The electron transport chain (ETC), or respiratory chain, is linked to proton movement and ATP synthesis. Select the STATEMENTS that ACCURATELY describe the electron transport chain. (True/False)

a)Electron transfer in the ETC is coupled to proton transfer form the matrix to the intermembrane space.b)Electrons generated by he citric acid cycle in the mitochondrial matrix enter the ETC.c)The outer membrane of mitochondria is readily permeable to small molecules and hydrogen ions.d)Electron carriers in the mitochondrial matrix include ubiquinone (coenzyme Q), FMN, and cytochrome c.e)Prosthetic groups, such as iron-sulfer centers, are directly involved with electron transfer.f)Electron carriers are organized into four complexes of proteins and prosthetic groups.g)The reactions of the ETC take place in the outer membrane of mitochondria.

Answers

Answer 1

Final answer:

The electron transport chain (ETC) occurs in the inner mitochondrial membrane and involves protein complexes and mobile carriers to produce ATP. Electrons from the citric acid cycle enter the ETC, leading to proton movement and ATP synthesis. The outer membrane is permeable to small molecules, but the ETC components, including carriers such as ubiquinone and cytochrome c, are located in the inner membrane.

Explanation:

The electron transport chain (ETC) is a critical step in cellular respiration, taking place in the inner mitochondrial membrane of eukaryotic cells. The process involves several protein complexes and mobile carriers that facilitate the transfer and stepwise release of energy from reduced substrates like NADH and FADH₂ to produce ATP via oxidative phosphorylation.

a) True: Electron transfer in the ETC is indeed coupled to proton transfer from the matrix to the intermembrane space.b) True: Electrons generated by the citric acid cycle in the mitochondrial matrix do enter the ETC.c) True: The outer membrane of mitochondria is permeable to small molecules and ions, although hydrogen ions' passage is more specifically regulated by the ETC.d) False: Electron carriers such as ubiquinone and cytochrome c are embedded in the inner mitochondrial membrane, not in the matrix.e) True: Prosthetic groups such as iron-sulfur centers are indeed directly involved with electron transfer within the ETC.f) False: The ETC consists of four, not three, complexes of proteins and prosthetic groups.g) False: The reactions of the ETC take place in the inner mitochondrial membrane, not the outer.

Answer 2

The correct statements about the electron transport chain (ETC) are a,b,e,f which include its coupling with proton transfer, the role of electrons from the citric acid cycle, the significance of prosthetic groups, and the organization into four complexes.

To accurately describe the Electron Transport Chain (ETC) and assess the statements given, we will evaluate each statement based on what we know about the ETC.

True. As electrons move through the ETC, energy is used to pump hydrogen ions (H⁺) from the mitochondrial matrix into the intermembrane space, creating a proton gradient.True. High-energy electrons carried by NADH and FADH₂, produced in the citric acid cycle, enter the ETC.False. While the outer membrane is permeable to small molecules due to porins, it is not freely permeable to protons (H+). The inner mitochondrial membrane tightly regulates the transfer of protons.False. Ubiquinone (coenzyme Q) and cytochrome c are located within the inner mitochondrial membrane, not the matrix, though they are involved in the ETC.True. These groups are essential components of the protein complexes and play a crucial role in electron transfers.True. The ETC consists of four main protein complexes (I, II, III, IV) that facilitate the transfer of electrons.False. The reactions occur in the inner mitochondrial membrane, where the protein complexes are embedded.

Therefore the correct statements out of the given ones are a, b, e, f.


Related Questions

Mercury is added to a cylindrical container to a depth d and then the rest of the cylinder is filled with water.
If the cylinder is 0.4 m tall and the absolute (or total) pressure at the bottom is 1.1 atmospheres, determine the depth of the mercury. (Assume the density of mercury to be 1.36 104 kg/m^3, and the ambient atmospheric pressure to be 1.013e5 Pa)

Answers

Answer:

0.05m

Explanation:

Density of water = ρ(w) = 1000 kg/ m³ ;  

Density of Mercury = ρ(m) = 13628.95 kg/ m³  

Total pressure at bottom of cylinder=1.1atm

Therefore, pressure due to water and mercury =1.1-1 =atm

0.1atm=10130pa

The pressure at the bottom is given by,

ρ(w) x g[0.4 - d] + ρ(m) x g x d  = 10130

1000 x 9.8[0.4 - d] + 13628.95 x 9.8 d = 10130

3924 - 9810d + 133416d= 10130

123606d= 6206

d= 6202/123606

d= 0.05m

Depth of mercury alone =  d = 0.05m

We have that for the Question " determine the depth of the mercury."

It can be said that

The depth of the mercury = [tex]4.333*10^{-2}[/tex]

From the question we are told

the cylinder is 0.4 m tall and the absolute (or total) pressure at the bottom is 1.1 atmospheres, determine the depth of the mercury. (Assume the density of mercury to be 1.36 104 kg/m^3, and the ambient atmospheric pressure to be 1.013e5 Pa)

Therefore,

Absolute pressure at the bottom of the container =

[tex]P = 1.1 atm = 1.1 * (1.013*105) Pa\\\\= 1.1143 * 10^5 Pa[/tex]

Where,

Height of the cylinder = H = [tex]0.4 m[/tex]

Height of the water in the cylinder = [tex]H_1[/tex]

Height of the mercury in the cylinder = [tex]H_2[/tex]

Therefore,[tex]H = H_1 + H_2\\\\H_1 = H - H_2\\\\P = P_{atm} + \rho_1gH_1 + \rho_2gH_2\\\\P = P_{atm} + \rho_1g(H - H_2) + \rho_2gH_2\\\\1.1143*10^5 = 1.013*10^5 + (1000)(9.81)(0.4 - H_2) + (1.36*10^4)(9.81)H_2\\\\1.013*10^4 = 3924 - 9810H_2 + 133416H_2\\\\143226H_2 = 6206\\\\H_2 = 4.333*10^{-2} m[/tex]

For more information on this visit

https://brainly.com/question/23379286

2. Categorize each statement as true or false. A cylindrical capacitor is essentially a parallel-plate capacitor rolled into a tube.The dielectric constant indicates the distance by which the two plates of a capacitor are separated.The charge on a capacitor increases quickly at first, then much more slowly as the capacitor charges.The voltage across a capacitor in an RC circuit increases linearly during charging.One of the principle purposes of a capacitor is to store electric potential energy.A capacitor charges rapidly when connected to an RC circuit with a battery. True False

Answers

The true statement is A. A cylindrical capacitor is a parallel-plate capacitor rolled into a tube, C. The charge on a capacitor increases quickly at first, then much more slowly as the capacitor charges E. One of the principal purposes of a capacitor is to store electric potential energy. F. A capacitor charges rapidly when connected to an RC circuit with a battery and the false statement are B. The dielectric constant indicates that the distance by which the two plates of a capacitor are separated and D. The voltage across a capacitor in an RC circuit increases linearly during charging.

Let's look at each statement one by one to categorize them as true or false.
a. True. A cylindrical capacitor can be thought of as a parallel-plate capacitor with the plates rolled into cylindrical shapes.


b. False. The dielectric constant is a measure of a material's ability to increase the capacitance of a capacitor, not a measure of the distance between the plates.


c. True. The charge on a capacitor follows an exponential curve, increasing rapidly at first and then more slowly as it approaches its maximum charge.


d. False. The voltage increases exponentially, not linearly, when charging a capacitor in an RC circuit.


e. True. Capacitors store electric potential energy in the electric field between their plates.


f. True. Initially, the capacitor in an RC circuit charges quickly, but the rate of charging decreases over time as it gets closer to full charge.

A 20 kilogram ball rolls down a 10 meter ramp at the rate of 15 meters per second. The kinetic energy is joules

Answers

Answer:2250J

Explanation:

mass(m)=20kg

velocity(v)=15m/s

Kinetic energy=(m x v^2)/2

Kinetic energy =(20 x 15^2)/2

Kinetic energy =(20x15x15)/2

Kinetic energy=4500/2

Kinetic energy=2250J

The kinetic energy of the ball will be 2250 joules.

We have a 20 kilogram ball rolls down a 10 meter ramp at the rate of 15 meters per second.

We have to determine its kinetic energy is joules.

What is the formula to calculate the kinetic energy of the body of mass 'm' moving with velocity 'v' ?

The kinetic energy of the body is as follows -

K.E. = [tex]\frac{1}{2} mv^{2}[/tex]

According to the question -

Mass of ball = 20 kg

Velocity of ball = 15 m/s

Substituting the values in the above formula, we get -

K.E. = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2} \times 20\times 15\times 15[/tex] = 225 x 10 = 2250 joules.

Hence, the kinetic energy of the ball will be 2250 joules.

To solve more questions on Kinetic Energy, visit the link below -

https://brainly.com/question/9576283

#SPJ2

g A coil formed by wrapping 50 turns of wire in the shape of a square is positioned in a magnetic field so that the normal to the plane of the coil makes an angle of 30.0° with the direction of the field. When the magnetic field is increased from 250 µT to 700 µT in 0.300 s, an emf of magnitude 60.0 mV is induced in the coil. What is the total length of wire in the coil?

Answers

Answer:

L = 182.4 m      

Explanation:

Given:-

- The number of turns of the coil, N = 50

- The shape of the coil = square

- The angle between the coil and magnetic field, θ = 30°

- The change in magnetic field, ΔB = ( 700 - 250 ) μT

- The time duration in which magnetic field changes, Δt = 0.3 s

- The induced emf, E = 60.0 mV

Solution:-

- The problem at hand is an application of Faraday's law. The law states that the induced emf ( E ) is proportional to the negative rate of change of magnetic flux ( ΔФ / Δt ) and number of turns of the coil ( N ).

- The Faraday's law is mathematically expressed as:

                    E =  - N* ( ΔФ / Δt )

Where,

- The flux ( Ф ) through a current carrying with an cross-sectional area ( A ) at a normal angle ( θ ) to the direction of magnetic field ( B ) is given by the following relationship.

                    Ф = B*A*cos ( θ )

- We need the rate of change of magnetic flux ( ΔФ / Δt ) for the Faraday's law. I.e the induced emf ( E ) is proportional to rate of change in magnetic field ( ΔB / Δt ), rate of change of angle between the coil and magnetic field ( Δθ / Δt ) or rate of change of cross-sectional area of the coil under the influence of magnetic field.

- To determine the exact relationship. We will derive the multi-variable function of flux ( Ф ) with respect to time "t":

                     Ф ( B , A , θ ) = B*A*cos ( θ )

- The first derivative would be ( Use chain and product rules )

    ( ΔФ / Δt ) = ΔB / Δt*A*cos ( θ ) + B*ΔA/Δt*cos ( θ ) - B*A*sin ( θ )*Δθ/Δt

- For the given problem the only dependent parameter that is changing is magnetic field ( B ) with respect to time "t". Hence, ( ΔA/Δt = Δθ/Δt = 0 ):

                        ΔФ / Δt  = (ΔB/Δt)*A*cos ( θ )

- Substitute the rate of change of magnetic flux  ( ΔФ / Δt ) into the expression for Faraday's Law initially stated:

                        E =  - N*(ΔB/Δt)*A*cos ( θ )

- Plug in the values and evaluate the Area of the square coil:

                       A =  - E / ( N*(ΔB/Δt)*cos ( θ ) )

                       A = - 0.06 / ( 50*[ (250-700)*10^-6/0.3 ] *cos ( 30° ) )

                       A = - 0.06 / -0.07216

                       A = 0.8314 m^2

- The square coil has equal sides ( x ). The area of a square A is given by:

                      A = x^2

                      x = √0.8314

                      x = 0.912 m

 

- The perimeter length of a single coil in terms of side length "x" is given as:

                      P = 4x

Whereas for a coil of N turns the total length ( L ) would be:

                      L = N*P

                      L = 4Nx

                      L = 4 * 50 * 0.912

                      L = 182.4 m                 ... Answer

2. In a series circuit, all resistors have identical currents.
a) What is the relationship between the power and resistance of these resistors?
b) In a parallel circuit, all resistors have identical voltages. What is the relationship
between the power and resistance of these resistors?

Answers

Answer:

Explanation:

In series connection of resistors, same current flows in the circuit.

Power dissipated by a resistor is

P = i²R

And since same current flows in them, it implies that the power is directly proportional to Resistance, so the higher the resistance of the resistor the higher the power dissipated in the series connection. Also, the lower the resistance, the lower the power dissipated.

2. In parallel connection, same voltage is applied across the resistor.

So, power dissipated by each resistor is

P = V² / R

So, since the same voltage is applied across parallel connection, then, power dissipated in each resistor is inversely proportional to the resistance.,

So, the higher the resistance, the lower the power and the lower the resistance, the higher the power.

A water tower is a familiar sight in many towns. The purpose of such a tower is to provide storage capacity and to provide sufficient pressure in the pipes that deliver the water to customers. The drawing shows a spherical reservoir that contains 7.41 x 105 kg of water when full. The reservoir is vented to the atmosphere at the top. For a full reservoir, find the gauge pressure that the water has at the faucet in (a) house A and (b) house B. Ignore the diameter of the delivery pipes.

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The gauge pressure that water has at the House A  [tex]P_A = 257020.68 Pa[/tex]

The gauge pressure that water has at the House B  [tex]P_B = 188454 \ Pa[/tex]

Explanation:

From the question we are told that

    The mass of water when full is  [tex]m_f = 7.41* 10^{5} kg[/tex]

     

Generally the volume of water in this tank is mathematically represented as

              [tex]V = \frac{m }{\rho}[/tex]

Where  [tex]\rho[/tex] is the density of water with a value of with a value of [tex]\rho = 1000 kg /m^3[/tex]

   substituting values

                  [tex]V = \frac{7.41 *10^5}{10^3}[/tex]

                  [tex]V = 741 m^3[/tex]

This volume is the volume of a sphere since the tank is spherical so

            [tex]V = \frac{4 \pi ^3}{3}[/tex]

  making r the subject of the formula

           [tex]r =\sqrt[3]{ \frac{741 *3 }{4\pi} }[/tex]              

        [tex]r = 5.6134 m[/tex]

Now we can use this parameter to obtain the diameter

  So

        [tex]d = 2 * r[/tex]

substituting values

        [tex]d = 2 * 5.6134[/tex]

        [tex]d = 11.23m[/tex]

The pressure  the water has at  faucet in House A is mathematically evaluated as

        [tex]P_A = \rho g h_A[/tex]

This height is obtained as follows

                       [tex]h_A = d+ 15[/tex]

The value 15 is gotten from the diagram

  so

          [tex]h_A = 15 + 11.23[/tex]

          [tex]h_A = 26.22 m[/tex]

Now substituting values

         [tex]P_A = 26.23 * 9.8 * 1000[/tex]

         [tex]P_A = 257020.68 Pa[/tex]

      The pressure  the water has at  faucet in House B is mathematically evaluated as

        [tex]P_B = \rho g h_B[/tex]

This height is obtained as follows

                       [tex]h_B = d+ 15[/tex]

The value 15 is gotten from the diagram

  so

          [tex]h_B = d + 15 -h[/tex]

substituting values

         [tex]h_B =11.23 + 15 -7[/tex]

          [tex]h_A = 19.23 m[/tex]

Now substituting values

         [tex]P_B = 19.23 * 9.8 * 1000[/tex]

         [tex]P_B = 188454 \ Pa[/tex]

     

     

In your own words, describe how dog breeds today came from wolves. In other words, describe selective breeding.

Pleaseeeeeeeeeeeeeeeeeeeeee HELPPPPPPPP!!!FASTTT!!!

Answers

Answer:

Dogs were probably domesticated by accident, when wolves began trailing ancient hunter-gatherers to snack on their garbage. Docile wolves may have been slipped extra food scraps, the theory goes, so they survived better, and passed on their genes. Eventually, these friendly wolves evolved into dogs

Selective breeding, also known as artificial selection, is a process used by humans to develop new organisms with desirable characteristics. Breeders select two parents that have beneficial phenotypic traits to reproduce, yielding offspring with those desired traits.

Hope it helps!

A 60kg60 kg board that is 6 m6 m long is placed at the edge of a platform, with 4 m4 m of its length extending over the edge. The board is held in place by blocks of masses M1M1 and M2M2 placed with their centers of mass on either end. If M2=30kgM2=30kg , what is the minimum value of M1M1 needed to keep the board from falling off the platform? 30kg

Answers

Complete Question

The complete question is shown on the first and second uploaded image

Answer:

The minimum mass of [tex]M_1 = 90\ kg[/tex] correct option is  E

Explanation:

 Free body diagram of the set up  in the question is shown on the third uploaded image

  The mass of board is  [tex]M = 60kg[/tex]

   The length of the board is [tex]L = 6 \ m[/tex]

    The length extending over the edge is [tex]L_e = 4 \ m[/tex]

    The second mass is  [tex]M_2 = 30kg[/tex]

Now to obtain [tex]M_1[/tex] we take moment about the edge of the platform

               [tex]M_1 g L_1 = Mg \frac{L}{2} + M_2 g L_2[/tex]

              [tex]M_1 L_1 = M \frac{L}{2} + M_2 L_2[/tex]

  Substituting value  

               [tex]M_1 (2) = (60)(1) + (30)(4)[/tex]

               [tex]M_1 = 90 \ kg[/tex]

The minimum value of M1 needed to keep the board from falling off the platform is 90 kg.

From the information given, we are to find:

the mass (M1) of placed on the left side edge of the board

Given that:

the mass of the board = 60 kgthe length of the board = 6 mIf the mass on the right side = 30 kg, and the length of the board L1 = 2mThen, the length L2 which extend over the edge = 4m

Consider the center of gravity in the board that lies at the length of the board midpoint.

Then, the distance (D) of the gravity center from the platform end = 3 - 2

= 1 m

Considering the moment about the platform end, the mass (M1) placed on the left side edge of the board can be computed as:

[tex]\mathbf{M_1gL_1 = MgD + M_2gL_2} \\ \\ \mathbf{M_1L_1 = MD + M_2gL_2} \\ \\ \mathbf{M_1(2) = 60 \ kg \times 1 + 30 \ kg \times (4)} \\ \\ \mathbf{ M_1 =\dfrac{60 \ kg + 120 kg }{2} } \\ \\ \mathbf{ M_1 =\dfrac{180 \ kg}{2} } \\ \\ \mathbf{ M_1 =90 \ kg }[/tex]

Therefore, we can conclude that the minimum value M1 needed to keep the board from falling off the platform is 90 kg.

Learn more about masses here:

https://brainly.com/question/19694949?referrer=searchResults

The drawing shows three identical rods (A, B, and C) moving in different planes. A constant magnetic field of magnitude 4.50 T is directed along the +y axis. The length of each rod is L = 1.3 m, and the speeds are the same, vA = vB = vC = 2.6 m/s. For each rod, find the magnitude of the motional emf, and indicate which end (1 or 2) of the rod is positive. rod A V ---Select--- End 1 is positive. End 2 is positive. No emf in rod. rod B V ---Select--- End 1 is positive. End 2 is positive. No emf in rod. rod C V ---Select--- End 1 is positive. End 2 is positive. No emf in rod.

Answers

Answer:

A)

The emf is zero because the velocity of the rod is parallel to the direction of the magnetic field, so the charges experience no force.

B)

The emf is vBL

= (2.6 m/s)(4.50 T)(1.3 m)

= 15.21 V.

The positive end is end 2.

C)

The emf is zero because the magnetic force on each charge is directed perpendicular to the length of the rod.

In what direction must a force be applied so that the forces on the 1 kg object are balanced

Answers

Answer:

towards the object

Explanation:

Final answer:

To balance the forces on the 1 kg object, a force should be applied in the downward direction.

Explanation:

The forces on the 1 kg object can be balanced by applying a force in the opposite direction to the net force acting on the object. In this case, the net force is the sum of the weight of the object and the tension in the string. Since the weight acts downward and the tension in the string acts upward, the force should be applied in the downward direction to balance the forces on the 1 kg object.

A single-turn circular loop of wire of radius 45 mm lies in a plane perpendicular to a spatially uniform magnetic field. During a 0.10 s time interval, the magnitude of the field increases uniformly from 250 to 350 mT. (a) Determine the emf induced in the loop (in V). (Enter the magnitude.) V (b) If the magnetic field is directed out of the page, what is the direction of the current induced in the loop

Answers

Answer:

Magnitude of induced emf is 0.00635 V

Explanation:

Radius of circular loop r = 45 mm = 0.045 m

Area of circular loop [tex]A=\pi r^2[/tex]

[tex]A=3.14\times 0.045^2=0.00635m^2[/tex]

Magnetic field is increases from 250 mT to 350 mT

Therefore change in magnetic field [tex]dB=250-350=100mT[/tex]

Emf induced is given by

[tex]e=-N\frac{d\Phi }{dt}=-NA\frac{dB}{dt}[/tex]

[tex]e=-0.00635\times \frac{100\times 10^{-3}}{0.10}=-0.00635V[/tex]

Magnitude of induced emf is equal to 0.00635 V

The key discovery about Cepheid variable stars that led in the 1920s to the resolution of the question of whether spiral "nebulae" were separate and distant galaxies or part of the Milky Way Galaxy was the direct relationship between the pulsation period and the absolute brightness or luminosity of the Cepheid variables. A measurement of ____ brightness of a variable star could then be used to determine the distance to the "nebula" containing it.

Answers

Answer:

Apparent

The key discovery about Cepheid variable stars that led in the 1920s to the resolution of the question of whether spiral "nebulae" were separate and distant galaxies or part of the Milky Way Galaxy was the direct relationship between the pulsation period and the absolute brightness or luminosity of the Cepheid variables. A measurement of apparent brightness of a variable star could then be used to determine the distance to the "nebula" containing it.

Explanation:

A variable star is a star with changing apparent brightness. The changes can occur over years or in a fraction of seconds. For example the sun whose energy output varies by approximately 0.1 percent of its magnitude, over an 11-year solar cycle. This variable(apparent brightness) can be used to determine how far a variable star is (distance). Therefore, a measurement of apparent brightness of a variable star could then be used to determine the distance to the "nebula" containing it.

The specific heat of a liquid x is 2.09 cal/g°c. A sample amount of grams of this liquid at 101 k is heated to 225 k. the liquid absorbs 5.23 kcals. what is the sample of liquid in grams? (round off decimal in the answer to nearest tenths)

Answers

Answer: 20 grams

Explanation:

The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

[tex]Q=m\times c\times \Delta T[/tex]

Q = Heat absorbed by liquid = 5.23 kcal = 5230 cal    (1kcal=1000cal)

C = heat capacity of liquid = [tex]2.09cal/g^0C[/tex]

Initial temperature of the liquid  = [tex]T_i[/tex] = 101 K

Final temperature of the liquid  = [tex]T_f[/tex]  = 225 K

Change in temperature ,[tex]\Delta T=T_f-T_i=(225-101)K=124K[/tex]

Putting in the values, we get:

[tex]5230=m\times 2.09cal/g^0C\times 124K[/tex]

[tex]m=20g[/tex]

Thus the sample of liquid in grams is 20

Calcula el peso aparente de una bola de aluminio de 50 cm3, cuando se encuentra totalmente sumergida en alcohol. Datos: la densidad del aluminio es 2,7 g / cm3 y la densidad del alcohol es 0,8 g / cm3

Answers

Answer:

W_apparent = 93.1 kg

Explanation:

The apparent weight of a body is the weight due to the gravitational attraction minus the thrust due to the fluid where it will be found.

            W_apparent = W - B

The push is given by the expression of Archimeas

            B = ρ_fluide g V

            ρ_al = m / V

            m = ρ_al V

we substitute

            W_apparent = ρ_al V g - ρ_fluide g V

            W_apparent = g V (ρ_al - ρ_fluide)

       

we calculate

           W_apparent = 980 50 (2.7 - 0.8)

           W_apparent = 93100 g

            W_apparent = 93.1 kg

A fellow astronaut passes by you in a spacecraft traveling at a high speed. The astronaut tells you that his craft is 21.1 m long and that the identical craft you are sitting in is 17.3 m long. (a) According to your observation, how long is your craft? m (b) According to your observation, how long is the astronaut's craft? m (c) According to your observation, what is the speed of the astronaut's craft relative to your craft?

Answers

Answer:

A) 21.1 m

B) 17.3 m

C) 3.267x10^7 m/s

Explanation:

This is a case of special relativity.

Let the relative speed of astronauts ship to my ship be v.

According to my observation,

My craft is 21.1 m long, according to my observation, astronauts craft is 17.3 m long.

If we fix the reference frame as my ship, then the rest lenght of our identical crafts is 21.1 m and the relativistic lenght is 17.3 m

l' = 21.1 m

l = 17.3 m

From l = l'(1 - p^2)^0.5

Where p is c/v, and c is the speed of light

17.3 = 21.1 x (1 - p^2)^0.5

0.82 = (1 - p^2)^0.5

Square both sides

0.67 = 1 - p^2

P^2 = 0.33

P = 0.1089

Revall p = v/c

v/c = 0.1089

But c = speed of light = 3x10^8 m/s

Therefore,

v = 3x10^8 x 0.1089 = 3.267x10^7 m/s

Following are the response to the given points:

a) Its ship travels to the distance of [tex]21.1\ m[/tex]

b) The astronaut's craft would be at a range of  [tex]17.3\ m[/tex]

c) Relativity's use of length contraction:

[tex]\to L=L_0(\sqrt{1-\frac{v^2}{c^2}}) \\\\\to \frac{L}{L_0}=(\sqrt{1-\frac{v^2}{c^2}})[/tex]

Here,

 [tex]\to \frac{L}{L_0}=\frac{17.3}{21.1}=0.81[/tex]

Hence

[tex]\to 0.81=(\sqrt{1-\frac{v^2}{c^2}}) \\\\\to 0.6561=1-\frac{v^2}{c^2}\\\\\to \frac{v^2}{c^2} =1- 0.6561\\\\\to \frac{v^2}{c^2} =0.3439\\\\\to \frac{v}{c} =0.58\\\\\to v= 0.58 c[/tex]

Learn more:

brainly.com/question/8151977

In your research lab, a very thin, flat piece of glass with refractive index 1.50 and uniform thickness covers the opening of a chamber that holds a gas sample. The refractive indexes of the gases on either side of the glass are very close to unity. To determine the thickness of the glass, you shine coherent light of wavelength lambda 0 in vacuum at normal incidence onto the surface of the glass. When lambda 0 = 496 nm, constructive interference occurs for light that is reflected at the two surfaces of the glass. You find that the next shorter wavelength in vacuum for which there is constructive interference is 386 nm. Use these measurements to calculate the thickness of the glass. Express your answer with the appropriate units. What is the longest wavelength in vacuum for which there is constructive interference for the reflected light?

Answers

Answer:

The longest wavelength in vacuum for which there is constructive interference for the reflected light, λ   = 3472.

Explanation:

Refractive index of Glass (given) = 1.5

For the case of a constructive interference,

2nt = (m + 1/2) λ

For case 1,

2nt = (m + 1/2) 496 nm

For case 2,

2nt = (m +1+ 1/2) 386 nm

2nt = (m+3/2) * 386 nm

(m + 1/2) 496 nm = (m+3/2) * 386 nm

m = 3

Inserting the value of m in 1.

2nt = (m + 1/2) 496 nm

2*1.5t = (3 + 1/2) * 496 nm

t = ((3 + 1/2) * 496 nm)/ 3

t = 578.6 nm

The thickness of the glass, t = 578.6 nm

b)

It is generally known that for constructive interference,

2nt = (m + 1/2) λ

λ = 2nt / ((m + 1/2))

For Longest Wavelength, m = 0

λ = 2*1.5*578.6/ (1/2)

λ = 3472 nm

In a Tesla coil, a long solenoid with length l and cross-sectional area A is closely wound with N 1 turns of wire. A coil with N 2 turns surrounds it at its center. You measure the mutual inductance. Then your friend gives you a new solenoid made out of twice as much wire, so that it has twice as many turns and is twice as long. How much larger is the mutual inductance M with the new solenoid instead of the old one

Answers

The mutual inductance of a Tesla coil system with two solenoids will double if the length and number of turns of the primary solenoid are both doubled, assuming all other factors remain constant.

When we are given a Tesla coil configuration with a solenoid of length l and cross-sectional area A, closely wound with N1 turns of wire, and another coil with N2 turns surrounding it at its center, we can calculate the mutual inductance based on the properties of the solenoids. If a new solenoid is introduced that has twice as many turns and is twice as long, the mutual inductance M of the system will be affected.

To understand how the mutual inductance changes, let's remember that for a closely wound solenoid, the mutual inductance can be calculated by a formula incorporating the number of turns, permeability of the core material, cross-sectional area, and the length of the solenoid. The mutual inductance is directly proportional to the product of the number of turns of each coil, the magnetic permeability of the core, and the area of the cross-section, and inversely proportional to the length of the solenoid. Therefore, if we double the length l and the number of turns N1 while keeping all other factors constant, the mutual inductance will also double.

horizontal circular platform rotates counterclockwise about its axis at the rate of 0.919 rad/s. You, with a mass of 73.5 kg, walk clockwise around the platform along its edge at the speed of "1.05" m/s with respect to the platform. Your 20.5 kg poodle also walks clockwise around the platform, but along a circle at half the platform's radius and at half your linear speed with respect to the platform. Your 18.5 kg mutt, on the other hand, sits still on the platform at a position that is 3/4 of the platform's radius from the center. Model the platform as a uniform disk with mass 90.7 kg and radius 1.91 m. Calculate the total angular momentum of the system

Answers

Answer:

The total angular momentum is 292.59 kg.m/s

Explanation:

Given that :

Rotation of the horizontal circular platform [tex]\omega[/tex] = 0.919 rad/s

mass of the platform (m) = 90.7 kg

radius (R) = 1.91 m

mass of the poodle [tex]m_p[/tex] = 20.5 kg

Your mass  [tex]m'[/tex] = 73.5 kg

speed v = 1.05 m/s with respect to the platform

[tex]V_p = \frac{1.05}{2} \ m /s \\ \\ = 0.525 \ m /s \\ \\r = \frac{R}{2}[/tex]

r = 0.955

Mass of the mutt [tex]m_m[/tex] = 18.5 kg

[tex]r' = \frac{3}{4} \ R[/tex]

Your angular momentum is calculated as:

Your angular velocity relative to the platform is [tex]\omega' = \frac{v}{R} = \frac{1.05}{1.91 } = 0.5497 \ rad/s[/tex]

[tex]Actual \ \omega_y = \omega - \omega ' = (0.919 - 0.5497) \ rad/s = 0.3693 \ rad/s[/tex]

[tex]I_y = m'R^2 = 73.5 *1.91^2= 268.14 \ kgm^2[/tex]

[tex]L_Y = I_y*\omega_y= 268.14*0.3683= 98.76 \ kg.m/s[/tex]

For poodle :

[tex]Relative \ \ \omega' = \frac{V_p}{R/2} = 0.550 \ rad/s[/tex]

Actual [tex]\omega_p = \omega - \omega' = 0.919 -0.550 = 0.369 \ rad/s[/tex]

[tex]I_p = m_p(\frac{R}{2} )^2 = 20.5(\frac{1.91}{2} )^2 = 18.70 \ kgm^2[/tex]

[tex]L_p = I_p *\omega_p = 18.70*0.369 = 6.9003 \ kgm/s[/tex]

[tex]I_M = m_m(\frac{3}{y4} R)^2 = 18.5 (\frac{3}{4} 1.91)^2 = 37.96 \ kgm^2[/tex]

[tex]L_M = I_M \omega = 37.96 * 0.919= 34.89 \ kg.m/s[/tex]

Disk [tex]I = \frac{mr^2}{2} = \frac{90.7*1.91^2}{2}= 165.44 \ kgm^2[/tex]

[tex]L_D = I \omega = 165.44*0.919 =152.04 \ kg.m/s[/tex]

Total angular momentum of system is:

L = [tex]L_D +L_Y+L_P+L_M[/tex]

= (152.04 + 98.76 + 6.9003 + 34.89) kg.m/s

= 292.59 kg.m/s

A wheel rotating with a constant angular acceleration turns through 22 revolutions during a 5 s time interval. Its angular velocity at the end of this interval is 12 rad/s. What is the angular acceleration of the wheel? Note that the initial angular velocity is not zero. Answer in units of rad/s 2 .

Answers

Answer:

0.52rad/s^2

Explanation:

To find the angular acceleration you use the following formula:

[tex]\omega^2=\omega_o^2+2\alpha\theta[/tex]   (1)

w: final angular velocity

wo: initial angular velocity

θ: revolutions

α: angular acceleration

you replace the values of the parameters in (1) and calculate α:

[tex]\alpha=\frac{\omega^2-\omega_o^2}{2\theta}[/tex]

you use that θ=22 rev = 22(2π) = 44π

[tex]\alpha=\frac{(12rad/s)^2-(0rad/s)^2}{2(44\pi)}=0.52\frac{rad}{s^2}[/tex]

hence, the angular acceñeration is 0.52rad/s^2

Peggy is an astronaut and volunteers for the first manned mission to Alpha Centauri, the nearest star system to the Solar System. Her spacecraft will travel at 80%80% of the speed of light, and the trip there and back will take over 1010 years. Her twin sister Patty is an astronomer and will remain on Earth, studying Alpha Centauri using telescopes. When Peggy returns from her trip, how will their ages compare?

Answers

Answer:

If Patty remains on Earth then at the time Peggy will come back from her trip, Peggy will be much younger than her sister Patty because of time-dilation.

Explanation:

Peggy and Patty are sisters. Peggy is an astronaut and Patty is an astronomer.

Peggy goes for mission to Alpha Centauri, the nearest star system to the Solar System at 80% of the speed of light, and will come back after 1010 years.

If Patty remains on Earth then at the time Peggy will come back from her trip, Peggy will be much younger than her sister Patty because of time dilation.

This is due to the fact that time moves slower in Alpha Centauri because of its massive gravitational force which bends space time. Moreover, It is known that Peggy's spacecraft moves at 80% of the speed of light, it will result in velocity time dilation since time moves slow if you travel at a speed near to the speed of light.

Final answer:

Peggy, the astronaut twin traveling at 80% of the speed of light, will experience less time due to time dilation, and upon her return will be younger than her Earth-bound twin sister, Patty.

Explanation:

The question is about the relativistic effects that occur when one twin travels at significant fraction of the speed of light while the other remains on Earth.

According to the theory of relativity, time dilation will cause the traveling twin, Peggy, to age more slowly compared to her twin sister, Patty, who remains on Earth.

If Peggy travels to Alpha Centauri, which is 4.3 light years away, at 80% of the speed of light, and assuming the round trip takes 10 years for the Earth-bound twin, we can calculate that the moving twin will experience less than 10 years of elapsed time due to the effects of time dilation.

This happens because the faster Peggy travels, the more pronounced the effect of time dilation will be. This is a well-known result predicted by Einstein's special theory of relativity and has been confirmed through experiments involving high-speed particles and precise clocks.

Thus, when Peggy returns, she will be younger than her twin sister Patty, who has experienced the full 10 years on Earth.

[03.02]

Which statement correctly describes the relationship between current, voltage, and resistance? If we (1 point)

Group of answer choices

decrease the resistance, and do not change the voltage, the current will decrease

decrease the voltage, and do not change the resistance, the current will also decrease

increase the resistance, and do not change the current, the voltage will remain the same

increase the current, and increase the resistance, the voltage will also decrease

Answers

Answer:

Decrease the voltage,and do not change the resistance,the current will also decrease

Explanation:

Decrease the voltage,and do not change the resistance, the current will also decrease, because voltage is directly proportional to current

Answer:

B.If we decrease the voltage, and do not change the resistance, then the current will also decrease.

Explanation:

i just take the (pre)test

hope it's help :)☺︎

A point source is fixed 1.0 m away from a large screen. Call the line normal to the screen surface and passing through the center of the point source the z axis. When a sheet of cardboard in which a square hole 0.020 m on a side has been cut is placed between the point source and the screen, 0.50 m from the point source with the hole centered on the z axis, a bright square shows up on the screen. If, instead, a second sheet of cardboard with a similar square hole is placed between the point source and screen, 0.25 m from the point source with the hole centered on the z axis, the bright square it casts on the screen is identical to the bright square from the first sheet. What is the length of the side of the hole in this sheet?

Answers

Answer:

The length of the side of the hole in the second cardboard sheet is [tex]L_2 = 0.01m[/tex]

Explanation:

From the question we are told that

     The distance of the point source  from the screen is  [tex]d = 1.0 m[/tex]

      The length of a side of the  first square hole is  [tex]L_1 = 0.020 \ m[/tex]

      The distance of the cardboard from the point source is [tex]D_1 = 0.50\ m[/tex]

   The distance of the second cardboard from the point source is [tex]D_2 = 0.25 \ m[/tex]

   

Let take the  [tex]\alpha_{max }[/tex] as  the angle at which the light is passing through the edges of the cardboards square hole

     Since the bright square casted on the screen by both  square holes on the   individual cardboards are then it means that

              [tex]\alpha_{max} __{1}} = \alpha_{max} __{2}}[/tex]

This implies that

             [tex]tan (\alpha_{max} __{1}}) = tan (\alpha_{max} __{2}})[/tex]      

Looking at this from the SOHCAHTOA concept

               [tex]tan (\alpha_{max} __{1}}) = \frac{opposite}{Adjacent}[/tex]

     Here opposite is  the length of the side of the  first cardboard square hole

     and    

      Adjacent is  the  distance of the from the  first cardboard square hole to the point source

And for  

            [tex]tan (\alpha_{max} __{2}}) = \frac{opposite}{Adjacent}[/tex]

    Here opposite is  the length of the side of the  second  cardboards square hole (let denote it with [tex]L_2[/tex])

and

Adjacent is the distance of the from the  second  cardboards square hole to the point source

         So

                 [tex]tan (\alpha_{max} __{1}}) = \frac{0.020}{0.50}[/tex]

         And  

                [tex]tan (\alpha_{max} __{2}}) = \frac{L_2}{0.25}[/tex]

Substituting this into the above equation

                 [tex]\frac{0.020}{0.50} = \frac{L_2}{0.25}[/tex]

Making [tex]L_2[/tex] the subject

                   [tex]L_2 = \frac{0.25 *0.020}{0.50}[/tex]

                 [tex]L_2 = 0.01m[/tex]

Since it is a square hole the sides are the same hence

The length of the side of the hole in the second cardboard sheet is [tex]L_2 = 0.01m[/tex]

A particle of positive charge ???? is assumed to have a fixed position at P. A second particle of mass m and negative charge −q moves at constant speed in a circle of radius r1, centered at P. Derive an expression for the work W that must be done by an external agent in the second particle in order to increase the radius of the circle of motion, centered at P, to r2.

Answers

Answer:

[tex]W=\frac{1}{2}kq_1q_2[\frac{1}{r_2}-\frac{1}{r_1}][/tex]

Explanation:

To find the work W to put the negative charge in the new orbit you can use the following formula:

[tex]W=\Delta K\\\\K=\frac{1}{2}mv^2[/tex]

That is, the total work is equal to the change in the kinetic energy of the negative charge. Then you calculate the speed of the electron, by using the second Newton Law and the expression for the electrostatic energy:

[tex]F=ma_c\\\\-k\frac{(q_1)(q_2)}{r_1^2}=m\frac{v^2}{r_1}\\\\v^2=k\frac{q_1q_2}{mr_1}[/tex]

r1: radius of the first orbit

m: mass of the negative charge

v: velocity of the charge

k: Coulomb's constant

q1: charge of the fixed particle at point P

q2: charge of the negative charge

Hence, the velocity of the charge in a new orbit with radius r2 is:

[tex]v'^2=k\frac{q_1q_2}{mr_2}[/tex]

Finally the work required to put the charge in the new orbit is:

[tex]W=\Delta K =\frac{1}{2}m[v'^2-v^2]\\\\W=\frac{1}{2}m[k\frac{q_1q_2}{mr_2}-k\frac{q_1q_2}{mr_1}]\\\\W=\frac{1}{2}kq_1q_2[\frac{1}{r_2}-\frac{1}{r_1}][/tex]

A person throws a pumpkin at a horizontal speed of 4.0 — off a cliff. The pumpkin travels 9.5 m horizontally

before it hits the ground. We can ignore air resistance.

Answers

Answer: Vertical displacement = -27.6m

And takes 2.375 s

A pumpkin thrown at a horizontal speed of 4.0 m/s and travels 9.5 m horizontally before hitting the ground will take 2.375 seconds to hit the ground.

How to find time?

Given the following information:

Horizontal speed of the pumpkin = 4.0 m/s

Horizontal distance traveled before hitting the ground = 9.5 m

Ignoring air resistance

Use the following formula to calculate the time it takes the pumpkin to hit the ground:

time = horizontal distance / horizontal speed

time = 9.5 m / 4.0 m/s = 2.375 seconds

Therefore, it takes the pumpkin 2.375 seconds to hit the ground.

Find out more on time here: https://brainly.com/question/1816510

#SPJ3

A rectangular coil of wire with a dimension of 4 cm x 5 cm and 10 turns is located between the poles of a large magnet that produces a uniform magnetic field of 0.75 T. The surface of the coil which is originally parallel to the field is rotated in 0.10 s, so that its surface is perpendicular to the field. Calculate the average induced emf across the ends of coil as the coil rotates.

Answers

Answer:0.15 V

Explanation:

Given

Dimension of coil [tex]4cm\times 5cm[/tex]

Area of coil [tex]A=4\times 5=20\ cm^2[/tex]

Magnetic field [tex]B=0.75\ T[/tex]

Time of rotation [tex]t=0.1\ s[/tex]

No of turns [tex]N=10[/tex]

Initial flux associated with the coil

[tex]\phi_i=N(B\cdot A)[/tex]

[tex]\phi_i=N(BA\cos \theta )[/tex]

where [tex]\theta [/tex]=angle between magnetic field and area vector of coil

[tex]\phi_i=N(BA\cos 90 )[/tex]

Finally when coil is perpendicular to the field

[tex]\phi_f=N(B\cdot A)[/tex]

[tex]\phi_i=N(BA\cos 0 )[/tex]

and induced emf is given by

[tex]e=-\frac{d\phi }{dt}[/tex]

[tex]e=-\frac{\phi_1-\phi_2}{t-0}[/tex]

[tex]e=-\frac{(0-10\times 0.75\times 20\times 10^{-4})}{0.1}[/tex]

[tex]e=0.15\ V[/tex]

A solid, cylindrical wire conductor has radius R = 30 cm. The wire carries a current of 2.0 A which is uniformly distributed over the cross-section of the wire (current density is constant). What is the magnitude of the magnetic field due to the current in the wire at a radial distance of r = 200 cm from the center axis of the wire? HINT: Use Ampere’s law, noting that B is tangential.

Answers

Answer:

Explanation:

The point at which magnetic field is to be found lies outside wire so while applying Ampere's law we shall take the whole of current . If B be magnetic field which is circular around conductor.

Applying Ampere's law :-

∫ B dl = μ₀ I      ; I is current passing through ampere's loop

B x 2π x 2.00 = 4 x π x 10⁻⁷ x 2

B = 2 x 10⁻⁷ T.

In part (a), suppose that the box weighs 128 pounds, that the angle of inclination of the plane is θ = 30°, that the coefficient of sliding friction is μ = 3 /4, and that the acceleration due to air resistance is numerically equal to k m = 1 3 . Solve the differential equation in each of the three cases, assuming that the box starts from rest from the highest point 50 ft above ground. (Assume g = 32 ft/s2 and that the downward velocity is positive.)

Answers

Answer:

v(t) = 21.3t

v(t) = 5.3t

[tex]v(t) = 48 -48 e ^{ \frac{t}{9}}[/tex]

Explanation:

When no sliding friction and no air resistance occurs:

[tex]m\frac{dv}{dt} = mgsin \theta[/tex]

where;

[tex]\frac{dv}{dt} = gsin \theta , 0 < \theta < \frac{ \pi}{2}[/tex]

Taking m = 3 ; the differential equation is:

[tex]3 \frac{dv}{dt}= 128*\frac{1}{2}[/tex]

[tex]3 \frac{dv}{dt}= 64[/tex]

[tex]\frac{dv}{dt}= 21.3[/tex]

By Integration;

[tex]v(t) = 21.3 t + C[/tex]

since v(0) = 0 ; Then C = 0

v(t) = 21.3t

ii)

When there is sliding friction but no air resistance ;

[tex]m \frac{dv}{dt}= mg sin \theta - \mu mg cos \theta[/tex]

Taking m =3 ; the differential equation is;

[tex]3 \frac{dv}{dt}=128*\frac{1}{2} -\frac{\sqrt{3} }{4}*128*\frac{\sqrt{3} }{4}[/tex]

[tex]\frac{dv}{dt}= 5.3[/tex]

By integration; we have ;

v(t) = 5.3t

iii)

To find the differential equation for the velocity (t) of the box at time (t) with sliding friction and air resistance :

[tex]m \frac{dv}{dt}= mg sin \theta - \mu mg cos \theta - kv[/tex]

The differential equation is :

= [tex]3 \frac{dv}{dt}=128*\frac{1}{2} - \frac{ \sqrt{ 3}}{4}*128 *\frac{ \sqrt{ 3}}{2}-\frac{1}{3}v[/tex]

= [tex]3 \frac{dv}{dt}=16 -\frac{1}{3}v[/tex]

By integration

[tex]v(t) = 48 + Ce ^{\frac{t}{9}[/tex]

Since; V(0) = 0 ; Then C = -48

[tex]v(t) = 48 -48 e ^{ \frac{t}{9}}[/tex]

A 16ft seesaw is pivoted in the center. At what distance from the center would a 200lb person sit to balance a 120lb person on the opposite end?

Answers

Answer:

9.6 ft

Explanation:

Distance is inversely proportional to weight

distance = k / (weight), where

k is a constant

or you could say,

distance * weight = k

In this scenario,

120 * 16 = 200 * distance

On rearranging, making, distance the subject of formula, we have

Distance = 120 * 16 / 200

Distance = 1920 / 200

Distance = 9.6 ft

So the 200 pounds person should sit 9.6 feet away from the centre to balance the see saw

Answer:

4.8 ft

Explanation:

torque = wt × distance

t1 = 120lb x 8 ft =960

t2 = 200lb x X ft

set them equal to each other.

120(8) = 200x

960 = 200x

x = 4.8 ft

An engineer is designing a contact lens. The material has is an index of refraction of 1.55. In order to yield the prescribed focal length, the engineer specifies the following dimensions: inner radius of curvature = +2.42 cm outer radius of curvature = +1.98 cm where the inner radius of curvature describes the surface that touches the eye, and the outer radius of curvature describes the surface that first interacts with incoming light. What is the focal length of this contact lens (in cm)?

Answers

Answer:20 cm

Explanation:

Given

Refractive index of material [tex]n=1.55[/tex]

Outer radius [tex]R_1=1.98\ cm[/tex]

Inner radius [tex]R_2=2.42\ cm[/tex]

using lens maker formula

[tex]\frac{1}{f}=(n-1)(\frac{1}{R_1}-\frac{1}{R_2})[/tex]

[tex]\frac{1}{f}=(1.55-1)(\frac{1}{1.98}-\frac{1}{2.42})[/tex]

[tex]f=\frac{10.895}{0.55}[/tex]

[tex]f=19.81\approx 20\ cm[/tex]

On earth, what is a child’s mass if the force of gravity on the child’s body is 100 N

Answers

Answer: 10.2 kg if g = 9.8, 10 if g = 10.

Explanation:

Weight or the "force of gravity" on a person is simply defined by the equation: F = ma. In this case, the acceleration is g, which is 9.8 but can be rounded up to 10. Based on this, we have:

F = mg

100 = m*9.8

m = 10.2(or 10 if we set g to 10).

The child's mass on the earth  if the force of gravity on the child’s body is 100 N will be equal to 10.2 kg.

What is gravity?

The fundamental force of attraction operating on all matter is recognized as gravity, also spelled gravity, in mechanics.

It has no impact on identifying the interior properties of common matter because it is the weakest force known to exist in nature.

The formation and growth of planets, galaxies, and the universe are all under the influence of this long-range, cosmic force, which further determines the trajectories of objects throughout the universe and the entire universe.

As per the given information in the question,

Weight, w = 100 N

Use the formula,

W = m × g

100 N = m × 9.8

m = 100/9.8

m = 10.2 kg

To know more about Gravity:

https://brainly.com/question/4014727

#SPJ2

Other Questions
According to the scenario, what decision do you need to make? whether children should be in school or working in industries whether children should be paid less than adults as industrial workers whether child labor should be legal in the United States whether children should have benefits as workersScenario:You are the president of the United States. You have been watching the country evolve from an agriculture-based economy to a more industrial one. More and more factories are choosing to employ young children. You wonder whether this is a benefit to American society. You must weigh the pros and cons to make a decision on a bill that will make child labor against the law.Things to think about include: The pros and cons of using child labor versus adult labor for businesses and the economy The social and political costs and benefits of using child labor Which treaties did the US Senate ratify? Check all that apply.ODtente TreatyReykjavik Summit TreatyO Strategic Arms Limitation Talks |O Strategic Arms Limitation Talks IIO Intermediate-Range Nuclear Forces Treaty Who told Frederick Douglass to get cleaned up before setting off to Baltimore? Note the molecular mass of a copper(I) oxide molecule in the image below. What is the mass of 8.250 moles of Cu2O? Why did the Author explain the plot of the lion king in the section? This is from achieve 3000 Question: Solve it using the proportion method. which sends information from other parts of the body All the way to the brain? A baby elephant can weigh 170 pounds at birth. Approximately how many kilograms is this? Describe passive, aggressive, and assertive communicators. Which groups are involved in the peptide links of amino acids? log8x=2 solve for x by converting the logarithm to an exponential equation. (i already know the answer is 12.5 but i need the written steps that it takes to solve this problem in order for my answer to count.) please help!!!!1 HELP In this excerpt, which characters behavior best demonstrates an extrinsic motivation? Willie Thomass Pauls fathers Pauls Mitchells A personal business letter is written by an individual to a company for resolving issues related to an unexpected error on a bill, for refunding of defected products, or poor services. So, assuming you are complaining with XYZ Company, write a professional Complaint Letter. To XYZ Company? Which inference best describes the one legged gypsy Square M N O P is shown. Angle M is (4 t + 20) degrees and angle N is (7 f + 6) degrees.MNOP is a square. What are the values of t and f? t = f = If you were explaining the structure of the ear to a friend, all of the following would be part of your explanation except (1.0 points)A)The middle ear consists of the malleus, incus, and stapes.B)The inner ear consists of the auricle and auditory ossicles.C)The outer ear consists of the auricle and the external acoustic meatus.D)The inner ear contains canals filled with fluid. Why do you think U.S. authorities paid little attention to the dangers of disease in Cuba? What question did Yali ask Diamond that sparked Diamonds research? What did Yalis question mean? Technician A says inspecting the operation of the automatic emergency brake system helps determine whether the spring brakes will apply during a loss of system pressure. Technician B says the inspection also helps identify whether several controlled applications of the brake pedal can be used to help slow a vehicle with a sudden severe drop in air pressure. Who is correct? Wildhorse Company uses the LCNRV method, on an individual-item basis, in pricing its inventory items. The inventory at December 31, 2020, included product X. Relevant per-unit data for product X are as follows. Estimated selling price $49 Cost 39 Estimated selling costs 15 Normal profit 9 There were 990 units of product X on hand at December 31, 2020. Product X was incorrectly valued at $38 per unit for reporting purposes. All 990 units were sold in 2021. Compute the effect of this error on net income for 2020 and the effect on net income for 2021, and indicate the direction of the misstatement for each year. Steam Workshop Downloader