I think the correct answers are X2Y and X3Y, X2Y5 and X3Y5, and X4Y2 and X3Y,
for the following reason:
If you look at the combining masses of X and Y in
each of the two compounds,
The first compound contains 0.25g of X combined with
0.75g of Y
so the ratio (by mass) of X to Y = 1 : 3
The second compound contains 0.33 g of X combined with
0.67 g of Y
so the ratio (by mass) of X to Y = 1 : 2
Now, you suppose to prepare each of these two
compounds, starting with the same fixed mass of element Y ( I will choose 12g
of Y for an easy calculation!)
The first compound will then contain 4g of X and 12g
of Y
The second compound will then contain 6g of X and
12g of Y
The ratio which combined
the masses of X and the fixed mass (12g) of Y
= 4 : 6
or 2 : 3
So, the ratio of MOLES of X which combined with the
fixed amount of Y in the two compounds is also = 2 : 3
The two compounds given with the plausible formula must therefore contain the same ratio.
To identify plausible sets of formulas for two compounds containing elements X and Y, use the given masses to calculate the ratios and apply the law of multiple proportions to determine simple whole-number ratios for potential empirical formulas.
Explanation:The question is regarding the identification of plausible sets of formulas for two compounds containing generic elements X and Y based on the amounts of element X in both compounds. By using the mass data provided (0.25 g and 0.33 g of X), along with the total sample mass (1.00 g for each compound), we can find the respective amounts of element Y in each compound (0.75 g and 0.67 g of Y, respectively).
Then, by taking the ratios of the masses of X to Y for each compound, we can determine simple whole-number ratios, which can suggest possible empirical formulas for the compounds. These formulas are based on the law of multiple proportions, which states that if two elements form more than one compound between them, then the ratios of the masses of the second element that combine with a fixed mass of the first element will be ratios of small whole numbers.
You are trying to determine the volume of the balloon needed to match the density of the air in the lab. You know that if you can get the balloon's density below this value, it will float. You measure both the temperature in the room as well as the mass of the balloon you will use and find they are 23.5°C and 0.587 grams, respectively. What volume of balloon will generate a density equal to that of the air around it? (Hint: Use the relationship you calculated above to determine the air density at the temperature given)
How many water molecules are in a block of ice containing 1.75 mol of water (H2O)?
Answer: The number of molecules present in the given moles of water are [tex]1.054\times 10^{24}[/tex]
Explanation:
We are given:
Moles of water = 1.75 moles
According to mole concept:
1 mole of a compound contains [tex]6.022\times 10^{23}[/tex] number of molecules.
So, 1.75 moles of water will contain = [tex]1.75\times 6.022\times 10^{23}=1.054\times 10^{24}[/tex] number of molecules.
Hence, the number of molecules present in the given moles of water are [tex]1.054\times 10^{24}[/tex]
Gerry is looking at salt under a powerful microscope and notices a crystalline structure. What can be known about the salt sample that Gerry is looking at?
Answer:
It shows that the atoms are vibrating in place.
Explanation:
In the crystal, the molecules exhibit a definite position, and they are combined with each other with the help of electrostatic forces. The molecules exhibit certain kind of energy due to which they vibrate in their locations. However, their energy is not that much high to result in overcoming the strong bonding, unless the atoms in the crystals are irradiated or are heated.
identify properties of metals, metalloids, and nonmetals
How many h2o molecules are in a 9.00-g sample of water?
Use the mass and volume data to calculate the density of an unknown metal to the nearest hundredth. Mass of unknown metal = 222.50 g Volume of unknown metal = 25.00 What is the density of the unknown metal?
Answer:
8.90
Explanation:
just did it
8.90g/ml is the density of the unknown metal. Mass per unit volume is the definition of a material's density.
What is density?Mass per unit volume is the definition of a material's density. Density, or volume per unit volume, is defined as the ratio of mass to volume. It is a way to quantify the amount of "stuff" a given thing contains in relation to its volume (either in cubic metres or cubic centimetres).
In essence, density is an indicator of how closely together matter is packed. The Greek scientist Archimedes is credited with discovering the principle of density, which is simple to calculate if one understands the formula and are familiar with the relevant units.
Density= mass/ volume
Mass of unknown metal = 222.50 g
Volume of unknown metal = 25.00ml
Density= 222.50/ 25.00
= 8.90g/ml
Therefore, 8.90g/ml is the density of the unknown metal.
To know more about density, here:
https://brainly.com/question/29775886
#SPJ2
How many moles of o2- ions are there in 0.350 moles of aluminum oxide, al2o3?
There are 1.05 moles of O²⁻ in 0.350 moles of Al₂O₃.
FURTHER EXPLANATION The chemical formula of a compound consists of the chemical symbol of the elements that make up the compound and a small number written to the right of the symbol or the subscript. The subscript indicates how many atoms or ions of that element is found in one unit (formula unit or molecule) of the compound. It also indicates how many moles of the atom or ion are present in one mole of the compound. Example, the chemical formula of calcium chloride is CaCl₂. This can be interpreted in two ways:1) There is one Ca²⁺ and and two Cl⁻ in one formula
unit of calcium chloride.
2)There is one mole of Ca²⁺ and and two moles of Cl⁻ in
one mole of calcium chloride.
It is important to remember that the mole concept considers particles in bundles (or sacks) with one mole being one bundle (or sack) which consists of 6.022 ×10²³ particles. This number is called Avogadro's number. The particles may be atoms, ions, molecules, or formula units.The compound in the problem is Al₂O₃. Similar to the example, this chemical formula can be interpreted in two ways:
There are 2 aluminum ions (Al³⁺) and 3 oxide ions (O²⁻) in one formula unit of Al₂O₃.There are 2 moles of aluminum ions (Al³⁺) and 3 moles of oxide ions (O²⁻) in one mole of Al₂O₃.To determine how many moles of O²⁻ are in 0.350 moles of Al₂O₃, the equation below may be used:
[tex]moles \ of \ O^{2-} = 0.350 \ mol \ Al_2O_3 \times \frac{3 \ mol \ O^{2-}}{1 \ mol \ Al_2O_3}\\\\\boxed {\boxed {moles \ of \ O^{2-} = 1.05 \ mol \ O^{2-}}}[/tex]
LEARN MORE1. Chemical Formula https://brainly.com/question/4697698
2. Naming Chemicals https://brainly.com/question/8968140
3. Compounds https://brainly.com/question/12978981
Keywords: moles, mole ratio
how many protons electrons and neutrons does the isotope nitrogen 15 have
Nitrogen-15 (^(15)N) has 7 protons, 7 electrons, and 8 neutrons. The atomic number (protons) is 7, and the mass number (protons + neutrons) is 15.
Nitrogen-15 (^(15)N) is an isotope of nitrogen, and it has a specific composition of protons, electrons, and neutrons.
1. Protons (atomic number): Nitrogen-15 has 7 protons. The atomic number of an element defines its identity and determines the number of protons in its nucleus. In the case of nitrogen, regardless of the isotope, it always has 7 protons.
2. Electrons: Since nitrogen-15 is an electrically neutral atom (it has no charge), it has an equal number of electrons as protons. Therefore, it also has 7 electrons. Electrons orbit the nucleus in energy levels or shells, and they play a crucial role in chemical bonding and reactivity.
3. Neutrons: Nitrogen-15 has 8 neutrons. Neutrons are electrically neutral subatomic particles found in the nucleus of an atom. They contribute to the atom's mass but not its charge. To determine the number of neutrons in an isotope, you subtract the atomic number (protons) from the mass number. In this case, 15 (mass number) - 7 (protons) = 8 neutrons.
Understanding the composition of isotopes, like nitrogen-15, is essential in chemistry and nuclear physics. It helps in differentiating between various forms of an element based on their nuclear properties. Nitrogen-15 is one of the stable isotopes of nitrogen, commonly used in scientific research, including nuclear magnetic resonance (NMR) spectroscopy and tracer studies in biology and chemistry.
For more such questions on isotopes
https://brainly.com/question/14220416
#SPJ6
How do scientists determine the number of neutrons in an atom?
Question 4 options:
They subtract the atomic number from the atomic mass.
They add the number of electrons and protons.
They find the number of protons.
They divide the atomic mass by two.
What is the automatic number of a sodium atom that has 11 protons and 12 neutrons
if you want to test whether a rock has calcite in it you could use the ?
how many grams of mercury are present in a barometer that holds 6.5 ml of mercury
A 6.50x10^-5 m solution of potassium permanganate has a percent transmittance of 27.3% when measured in a 1.15 cm cell at a wavelength of 525 nm. calculate the absorbance of this solution
Which of the solutions below have the same molar concentration as solution x? check all that apply?
7 seres vivos ejemplo
John daltons atomic theory is considered to be the first truly scientific theory of the atom. What aspect of daltons research was missing from the early theories?
A) experimentation and examination of the results
B) Effective technology in the form of microscopes
C) appropriate mathematical formulas for testing
D) a community of scientist capable of reviewing his work
Answer:
A) experimentation and examination of the results
Explanation:
From a historical and philosophical point of view, Dalton is considered the father of atomic theories. For over 20 centuries no one has manipulated the concept of atom. He had the audacity and the courage to manipulate these theories to try to explain what atoms would be by experimenting and analyzing the results.
For Dalton, matter was discontinuous, that is, between the atoms that compose it there would be empty spaces. Although considered theoretic behind the proposition of this model, Dalton considered relevant information from other studies (Proust's weighted laws; Lavoisier and the element conception; gases and their laws etc.), which allowed his model to explain the phenomena even then discussed. This is the "asset" of his atomic model, for though it presents clear constraints on today's science, for his contemporaries, this model satisfied many behaviors that continuous matter was unable to even predict.
Dalton's ideas were considered appropriate because of his effort to link theoretical postulates with scientifically obtained data through experimentation. This fact corroborated the acceptance of his model by the scientists of the time, making Dalton enter the history of chemistry and humanity.
1. Sara tells Michael she is 160 centimeters tall, while Michael says he is 60 inches tall. If there are 2.54 centimeters in an inch, who is taller
Answer:
Sara is taller than Michael.
Explanation:
Height of Sara = 160 cm
Height of Michael = 60 inches
1 inch = 2.54 cm
Height of Micheal = [tex]60 inches=60\times 2.54 cm=152.4 cm[/tex]
160 cm> 152.4 cm
Sara is taller than Michael.
Sara is taller than Micheal
From the question, there are 2.54 centimeters in an inch.
Given this statement, we can convert Sara's height to inches as follows;
2.54 centimeters makes 1 inch
160 centimeters = 160 centimeters * 1 inch/2.54 centimeters
= 63 inches
Since Micheal is 60 inches tall, Sara is taller than Micheal.
For an alternative approach to the problem, see:https://brainly.com/question/2415683
A sulfur atom and a sulfur molecule are not identical. what is the difference?
examine Na+ with the anions F-, Br-, OH-, NO3-, and ClO4-. How many anions are there in each of these formulas?
The formulas for the anions NaF, NaBr, NaOH, NaNO3, and NaClO4 have only one anion present in each formula.
Explanation:The given question asks to examine Na+ with different anions and determine the number of anions present in each formula.
Na+ is a cation with a +1 charge. The anions mentioned in the question are F-, Br-, OH-, NO3-, and ClO4-. The formulas for these anions are NaF, NaBr, NaOH, NaNO3, and NaClO4, respectively.
In each of these formulas, there is only one anion present, which is indicated by the negative charge in the formula. Therefore, the number of anions in each formula is 1.
Learn more about Anions here:https://brainly.com/question/20781422
#SPJ12
When 56 J of heat are added to 11 g of a liquid, its temperature rises from 10.1 ∘C to 13.5 ∘C
To calculate how much the temperature of a substance will increase when a certain amount of heat is added, you can use the formula q = mcΔT, where q is the heat added, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. For question 6, the final temperature of mercury after adding 195 cal of heat can be calculated using the specific heat capacity of mercury. For question 7, the mass of copper can be determined using the heat absorbed and the temperature change. For question 8, the mass of the NaCl crystal can be calculated using the same principles.
Heat transfer calculations require knowledge of the specific heat capacity of the substance in question, which varies for different materials. This capacity indicates how much heat is needed to raise the temperature of one gram of the substance by one degree Celsius. In the questions provided, using the formula and the known quantities, you can rearrange the formula to solve for the unknown variable such as the final temperature, mass, or heat added based on specific heat capacity values.
Calculate the molarity of 0.850 mol of Na2S in 1.70 L of solution.
Molarity is simply the ratio of the number of moles of a substance over the total volume of the solution. Assuming that the addition of 0.850 moles does not change the overall volume of 1.70 L, therefore molarity is simply:
Molarity = 0.850 moles / 1.70 L = 0.5 moles / L = 0.5 M
The molarity of 0.850 mol of Na2S in 1.70 L of solution is calculated to be 0.50 M.
Explanation:The subject of your question revolves around the calculation of molarity, which in chemistry represents the concentration of a solute in a solution. To calculate molarity, we need to divide the number of moles of the solute by the volume of the solution in liters. The formula is M = moles/volume. For your specific question, you want to calculate the molarity of 0.850 mol of Na2S in 1.70 L of solution. Using the formula, the calculation becomes: M = 0.850 mol / 1.70 L = 0.50 M.
For this specific scenario, where we have 0.850 moles of Na2S in a 1.70 L solution, the molarity (M) is determined by the formula M = moles/volume, resulting in a molarity of 0.50 M. This calculation allows us to precisely quantify the concentration of the solute in the given solution, a fundamental aspect of chemical analysis and reactions.
Learn more about Molarity here:https://brainly.com/question/8732513
#SPJ11
The Spirit of America Goodyear blimp has a volume of 2.027×105 ft3.When the blimp is in operation, it is filled with helium gas. If the density of helium at room temperature is 0.179 g/L, calculate the mass of helium in the blimp.
The mass of helium in the blimps is [tex]\boxed{10.2743{\text{ g}}}[/tex].
Further Explanation:
Density is defined as the mass of the substance per unit volume of the substance. It is represented by the symbol [tex]\rho[/tex]. The density of a substance is calculated as follows:
[tex]\rho = \dfrac{{\text{M}}}{{\text{V}}}[/tex]
Here,
[tex]\rho[/tex] is the density of the substance.
M is the mass of the substance.
V is the volume of the substance.
The formula to calculate the density of helium is as follows:
[tex]{\text{Density of helium}} = \dfrac{{{\text{Mass of helium}}}}{{{\text{Volume of helium}}}}[/tex] …… (1)
Rearrange equation (2) to calculate the mass of helium.
[tex]{\text{Mass of helium}} = \left( {{\text{Density of helium}}} \right)\left( {{\text{Volume of helium}}} \right)[/tex] …… (2)
The volume of the blimp is [tex]2.027 \times {10^5}{\text{ f}}{{\text{t}}^3}[/tex]. This is to be converted into L. The conversion factor for this is,
[tex]1{\text{ f}}{{\text{t}}^3} = 28.3168{\text{ L}}[/tex]
Since the blimp is filled with helium, the volume of the blimp becomes equal to that of helium. Therefore the volume of helium can be calculated as follows:
[tex]\begin{aligned}{\text{Volume of helium}} &= \left( {2.027 \times {{10}^5}{\text{ f}}{{\text{t}}^3}} \right)\left( {\frac{{28.3168{\text{ L}}}}{{1{\text{ f}}{{\text{t}}^3}}}} \right)\\&= 57.3982{\text{ L}}\\\end{aligned}[/tex]
Substitute 0.179 g/L for the density of helium and 57.3982 L for the volume of helium in equation (2).
[tex]\begin{aligned}{\text{Mass of helium}}&= \left( {{\text{0}}{\text{.179 g/L}}} \right)\left( {{\text{57}}{\text{.3982 L}}} \right)\\&= 10.2743{\text{ g}}\\\end{aligned}[/tex]
Therefore the mass of helium is 10.2743 g.
Learn more:
Why is density an important property of matter? https://brainly.com/question/1593730 Which element has the greatest density at STP? https://brainly.com/question/898857
Answer details:
Grade: Middle School
Chapter: Density
Subject: Chemistry
Keywords: density, mass, volume, helium, mass of helium, conversion factor, 10.2743 g, 0.179 g/L.
How many molecules of ethanol (c2h5oh) (the alcohol in alcoholic beverages) are present in 155 ml of ethanol? the density of ethanol is 0.789 g/cm3?
First convert volume to mass:
mass = 0.789 g/mL * 155 mL = 122.295 g
Then convert mass to number of moles:
number of moles = 122.295 g * (1 mole / 46 g) = 2.66 moles
Using avogadros number, we get the molecules:
number of molecules = 2.66 moles * 6.022 x 10^23 molecules / mole = 1.6 x 10^24 molecules
H2 and O2 react to produce H2O. What is the mass of H2O produced when 0.73 g of H2 completely reacts with 3.28 g of O2 ?
0.73g of H2 reacts with 3.28g of O2 to produce approximately 3.69g of H2O according to the stoichiometry of the chemical reaction 2H2 + O2 → 2H2O.
Explanation:The subject of this question is a chemical reaction involving molecular hydrogen (H2) and molecular oxygen (O2) to produce water (H2O). The equation for this reaction is 2H2 + O2 → 2H2O. It implies that 2 moles of hydrogen react with 1 mole of oxygen to form 2 moles of water.
Using molar mass, we can find that 0.73g of H2 is approximately 0.36 moles, and 3.28g of O2 is about 0.205 moles. However, according to the stoichiometry of the reaction, one mole of oxygen should react completely with 2 moles of hydrogen to form 2 moles of water. Thus, in this case, hydrogen is in excess and oxygen is the limiting reactant. Therefore, we can find the mass of water produced by multiplying the number of moles of oxygen (the limiting reactant) by the molar mass of water (18.01528g/mol), which is approximately 3.69 grams.
Learn more about Chemical Reactions here:https://brainly.com/question/34137415
#SPJ11
determain the molecular mass of T2 ^17O2. Explain answer to me because I have a lot of questions like this
if mass =180kg and volume =90m3, what is the density
Question 15 there are three sets of sketches below, showing the same pure molecular compound (hydrogen chloride, molecular formula hcl ) at three different temperatures.
"what is the probability of finding an electron within one bohr radius of the nucleus"
How can the match remain unlit in the middle of the flame of a brusen burner
Answer:
By leaving the air valve almost close, so the flow of oxygen is as low as the combustion is not carried out properly, therefore, the flame will not rise beyond the middle of the ideally whole flame.
Explanation:
Hello,
On the attached picture, you will find a scheme showing the flame behavior of a bunsen burner in which it is seen that the middle of the flame matches with the hottest temperature due to the complete combustion of the fuel. It is possible for the match to remain unlit in the middle of the whole flame if the airflow is as low as the combustion is not carried out properly as shown below the middle of the flame; it implies that the feed of oxygen is low so its valve remains almost closed.
Best regards.
Nitrogen (n) atomic number = _____ atomic mass = _____ number of protons = _____ number of neutrons = _____ number of electrons = _____ number of electrons in the valence shell: _____