english phrase as an algebraic expression. then simplify the expression. let x represent the number. the difference between five times a number and one more than three times the number.
Answer:
5x-(3x+1) or 2x-1
Step-by-step explanation:
The difference (subtraction) between five times x (5x) and one more (+1) than three times x (3x.) 5x-(3x+1)
Simplified, 5x-3x-1=2x-1.
Use the substitution method to solve the system of equations.Choose the correct ordered pair.
Hello there! The answer is B. (3, 21).
So you want to be able to substitute one of the equations into the other. We can't do this right now since both of the equations are y = something, so we need to change the second equation to x = something so we can plug it in to the value of x in the first equation.
y = x + 18 can translate to x = y - 18. Now, plug "y - 18" into x in the first equation.
y = 10(y-18) - 9 and solve.
y = 10y - 180 - 9
-9y = - 180 - 9
-9y = -189
y = 21.
Now we have our y value, but we need our x value. Well, remember that y = x + 18? So, since y is 21, what plus 18 is equal to 21? The answer is 3, making our x value 3.
If x = 3 and y = 21, the ordered pair is (3, 21) or option B. I hope this was helpful and have a great day! :)
Hello
10x-9=x+18
10x-x=18+9
9x=27
x=3
10x-9=30-9=21
(3,21)
Good Luck
Goodbye ♥
Which equation, when graphed, has x-intercepts at (2, 0) and (4, 0) and a y-intercept of (0, –16)?
f(x) = –(x – 2)(x – 4)
f(x) = –(x + 2)(x + 4)
f(x) = –2(x – 2)(x – 4)
f(x) = –2(x + 2)(x + 4)
Number 3 is the correct answer
Tell me if you want further explanation
Answer:
f(x) = –2(x – 2)(x – 4)
Step-by-step explanation:
In the first two possible answer choices we have a 2 and a 4, whose product is 8, whereas we need a y-intercept of -16. So omit the first two choices.
If the x-intercepts are at (2, 0) and (4, 0), the corresponding factors must be (x - 2)(x - 4), so the third answer, f(x) = –2(x – 2)(x – 4), must be the correct one.
Lia is comparing her check register to her bank statement, and the ending balances don't seem to match. To check her register for transposing errors, she needs to subtract the balances and _____ the difference _____.. . A.divide; by 9. B.multiply; by 9. C.subtract; from 9. D.add; to 9. . @Loveiskey18
Answer: Divide by 9 ------- APEX
Step-by-step explanation:
i got it wrong and that was the right answer eiahhh
To check her register for transposing errors, Lia needs to subtract the balances and divide the difference by 9. so. the correct option is A.
How to divide a quantity into finite equal parts?Suppose that there are k things which are to be divided in P parts, then
K÷ P will give the amount that each one of P parts would get from k, which will make equal distribution of k things in P parts.
Lia is comparing her check register to her bank statement, and the ending balances don't seem to match.
To balance her check register, Lia needs to subtract the balances and divide the difference by 9.
If entries in her bank statement do not appear in her check register or vice versa.
To check her register for transposing errors, Lia needs to subtract the balances and divide the difference by 9. so. the correct option is A.
Learn more about division here;
https://brainly.com/question/8524473
#SPJ2
What is the simplified form of the quantity y−squared plus 7y plus 12 over the quantity y−squared minus 2y minus 15?
Answer:
It cannot be simplified any further.
The simplified form of the quantity y−squared plus 7y plus 12 over the quantity y−squared minus 2y minus 15 is (y-4)/(y-5) .
Simplifying the equation(y^2-y+12)/(y^2-2y-15) factor both the numerator and denominator...
(y^2-4y-3y+12)/(y^2-5y+3y-15)
(y(y-4)-3(y-4))/(y(y-5)+3(y-5))
((y-4)(y-3))/((y-5)(y+3)) so the (y+3) and (y-3) cancel leaving
(y-4)/(y-5)
(y-4)/(y-5) the simplified form of the quantity y−squared plus 7y plus 12 over the quantity y−squared minus 2y minus 15.
To learn more about Simplifying the equation refer:https://brainly.com/question/26779637
#SPJ2
The stock market lost 777.68 points in one day. It ended at 10,364.45 points on the same day. How many points did the stock market start with on that day
Answer:
jnd8663393765422345678
Step-by-step explanation:
nhbkjnm.l,n aels ewdlasmjDQLKd
Brian and Christina started keeping track of their workouts. Brian did 85 sit-ups the first week and 90 sit-ups each week after that. Christina did 65 sit-ups the first week and 90 sit-ups each week after that. How many sit-ups will each person have done after 5 weeks?
After 5 weeks, Brian will have completed 445 sit-ups, and Christina will have completed 425 sit-ups.
To calculate the total number of sit-ups Brian and Christina will have done after 5 weeks, we can use arithmetic progressions since the number of sit-ups increases by the same amount each week after the first.
For Brian:
Week 1: 85 sit-upsWeeks 2 to 5: 4 weeks x 90 sit-ups each week = 360 sit-upsTotal after 5 weeks: 85 + 360 = 445 sit-upsFor Christina:
Week 1: 65 sit-upsWeeks 2 to 5: 4 weeks x 90 sit-ups each week = 360 sit-upsTotal after 5 weeks: 65 + 360 = 425 sit-upsTherefore, after 5 weeks, Brian will have done 445 sit-ups and Christina will have done 425 sit-ups.
The price of the box of 15 stickers is $6. The price of the box of 25 stickers is $8. All prices are without tax, and the price of the boxes is the same. .How much would a box of 50 stickers cost?
Answer:
A box of 50 stickers would cost $13
Explanation:
1- getting the equation representing the price:
We have two variables; the number of stickers and the price of the box
We can note that the price is the dependent variable (y) while the number of stickers is the independent one (x)
We are given that:
A box of 15 stickers cost $6..........> first point is (15,6)
A box of 25 stickers cost $8 ........> second point is (25,8)
The general equation of the linear line is:
y = mx + c
where m is the slope and c is the y-intercept
i. getting the slope:
[tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-6}{25-15}=0.2[/tex]
The equation now became: y = 0.2x + c
ii. getting the y-intercept:
To get the y-intercept, use any of the given points and substitute in the equation we got in part i. I will use the point (15,6)
y = 0.2x + c
6 = 0.2(15) + c
c = 6 - 0.2(15) = 3
The final equation is:
y = 0.2x + 3
where y is the price of the box and x is the number of stickers it contains
2- getting the price of a box with 50 stickers:
To get the price of a box of 50 stickers, simply substitute with x = 50 in the equation we got from part 1
This is done as follows:
y = 0.2(50) + 3 = 13
Therefore, a box of 50 stickers will cost $13
Hope this helps :)
If BC = 6 and AD = 5, find DC.
A) 4
B) 4.5
C) 7.2
We have three similar triangles, because each has a right angle and shares an angle. Let's write the angles in order: opposite to short leg, long leg, hypotenuse.
CAB similar to BAD similar to CBD
Or as ratios,
CA:AB:CB = BA:AD:BD = CB:BD:CD
We also know
AC = AD + CD
(AD+CD):AB:CB = BA:AD:BD = CB:BD:CD
(AD+CD)/CB=CB/CD
We have CB=6, AD=5 and seek x=CD.
[tex](5 + x)/6 = 6/x[/tex]
[tex]x(x+5) = 36[/tex]
[tex]x^2 +5x - 36 = 0[/tex]
[tex](x+9)(x-4) = 0[/tex]
We reject the negative root and conclude x=4
Answer: 4
From opposite to the short leg, long leg, and hypotenuse DC is A) 4
What is a triangle?A triangle is a three-sided closed-plane figure formed by joining three noncolinear points. Based on the side property triangles are of three types they are Equilateral triangle, Scalene triangle, and Isosceles triangle.
Because each triangle has a right angle and shares an angle, we have three comparable triangles. The angles should be written from opposite to the short leg, long leg, and hypotenuse.
CAB is similar to BAD similar to CBD
CA : AB : CB = BA : AD : BD = CB : BD : CD
We also know
AC = AD + CD
(AD + CD) : AB : CB = BA : AD : BD = CB : BD : CD
(AD + CD)/CB = CB/CD
We have CB = 6, AD = 5, and x = CD.
∴ (5 + x)/6 = 6/x.
x(5 + x) = 36.
5x + x² = 36.
x² + 5x - 36 = 0.
x² + 9x - 4x - 36 = 0.
x(x + 9) - 4(x + 9) = 0.
(x + 9)(x - 4) = 0.
x = - 9 Or x = 4. (length can not be negative).
learn more about triangles here :
https://brainly.com/question/2773823
#SPJ3
Type the correct answer in each box. If necessary, round your answers to the nearest hundredth.
The vertices of ∆ABC are A(2, 8), B(16, 2), and C(6, 2). The perimeter of ∆ABC is
units, and its area is
square units.
Answer:
Perimeter = 32.44 units
Area = 30 square units
Step-by-step explanation:
Given
Vertices
A(2,8), B(16,2) and C(6,2)
WE have to determine the lengths of all sides before finding the perimeter and area.
The formula of modulus is:
[tex]d = \sqrt{(x_{2}- x_{1})^{2} +(y_{2}-y_{1})^{2}}\\AB=\sqrt{(16-2)^{2} +(2-8)^{2}}\\=\sqrt{(14)^{2} +(-6)^{2}}\\=\sqrt{196+36}\\ =\sqrt{232}\\=15.23\\\\BC=\sqrt{(6-16)^{2} +(2-2)^{2}}\\=\sqrt{(-10)^{2} +(0)^{2}}\\=\sqrt{100+0}\\ =\sqrt{100}\\=10\\\\AC=\sqrt{(6-2)^{2} +(2-8)^{2}}\\=\sqrt{(4)^{2} +(-6)^{2}}\\=\sqrt{16+36}\\ =\sqrt{52}\\=7.21\\\\[/tex]
So the perimeter is:
[tex]Perimeter=AB+BC+AC\\=15.23+10+7.21\\=32.44\ units[/tex]
Using hero's formula,
[tex]s=\frac{perimeter}{2}\\s=\frac{32.44}{2}\\ s=16.22\\Area=\sqrt{s(s-a)(s-b)(s-c)}\\=\sqrt{16.22(16.22-15.23)(16.22-10)(16.22-7.21)}\\=\sqrt{(16.22)(0.99)(6.22)(9.01)}\\=\sqrt{899.91}\\=29.99\ square\ units[/tex]
Rounding off will give us 30 square units ..
Answer:
30 square units
Step-by-step explanation:
The position of an object at time t is given by s(t) = 1 - 10t. Find the instantaneous velocity at t = 10 by finding the derivative.
I know I have to use the differential quotient formula:
f(x-h) - f(x) / h
Answer:
-10
Step-by-step explanation:
Velocity is the derivative of position. Derivative is defined as:
f'(x) = lim(h->0) [ f(x+h) - f(x) ] / h
s(t) = 1 - 10t
s(t+h) = 1 - 10(t+h)
Plugging in:
s'(t) = lim(h->0) [ 1 - 10(t+h) - (1 - 10t) ] / h
s'(t) = lim(h->0) (1 - 10t - 10h - 1 + 10t) / h
s'(t) = lim(h->0) (-10h) / h
s'(t) = lim(h->0) -10
s'(t) = -10
v(t) = -10
So at t=0, v(0) = -10.
The instantaneous velocity at [tex]t = 10[/tex] is 10.
The instantaneous Velocity of the object at a time [tex]t[/tex] is determined by mathematical concept of Derivative, whose description is shown below:
[tex]v = \lim_{h \to 0} \frac{s(t+h) - s(t)}{h}[/tex] (1)
Where:
[tex]h[/tex] - Time difference.
[tex]s(t)[/tex] - Function position evaluated at time [tex]t[/tex].
If we know that [tex]s(t) = 1 - 10\cdot t[/tex], then the instantaneous Velocity of the object is:
[tex]v = \lim_{h \to 0} \frac{1-10\cdot (t+h)-1+10\cdot t}{h}[/tex]
[tex]v = \lim_{h \to 0} \frac{10\cdot h}{h}[/tex]
[tex]v = \lim_{h \to 0} 10[/tex]
[tex]v = 10[/tex]
As instantaneous velocity is a constant function, it means that objects travels at constant velocity. Hence, we conclude that the instantaneous velocity at [tex]t = 10[/tex] is 10.
Please see this question related to instantaneous Velocity: https://brainly.com/question/17727430
The tallest living man at one time had a height of 265 cm. The shortest living man at that time had a height of 109.1 cm. Heights of men at that time had a mean of 173.73 cm and a standard deviation of 8.65 cm. Which of these two men had the height that was more extreme?
Answer:
tallest man height is more extreme.
Step-by-step explanation:
Given:
Heights of men at that time had a mean of 173.73 cm and a standard deviation of 8.65 cm.
Concept used:
Convert height into z scores for comparison of deviation from the mean.
Solution:
Tallest man height = 265 cm
[tex]Z_{tall} =\frac{265-173.73}{8.65} \\=10.55[/tex]
Shortest man height = 109.1 cm
[tex]Z_{short} =\frac{109.1-173.73}{8.65} \\=-7.47[/tex]
Thus we find that tallest man is 10.55 std deviations from the mean to the right and shortest man is 7.47 std deviations from the mean to the left.
Hence tallest man height is more extreme.
The tallest living man at one time had a more extreme height compared to the shortest living man at that time.
Explanation:In this question, we are given the heights of the tallest and shortest living men at a specific time, as well as the mean and standard deviation of heights at that time. To determine which man had a more extreme height, we need to compare their heights to the mean and see how many standard deviations away they are.
The tallest man had a height of 265 cm, which is 265 - 173.73 = 91.27 cm above the mean.
The shortest man had a height of 109.1 cm, which is 173.73 - 109.1 = 64.63 cm below the mean.
Since the tallest man's height is significantly farther away from the mean compared to the shortest man's height, we can conclude that the tallest man had a more extreme height.
help me with this thank you
It’s a frequency table, you find the middle number from the prices of mail received and you would multiply it. Not sure what with but if you search on Google Frequency tables there should be a good explanation.
Hope this helped you!
a custodian pours 1/8 gallon of cleaning solution into each pail of water that she uses. how many pails of water and cleaning solution can the custodian make using 16 gallons of cleaning solution?
Find the volume of solution in two of these pails
Answer:
The custodian can make 128 pails.
Step-by-step explanation:
first, you convert 1/8 to 0.125.
then, you divide 16 by 0.125 to get 128.
The base of a solid is the circle x^2 + y^2 = 9. Cross sections of the solid perpendicular to the x-axis are equilateral triangles. What is the volume, in cubic units, of the solid?
36 times the square root of 3
36
18 times the square root of 3
18
Recall that the area of an equilateral triangle with side length [tex]s[/tex] is [tex]\dfrac{\sqrt3}4s^2[/tex].
In the [tex]x-y[/tex] plane, the base is given by two equations:
[tex]x^2+y^2=9\implies y=\pm\sqrt{9-x^2}[/tex]
so that for any given [tex]x[/tex], the vertical distance between the two sides of the circle is
[tex]\sqrt{9-x^2}-\left(-\sqrt{9-x^2}\right)=2\sqrt{9-x^2}[/tex]
and this is the side of length of each triangular cross-section for each [tex]x[/tex]. Then the area of each cross-section is
[tex]\dfrac{\sqrt3}4(2\sqrt{9-x^2})^2=\sqrt3(9-x^2)[/tex]
and the volume of the solid is
[tex]\displaystyle\int_{-3}^3\sqrt3(9-x^2)\,\mathrm dx=\boxed{36\sqrt3}[/tex]
A cylinder has a radius of 3 cm and a height of 24 cm. What is the area of the rectangle made by the circumference and height of this cylinder?
A) 508.68 cm2
B) 480.42 cm2
C) 452.16 cm2
D) 84.78 cm2
Answer:
Option C. [tex]452.16\ cm^{2}[/tex]
Step-by-step explanation:
step 1
Find the circumference
The circumference of a circle is equal to
[tex]C=2\pi r[/tex]
we have
[tex]r=3\ cm[/tex]
[tex]\pi=3.14[/tex]
substitute
[tex]C=2(3.14)(3)=18.84\ cm[/tex]
step 2
Find the area of the rectangle made by the circumference and height of the cylinder
The area of the rectangle is equal to
[tex]A=C*h[/tex]
substitute the values
[tex]A=(18.84)(24)=452.16\ cm^{2}[/tex]
Answer:
C
Step-by-step explanation:
Please help me with this
Answer:
Step-by-step explanation:
Center
x = 5
y = - 3
r = 4
(x - 5)^2 + (y - - 3)^2 = 4^2
(x - 5)^2 + (y + 3)^2 = 16
Any number that can be written as a ratio of two integers
Final answer:
A number that can be expressed as a ratio of two integers is called a fraction. Ratios compare quantities and can be written in various forms, like fractions or with a colon. Proportions represent the equivalence of two ratios and are widely used in both mathematics and science.
Explanation:
Any number that can be written as a ratio of two integers is known as a fraction. A fraction is a type of ratio where one integer, the numerator, is divided by another integer, the denominator. For instance, 5/8 is a fraction because it represents 5 parts out of a total of 8.
A ratio can compare any two quantities, not just parts of a whole. These can be written as fractions, with a colon, or with the word 'to'. Examples include 2/3, 2:3, . Ratios are often used to compare dimensions, such as on a map where a unit scale is provided. For example, a map might state that 1 inch represents 100 feet, which is a ratio written as 1 inch/100 ft. Ratios are also essential in the health sciences, for instance, when describing solutions with a certain proportion like 1:1000.
In more complex applications, proportions are used to express equivalences between two ratios. For example, 1/2 is equivalent to 3/6, and this relationship forms a proportion. Proportions are useful in various fields, for setting up equivalencies and solving for unknown quantities.
Henry runs 5 miles an hour. He takes a break for 5 minutes every mile. In the 5th hour , how far he will be from the starting point?
Answer:
Step-by-step explanation:
4 miles = 1hour
5miles = 1hour and 25 minutes
10miles = 2 hours and 50 min
15miles = 4hours and 15min
x miles = 5 hours
20 miles = 5 hours
tell me if i got it wrong sry