Answer:
Acceleration after throwing is 0.2m/s²
Acceleration before throwing is 0 m/s² since the force is zero
Explanation:
By Newtons third law we have force applied by ball on person = 10 N
Mass of person plus skateboard = 50 kg
We also know the equation
Force, F = mass x acceleration
F = ma
Here F = 10 N
m = 50 kg
Substituting,
10 = 50 x a
[tex]a=\frac{10}{50}=\frac{1}{5}=0.2m/s^2[/tex]
Acceleration after throwing is 0.2m/s²
Acceleration before throwing is 0 m/s² since the force is zero
During a softball game, a shortstop catch a ground ball. The action forces is the ball pushing on the glove. What is the reaction?
A. The fielder pushing on the ball
B. The ball pushing on the ground
C. The glove pushing on the ball
D. The ground pushing on the ball
Answer:
The answer is C. The glove pushing on the ball. I took a test that had this exact question and it was correct.
A light platform is suspended from the ceiling by a spring. A student with a mass of 90 kg climbs onto the platform. When it stops bouncing and reaches its new equilibrium position (x=0), the student notices that the spring has stretched 0.82 m. The student's friend pulls the platform down 0.32 m further and then releases it at t=0. What is the amplitude of the motion of the student on the platform?
Sam's job at the amusement park is to slow down and bring to a stop the boats in the log ride. you may want to review ( pages 293 - 295) . part a if a boat and its riders have a mass of 1000 kg and the boat drifts in at 1.3 m/s how much work does sam do to stop it
The work done by Sam to stop the coming boat in the amusement park is [tex]\boxed{845\,{\text{J}}}[/tex].
Further Explanation:
As the boat in the amusement park is moving at a certain velocity, the boat has the kinetic energy stored in it. This kinetic energy of the boat is due to the motion of the boat.
Sam needs to do the work against this energy of the boat to bring it to rest.
The initial kinetic energy of the boat is expressed as:
[tex]\begin{aligned}{K_i}&= \frac{1}{2}m{v^2}\\&=\frac{1}{2} \times 1000 \times {\left( {1.3} \right)^2}\\&= \frac{{1690}}{2}\,{\text{J}}\\&= 8{\text{45}}\,{\text{J}}\\\end{aligned}[/tex]
The boat is brought to rest finally. So, the final kinetic energy of the boat will be .
The amount of work required to be done by Sam will be equal to the change in kinetic energy of the boat.
[tex]\begin{aligned}W&= {K_f} - {K_i}\\&=0 - 845\\&=- 845\,{\text{J}}\\\end{aligned}[/tex]
Here, the negative work done means that the work is to be done by Sam on the boat in the opposite direction to stop it.
Thus, the work done by Sam to stop the coming boat in the amusement park is [tex]\boxed{845\,{\text{J}}}[/tex].
Learn More:
1. You are going sledding with your friends, sliding down a snowy hill. Friction can't be ignored https://brainly.com/question/2286502
2. What is the magnitude fcont of the force that the car exerts on the truck https://brainly.com/question/2235246
3. A 0.450 kg hammer is moving horizontally at 7.00 m/s when it strikes a nail and comes to https://brainly.com/question/8882476
Answer Details:
Grade: College
Subject: Physics
Chapter: Work-Energy Theorem
Keywords: Sam’s job, amusement park, slow down, boats in the long ride, kinetic energy, work done, boat drift at 1.3m/s, to stop the boat, energy stored in boat.
Sam performs -650 Joules of work to bring the boat to a halt. The negative sign is conventionally used to show that energy has been removed from the system.
Explanation:To answer your question, we will use the physics concept of work and kinetic energy. Work done on an object is equal to the change in its kinetic energy. In this case, Sam has to stop the boat from its current speed to a rest state. That means the initial kinetic energy of the boat is 0.5*1000 kg*(1.3 m/s)^2 and the final kinetic energy is 0, since it's stopped.
The work Sam does stopping the boat is equal to the change in kinetic energy, which is final kinetic energy - initial kinetic energy. This will result in -650 Joules.
The negative sign indicates that energy has been taken out of the system - in this case by Sam slowing down the boat. It's important to note, however, that in the real world work has to be done against things such as water resistance, but these factors were not included in the question and therefore not considered in the answer.
Learn more about Work and Energy here:https://brainly.com/question/16987255
#SPJ3
Why food coloring particles are first condensed into a single drop, but after revisiting the cup of water several minutes later, the entire cup of water is colored?
This phenomenon is known as diffusion where food coloring particles move from a high concentration area to a lower one until a uniform concentration is achieved. Additionally, the food coloring acts as a colloidal system where particles of food coloring are dispersed in water.
Explanation:What you're observing when you put a drop of food coloring into a clear glass of water is a phenomenon known as diffusion. Diffusion is the process by which particles of different concentrations spontaneously mix due to their inherent kinetic energy. When the food coloring is condensed into a small drop, it has a high concentration of coloring molecules compared to the surrounding water. Over time, these molecules spread out into the water, moving from an area of high concentration to one of lower concentration, until a uniform concentration is achieved throughout the entire cup.
Additionally, the food coloring operates as a colloidal system. Colloidal systems are substances microscopically dispersed evenly throughout another substance. They consist of particles of one substance (food color) dispersed in a continuous phase of another substance (water). In your scenario, the food coloring particles are initially condensed as a result of aggregation of food color molecules, forming colloidal particles.
Learn more about Diffusion here:https://brainly.com/question/29787215
#SPJ11
Which will result in positive buoyancy and cause the object to float?
Question 1 options:
When the buoyant force is equal to the force of gravity
When the force of gravity is more than the buoyant force
When the buoyant force is greater than the force of gravity
When the buoyant force is less than the force of gravity
A box is at rest with respect to the surface of a flatbed truck. the coefficient of static friction between the box and the surface is μs. (a) find an expression for the maximum acceleration of the truck so that the box remains at rest with respect to the truck. your expression should be in terms of μs and g. how does your answer change if the mass of the box is doubled?
The maximum acceleration of the truck so that the box remains at rest can be determined using the coefficient of static friction and gravity, which gives us an expression of a_max = µ_s * g. Doubling the mass of the box does not change the maximum acceleration.
Explanation:The maximum acceleration of the truck such that the box remains at rest can be derived from Newton's Second Law, which shows that the force of friction must balance the force due to acceleration. The force of static friction can be calculated as the coefficient of static friction times the normal force, which for a box on a flatbed truck is equal to the mass of the box times gravity. In equation form, we have F_f = µ_s * m * g, where F_f is the static friction force, µ_s is the coefficient of static friction, m is the mass of the box, and g is the acceleration due to gravity.
To calculate the maximum acceleration of the truck, we can equate the force of static friction to the force due to acceleration (F = m * a), which gives us the equation µ_s * m * g = m * a_max, where a_max is the maximum acceleration. Simplifying the equation gives us a_max = µ_s * g as the maximum acceleration of the truck such that the box remains at rest.
If the mass of the box is doubled, the maximum acceleration of the truck required for the box to remain at rest would remain the same. This is because while the force of friction would double due to the increased mass, the force needed to accelerate the box would also double, keeping the acceleration unchanged.
Learn more about Static Friction and Acceleration here:
https://brainly.com/question/33955106
#SPJ3
Ball 1 is thrown into the air and it follows the trajectory for projectile motion shown in the drawing. at the instant it is at the top of its trajectory, ball 2 is dropped from rest at the same height. just before they reach the ground, the velocity of ball 1 has a horizontal component vx and a vertical component vy. ball 2 only has a vertical component. which ball has the greater vertical component?
A rocket is launched at an angle of 56.0 degrees above the horizontal with an initial speed of 105 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s^2. At the time, it’s engines fail and the rocket proceeds to move as a projectile
What is the approximate size of the smallest object on the earth that astronauts can resolve by eye when they are orbiting 250 km above the earth? assume λ = 500 nm and a pupil diameter of 5.00 mm?
The approximate size of the smallest object on Earth that astronauts can resolve by eye when they are orbiting 250 km above the Earth is approximately 8.2 mm.
Explanation:The approximate size of the smallest object on Earth that astronauts can resolve by eye when they are orbiting 250 km above the Earth can be calculated using the formula for the minimum resolvable angle, which is given by:
θ = 1.22 * (λ / D)
where θ is the minimum resolvable angle, λ is the average wavelength of light (500 nm), and D is the diameter of the pupil (5.00 mm).
By rearranging the formula and solving for D, we can find:
D = λ / θ = (500 nm) / (1.22 * (250 km))
After converting the units to meters, we get:
D ≈ 8.2 mm
Therefore, the approximate size of the smallest object on Earth that astronauts can resolve by eye when they are orbiting 250 km above the Earth is approximately 8.2 mm.
Learn more about size of smallest object on Earth here:https://brainly.com/question/42794654
#SPJ11
A 4-kg object falls vertically a distance of 5 m. its potential energy has changed by approximately how much?
a. it has increased by 200 j.
b. it has increased by 20 j.
c. it has decreased by 20 j.
d. it has decreased by 200 j.
Final answer:
The potential energy of the object has increased by approximately 196 J.
Explanation:
The potential energy of an object is given by the formula PE = mgh, where m is the mass of the object, g is the acceleration due to gravity, and h is the height the object has fallen. In this case, the object has fallen a distance of 5 m. Given that the mass of the object is 4 kg and the acceleration due to gravity is approximately 9.8 m/s², we can calculate the change in potential energy as follows:
Change in PE = mgh = (4 kg)(9.8 m/s²)(5 m) = 196 J
Therefore, the potential energy has increased by approximately 196 J. Since none of the provided options match this exact value, we can conclude that none of the given choices is correct.
Which statement about the horizontal distance covered by a projectile launched at an angle less than 90° is true?
Answer:
The distance covered in equal time intervals is equal.
Explanation:
Elyse is explaining to a friend that she will be conducting a scientific investigation. Her question is "How many leatherback sea turtles will migrate to their home beach on the eastern coast of Australia this season?" Elyse states her hypothesis is "1,200 leatherback sea turtles will migrate to their home beach on the eastern coast of Australia this season." For her procedure, she and a team of scientists will be observing and counting the number of turtles that land on the beach. What is unusual about the description of her scientific investigation?
Elyse's scientific investigation into the migration of leatherback sea turtles on Australia's east coast is noted for its unusually precise hypothesis of "1,200" turtles migrating. Scientific hypotheses typically predict trends or relationships rather than exact figures. Understanding the broader context of sea turtle conservation is crucial.
Explanation:Elyse is conducting a scientific investigation to determine how many leatherback sea turtles migrate to their home beach on the eastern coast of Australia this season. Her approach involves observing and counting turtles as they land on the beach. An unusual aspect of her description is the formulation of a very specific hypothesis stating "1,200 leatherback sea turtles will migrate to their home beach." Typically, a hypothesis in scientific investigations is a broader statement predicting a relationship or trend, rather than a precise number. Moreover, it's essential to understand the broader context of sea turtle conservation, including the various populations of leatherback turtles in the Pacific Ocean, and why certain beaches are critical to their survival. Factors like natural selection play a vital role in why leatherback turtles favor particular nesting sites, such as the types of beaches that provide suitable conditions for hatchling survival and thus contribute to the species' overall survival.
The table lists the values for two parameters, x and y, of an experiment. What is the approximate value of y for x = 4.0?
x y
2.5 6.25
9.4 88.36
15.6 243.63
19.5 380.25
25.8 665.64
11.00
17.85
24.10
43.20
Answer:
The approximate value for x=4 is y=24.1
Explanation:
A practical method easy to use is the linear interpolation. In this procedure, the approximation is done using the secant line between the two nearest points. In this particular case those points are:
P1: (2.5,6.25)
P2:(9.4,88.36)
Where the first coordinate corresponds to the x coordinate and the second coordinate to the y coordinate. The expression to compute the secant line is:
[tex]y-yo=m*(x-xo)[/tex]
Here m is the slope of the line and is calculated from:
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
And xo, yo could be the x and y coordinate of any of P1 or P2 points. Thus, for the present coordinates:
[tex]m=\frac{88.36-6.25}{9.4-2.5}[/tex]
[tex]m=11.9[/tex]
Choosing P1 coordinates as the xo and yo coordinates:
[tex]y-6.25=11.9*(x-2.5)[/tex]
Them replacing the estimation value of x=4 and solving for y:
[tex]y-6.25=11.9*(4-2.5)[/tex]
[tex]y=11.9*(1.75)+6.25[/tex]
[tex]y=24.1[/tex]
A 1.20 g sample of an unknown has a volume of 1.73 cm what is the density of the unknown
Final answer:
The density of the unknown substance with a mass of 1.20 g and volume of 1.73 cm³ is found by dividing the mass by the volume, yielding approximately 0.694 g/cm³.
Explanation:
The question involves calculating the density of an unknown substance given its mass and volume. To find the density, the formula Density = Mass/Volume is used. In this case, the mass of the unknown substance is 1.20 grams (g) and its volume is 1.73 cubic centimeters (cm³).
Using the formula:
Density = Mass/Volume
Density = 1.20 g / 1.73 cm³
Density = 0.693641618497 g/cm³
Thus, the density of the unknown is approximately 0.694 g/cm³ (rounded to three decimal places).
What area of the united states is characterized by fault block mountains with streams that drain into adjoining basins?
Suppose you are a particle of water in a lake. Describe what happens to you when a motorboat passes by. Be sure to use words like vibration and crest in your description.
A fly has a mass of 1 gram at rest. how fast would it have to be traveling to have the mass of a large suv, which is about 3000 kilograms?
We solve this using special
relativity. Special relativity actually places the relativistic mass to be the
rest mass factored by a constant "gamma". The gamma is equal to 1/sqrt
(1 - (v/c)^2).
We want a ratio of 3000000 to 1, or 3 million to 1.
Therefore:
3E6 = 1/sqrt (1 - (v/c)^2)
1 - (v/c)^2 = (0.000000333)^2
0.99999999999999 = (v/c)^2
0.99999999999999 = v/c
v= 99.999999999999% of the speed of light ~ speed of light
v = 3 x 10^8 m/s
Final answer:
A fly must travel at speeds approaching the speed of light to have the mass of an SUV according to the theory of relativity. However, such speeds are practically impossible to achieve due to energy limitations and physical laws.
Explanation:
To understand how fast a fly must travel to have the mass of a large SUV, we first need to consider the concept of relativistic mass.
Relativistic mass is an object's mass when it is moving and is given by the equation m = m0 / sqrt(1 - v^2/c^2), where m0 is the rest mass, v is the velocity of the object, and c is the speed of light in a vacuum (approximately 3 x 108 m/s).
Setting the relativistic mass m equal to the mass of an SUV (3000 kg) and solving for v theoretically reveals the speed. However, the answer lies in the realm of speeds very close to the speed of light, indicating an exponential increase in mass as speed approaches c.
This illustrates a principle of Einstein's theory of relativity: as an object's speed approaches the speed of light, its mass approaches infinity, requiring infinite energy to reach c.
Practically, even for an immense acceleration, a fly cannot reach such speeds due to the limitations of energy sources and the law of physics as we understand them. Thus, the question is more theoretical than practical, highlighting the fascinating insights of relativistic physics rather than providing a scenario that could occur in the real world.
Calculate the orbital period of a spacecraft in an orbit 300 kilometers above earth's surface
The orbital period of a spacecraft at an orbit of 300 kilometers above the Earth's surface is around one hour and a half.
Further explanationObjects, due to their inherent mass, tend to atract each other due to the laws of gravitation. In short words, objects with a huge ammount of mass atract other objects which are less massive, that is why we are all attracted towards the Earth (which is an incredible massive body).
In general this phenomenon is better seen at the astrological level, like planets attracting their moons or asteroids (this is the case of our problem). Even though, planets attract other bodies which are nearby, this doesn't mean that they will ever come into contact, this is the case for object which orbit those planets.
An orbit is a path which a certain body follows around a more massive object, like the moon orbiting the Earth, or the Earth orbiting around the Sun. These orbits are periodic, meaning they happen continuously over time, over and over again, the same way all times. By this reason, they have a period (which is the duration of such orbit).
At this point, there is a background theory that is necessary to derive the equation we're going to use to compute the orbital period, but it escapes the scope of this problem, so we're just going to use the equation. The equation to compute the orbital period is:
[tex]T= 2 \cdot \pi \cdot \sqrt{\frac{a^3}{\mu}}[/tex]
Where a is the distance between the orbiting object (in this case, the spacecraft) and the center of the orbited object (in this case the Earth), and [tex]\mu[/tex] is a constant dependent on the orbited object, it's called Standard Gravitational Parameter, for the Earth it has a value of [tex]3.986 \cdot 10^{14} \cdot \frac{m^3}{s^2}[/tex].
Since the radius of the Earth is 6371 Km, then a would be 6671 Km. Plugging values on the formula, and making sure to apply the correct units (notice how a is expressed in Km and [tex]\mu[/tex] has units of meter cube), we get that the orbital period is 5422 seconds, which is around one hour and half.
Learn moreMoon orbiting around the Earth: https://brainly.com/question/6502290Orbit of Neptune: https://brainly.com/question/9708010Kepler's Laws: https://brainly.com/question/929044KeywordsOrbit, gravitation, Earth, attraction laws
parallel and series circuits
I am quite confused as to how I can tackle this question
Compute the flux of the vector field f⃗ =xi⃗ +yj⃗ +zk⃗ through the surface s, which is a closed cylinder of radius 1, centered on the x-axis, with −1≤x≤1, and oriented outward.
To compute the flux of a vector field through a closed cylinder, we can calculate the flux through the flat ends (which is zero) and the curved surface. Using the formula for flux, we can integrate the vector field over the curved surface to find the flux. Finally, the total flux is the sum of the fluxes through the flat ends and the curved surface.
Explanation:To compute the flux of the vector field ᴳᵃ = ᴿxᵃ + ᴿyᵃ + ᴿzᵃ through the surface s, which is a closed cylinder of radius 1, centered on the x-axis, with -1 ≤ x ≤ 1, and oriented outward, we can use the formula:
∫ ᴳᵃ · ᵙA = ∫ ᴳᵃ · ᵣ ᴾ/
Calculate the flux through the flat ends of the cylinder. Since the normal vector points in the same direction as the vector field, the flux through each end is zero.Calculate the flux through the curved surface of the cylinder. Since the normal vector is perpendicular to the vector field, the flux through the curved surface can be computed as:∫ ᴳᵃ · ᵣ ᴿ = ∫ ᴿxᵃ · ᵣ ᴿ + ∫ ᴿyᵃ · ᵣ ᴿ + ∫ ᴿzᵃ · ᵣ ᴿ
Substituting the values, we get:
∫ ᴳᵃ · ᵣ ᴿ = ∫ (x)(dx)(dz) + ∫ (y)(dy)(dz) + ∫ (z)(dz)(dx)
Integrating with respect to x, y, and z within the given limits, we can find the flux through the curved surface. Finally, the total flux through the surface s is the sum of the fluxes through the flat ends and the curved surface.
Learn more about flux of a vector field through a closed cylinder here:https://brainly.com/question/31872009
#SPJ12
To compute the flux of the vector field through the surface of a closed cylinder, we can use Gauss's Law for Electromagnetism. The flux is given by the surface integral of the dot product between the vector field and the outward normal vector over the surface. First, compute the flux through the flat ends of the cylinder. Next, compute the flux through the curved surface. Add the flux through the flat ends and the curved surface to obtain the total flux through the surface.
Explanation:To compute the flux of the vector field ƒ = xi + yj + zk through the surface S, which is a closed cylinder of radius 1 centered on the x-axis, we can use Gauss's Law for Electromagnetism. The flux is given by the surface integral of the dot product between the vector field and the outward normal vector over the surface S.
First, compute the flux through the flat ends of the cylinder. Since the vector field is perpendicular to the surface at these points, the dot product simplifies to the magnitude of the vector field times the area of the end faces. Next, compute the flux through the curved surface. Use the fact that the outward normal vector is parallel to the vector field at each point on the curved surface. Therefore, the dot product simplifies to the magnitude of the vector field times the area of the curved surface. Add the flux through the flat ends and the curved surface to obtain the total flux through the surface S. Learn more about flux of vector field here:
https://brainly.com/question/31872009
#SPJ11
Thin, cylindrical receptor cells in the retina that are highly sensitive to light are called?
A flagpole is perpendicular to the horizontal but iis on a slope that rises 10 degrees from the horizontal. the pole casts a 43-foot shadow down the slope and angle of elevation of the sun measured from the slope is 36 degrees. how tall is the pole?
The height of the flagpole can be determined using the tangent function of geometry. It will be obtained by multiplying the tangent of 46 degrees with the length of shadow which is 43 feet.
Explanation:This problem is a case of trigonometry, specifically dealing with the tangent of an angle. Since the pole is perpendicular to the horizontal, it forms a right triangle with the ground and the shadow. The angle of the sun and the slope of the ground at the base of the shadow form a combined angle of 46 degrees (36 degrees from the sun and 10 degrees from the slope).
According to the definition of the tangent function, which is the ratio of the length of the opposite side to the length of the adjacent side in a right triangle, we can write:
tan(46 degrees) = height of flagpole / length of shadow
Here, the shadow length is 43 feet. We can now solve for the height of the flagpole:
Height of flagpole = tan(46 degrees) * 43 feet
This calculation will give you the approximate height of the flagpole.
Learn more about Trigonometry here:https://brainly.com/question/11016599
#SPJ11
Which best describes the beginning of the Big Bang Theory?
A. All matter in the universe was compressed into a single point.
B. The universe will eventually collapse into a black hole.
C. Stars form from giant masses of gas and dust.
A. All matter in the universe was compressed Into a single point.
(apex)
A. All matter in the universe was compressed Into a single point. this option describes the big bang theory.
What is the Big Bang theory?The Big Bang hypothesis states that all of the current and past matter in the Universe came into existence at the same time, roughly 13.8 billion years ago.
At this time, all matter was compacted into a very small ball with infinite density and intense heat called Singularity.
The universe begin;
The Big Bang was the moment 13.8 billion years ago when the universe began as a tiny, dense, fireball that exploded.
Here Most astronomers use the Big Bang theory to explain how the universe began, But what caused this explosion in the first place is still a mystery.
Thus matter was compressed into a single point and then exploded outward to form the universe describes the big bang theory.
Learn more about Big Bang theory here;
brainly.com/question/10865002
#SPJ2
A wheel rotating at 2000 rpm is braked and comes to rest in 30 seconds. How many revolutions did the wheel rotate through before coming to rest?
What organic materials make up limestone? What type of mineral and what percent of it determine if a rock is limestone?
Calcium carbonate is one f the most commonly found material found in limestone rocks. The composition of calcium and magnesium as it commonly made of fossils, shells, and debris.
Calcite is a mineral that is highly found in limestone. More than 50 % of the rocks are made from this mineral. About 95% of calcite and 5% is dolomite. Other minerals include quartz, feldspar, clay minerals, pyrite, siderite in small percentages.Hence the rocks can be easily be identified by the white to grayish color and presence of lime content in rocks.
learn more about the organic materials that make up limestone.
brainly.com/question/16384239.
How much energy is needed to heat and melt 3.0 kg of copper initially at 83°C?
450 kcal
430 kcal
280 kcal
130 kcal
Final answer:
To heat and melt 3.0 kg of copper initially at 83°C, we need to calculate the heat required for both steps: heating the copper to its melting point and then melting the copper. Heating the copper requires a certain amount of heat energy, while melting the copper requires another amount of heat energy. By adding these two amounts together, we can find the total energy needed.
Explanation:
To calculate the amount of energy needed to heat and melt 3.0 kg of copper initially at 83°C, we need to consider two steps: heating the copper to its melting point and then melting the copper.
First, we calculate the heat required to heat the copper from 83°C to its melting point (which is approximately 1084°C). We can use the formula Q = m * c * ∆T, where Q is the heat energy, m is the mass, c is the specific heat capacity, and ∆T is the temperature change. In this case, ∆T = (1084 - 83)°C = 1001°C.
Second, we calculate the heat required to melt the copper. We can use the formula Q = m * L, where L is the latent heat of fusion. The latent heat of fusion for copper is approximately 334 kJ/kg. Since we have 3.0 kg of copper, the heat required to melt it is 3.0 kg * 334 kJ/kg = 1002 kJ.
Adding the two amounts of heat energy together, we get a total of 1002 kJ + Q from step one.
Instruments on board the trmm (tropical rainfall measuring mission) satellite show 3d images of very tall rain columns called _____.
Which statement is true about the atoms in helium gas?
A. They have strong attractions to one another.
B. They are not closely packed.
C. They are arranged in an orderly pattern.
D. They travel in circular paths.
The elements least likely to form bonds are found in what group
Answer:
Group 18
Explanation:
Group 18 comprises of Noble elements (Neon, Krypton, Argon etc). These elements have complete outer shell that is complete octet. According to octet rule, the elements which have less than 8 electrons in their valence shell tend to bond with another element in order to complete their outer shell configuration.
Thus, group 18 elements are least likely to form bonds.
Can you build a particle accelerator at home ?
Building a high-energy particle accelerator similar to SLAC or CERN's Large Hadron Collider at home is not feasible due to technical and space requirements. However, a simple Van de Graaff generator can be constructed for demonstration purposes.
Building a particle accelerator at home is an incredibly ambitious project and not realistically achievable for the high-energy collisions seen in facilities like SLAC and CERN. These complex machines often span large distances, like the 27 kilometers of the Large Hadron Collider (LHC), and require sophisticated technologies to accelerate particles to speeds close to the speed of light and manage their path using powerful magnets. A simple form of a particle accelerator, like a Van de Graaff generator, can be built for educational purposes, but it cannot produce the high energy needed to explore subatomic particles. Major limitations for building small, high-energy accelerators include the need for large radii to achieve higher energies, as exemplified by CERN's LHC, and the theoretically impossible size required for an accelerator that could reach Planck energy, as explained in Challenge 39, page 83 of the textbook reference.