Suppose that you have an enormous grapefruit that is 92% water (by weight). The grapefruit weights 100 pounds. If the water content of the grapefruit evaporates until it is 90% water (by weight), then approximately how much does the grapefruit now weigh?

Answers

Answer 1

Answer:

The weight of grapefruit is now 80 pound.

Step-by-step explanation:

Consider the provided information.

Let the x is the weight loss. The weight of grapefruit is 100 pounds and water is 92%. After evaporation water is 90%.

Thus the weight loss is:

[tex]0.92\times100-0.90(100 - x) = x[/tex]

[tex]92-90+0.90x=x[/tex]

[tex]2=x-0.90x[/tex]

[tex]2=0.1x[/tex]

[tex]x=20[/tex]

Hence, the weight loss is 80 pounds.

Therefore,  New weight is 100 - 20 = 80 pounds

The weight of grapefruit is now 80 pound.


Related Questions

find the root y=x^2-8x+15

Answers

Answer:

{3, 5}.

Step-by-step explanation:

y = x^2 - 8x + 15

(x - 5)(x - 3) = 0

x - 5 = 0 or x - 3 = 0

So the roots are {3, 5}.

What is the domain of the function f (x) = StartFraction x + 1 Over x squared minus 6 x + 8 EndFraction? all real numbers all real numbers except –1 all real numbers except –4 and –2 all real numbers except 2 and 4

Answers

Answer:

  all real numbers except 2 and 4

Step-by-step explanation:

The exceptions in the domain are the values that make the denominator zero. For a denominator of x² -6x +8 = (x -4)(x -2), the values that make it zero are x=4 and x=2.

The domain is all real numbers except 2 and 4.

Answer:

Option D is correct.

The domain of the function f(x) is all real numbers except 2 and 4.

Step-by-step explanation:

f(x) = (x+1)/(x²-6x+8)

The domain of a function expresses the region of values of x, where the function exists.

And logically, a function exists where ever f(x) has a finite value. That is, the only point where A function does not exist is when f(x) gives infinity.

For a rational function, the point where a function doesn't exist is when the denominator of the rational function is equal to 0. Because (numerator/0) --> ∞

So, the denominator in this question is

x²-6x+8

The function doesn't exist when

x²-6x+8 = 0

So, we solve the quadratic equation that ensues to get the values of x where the function doesn't exist.

x²-6x+8 = 0

x² - 4x - 2x + 8 = 0

x(x-4) - 2(x-4) = 0

(x-2)(x-4) = 0

(x-2) = 0 or (x-4) = 0

x = 2 or x = 4

This means that the function doesnt exist at x = 2 and x = 4

Indicating further that the function exists everywhere except at x = 2 and x = 4.

Hence, from the definition of domain given above, it is clear that the domain of the given function is all real numbers except 2 and 4.

Hope this Helps!!!

Suppose that the scores on a test have a normal distribution with mean 24 and standard deviation 4. What is the proportion of scores less than 28?

Answers

Answer: 0.8413

Step-by-step explanation:

Given : The scores on a test have a normal distribution with mean 24 and standard deviation 4.

i.e. [tex]\mu= 24[/tex]  and [tex]\sigma= 4[/tex]

Let x denotes the scores on the test.

Then, the probability that a student score less than 28 will be :-

[tex]P(x<28)=P(\dfrac{x-\mu}{\sigma}<\dfrac{28-24}{4})\\\\=P(z<1)\ \ [\because\ z=\dfrac{x-\mu}{\sigma}]\\\\=0.8413 \ \ [\text{By z-table}][/tex]

Hence, the the proportion of scores less than 28 is 0.8413 .

this my last question and don't know it

Answers

Answer:

i am 70% sure its a

Step-by-step explanation:

If a ball is thrown in the air with a velocity 44 ft/s, its height in feet t seconds lateris given by y = 44t -16t2. (a) Find the average velocity for thetime period beginning when t = 2 and lasting 0.5second. ft/s(b) Find the average velocity for the time period beginning whent = 2 and lasting 0.1 second. ft/s(c) Find the average velocity for the time period beginning whent = 2 and lasting 0.05 second. ft/s(d) Find the average velocity for the time period beginning whent = 2 and lasting 0.01 second. ft/s(e) Estimate the instantaneous velocity when t = 2.

Answers

Answer: a. 28ft/s. b. 40.08ft/s. c. 42.4ft/s. d. 43.68ft/s. e. - 20ft/s

Step-by-step explanation: Since your displacement was given that is (y) , we just have to differentiate y with respect to time t. That is the first derivative only.

I have worked it out and here is the attachment.

Final answer:

To find the average velocity during different time periods, we can calculate the changes in height and time. By substituting the given values of t into the height equation, we can determine the heights at different times. We can then calculate the average velocities by taking the change in height divided by the change in time. Additionally, to estimate the instantaneous velocity when t = 2, we can differentiate the height equation and substitute t = 2 into the derivative.

Explanation:

To find the average velocity for a given time period, we need to calculate the change in height and the change in time. Using the equation y = 44t - 16t^2, we can substitute the values of t = 2 and t = 2.5 to find the heights at these times. Then, we can find the average velocities.

(a) For the time period of 0.5 seconds starting at t = 2, we calculate the heights at t = 2 and t = 2.5: y(2) = 44(2) - 16(2^2) = 36 ft and y(2.5) = 44(2.5) - 16(2.5^2) = 35 ft. The average velocity is the change in height divided by the change in time: (35 - 36) ft / 0.5 s = -2 ft/s.

(b) For the time period of 0.1 second starting at t = 2, we calculate the heights at t = 2 and t = 2.1: y(2) = 36 ft and y(2.1) = 44(2.1) - 16(2.1^2) = 37.644 ft. The average velocity is the change in height divided by the change in time: (37.644 - 36) ft / 0.1 s = 16.44 ft/s.

(c) For the time period of 0.05 second starting at t = 2, we calculate the heights at t = 2 and t = 2.05: y(2) = 36 ft and y(2.05) = 44(2.05) - 16(2.05^2) = 37.079 ft. The average velocity is the change in height divided by the change in time: (37.079 - 36) ft / 0.05 s = 21.58 ft/s.

(d) For the time period of 0.01 second starting at t = 2, we calculate the heights at t = 2 and t = 2.01: y(2) = 36 ft and y(2.01) = 44(2.01) - 16(2.01^2) = 36.764 ft. The average velocity is the change in height divided by the change in time: (36.764 - 36) ft / 0.01 s = 76.4 ft/s.

(e) To estimate the instantaneous velocity when t = 2, we can calculate the derivative of the height function. The derivative of y(t) = 44t - 16t^2 with respect to t is dy/dt = 44 - 32t. Substituting t = 2 into this equation, we get dy/dt = 44 - 32(2) = -20 ft/s.

Beth has 250 comic books in her collection She begins to sell 20 of them each week. Martin has 80 comic books in his collection. He
begins buying 15 new comic books each week
Select from the choices below, dragging and dropping to build an inequality that could be used to determine when Martin's comic book
collection exceeds Beth's

Answers

Answer:

The answer to your question is  250 - 20 < 80 + 15x

Step-by-step explanation:

Data

Beth  has 250 books and sells 20 each week

Martin has 80 books and sells 15 each week

week = x

Process

1.- Write an equation for each situation

Beth         250 - 20x            

Martin       80 + 15 x

2.- Write the inequality

                   250 - 20 < 80 + 15x

A two-dimensional array can be viewed as ________ and ________. rows, columns arguments, parameters increments, decrements All of these None of these

Answers

Answer:

rows, columns

Step-by-step explanation:

Two dimensional array can be viewed as rows and columns.

It is viewed as matrix or grid as well therefore we can conclude that it can be viewed in terms of rows and columns.

The correct option is the first one, A two-dimensional array can be viewed as rows and columns.

How to complete the statement?

A two-dimensional array is a data structure that stores elements in a grid-like format with rows and columns. It can be visualized as a table or matrix.

In this context, "rows" refer to the horizontal dimension of the array. Each row consists of a series of elements that are stored sequentially from left to right. The number of rows in the array represents the height or the total count of rows.

"Columns" refer to the vertical dimension of the array. Each column consists of a series of elements that are stored sequentially from top to bottom. The number of columns in the array represents the width or the total count of columns.

By organizing data in rows and columns, a two-dimensional array allows for efficient storage and retrieval of elements. The elements within the array can be accessed by specifying both the row and column indices.

Learn more about arrays:

https://brainly.com/question/29989214

#SPJ6

A twelve-hour clock is set at the correct time on the afternoon of May 17th. Somebody knocked the clock off the wall and now it loses 6 minutes per day. How much time will the clock be behind 3 weeks later?
1 hour and 42 minutes
2 hours and 6 minutes
3 hours and 12 minutes
2 hours and 36 minutes

Answers

Answer:

2 hours and 6 minutes. Second option

Step-by-step explanation:

Proportions

If two variables are proportional, it's easy to find the value of one of them knowing the value of the other and the proportion ratio. We know that each day our clock loses 6 minutes per day. It gives us the ratio between time lost vs days passed.

Three weeks (21 days) from now, from now, the clock will be behind a total time of 6 * 21 = 126 minutes.  

Two hours are 120 minutes, thus the time behind is 2 hours and 6 minutes. Second option

Final answer:

The clock will be behind 3 weeks later by 2 hours and 6 minutes.

Explanation:

To find out how much time the clock will be behind 3 weeks later, we first need to calculate the total amount of time the clock will lose in 3 weeks. Since the clock loses 6 minutes per day, we can multiply this by the number of days in 3 weeks (21 days). 6 minutes per day x 21 days = 126 minutes.

Next, we convert the minutes into hours and minutes. There are 60 minutes in an hour, so we divide the 126 minutes by 60 to get 2 hours and a remainder of 6 minutes.

Therefore, the clock will be behind 3 weeks later by 2 hours and 6 minutes.

Ivan has 15 yd of green felt and 12 yd of blue felt to make 3 quilt if I have I even uses the same total numbers of each of yd for each quilt how many yd does she need To use for each quote

Answers

Answer:

9 yards of each quilt.

Step-by-step explanation:

Let the length of each quilt be 'x'.

Given:  

Length of green felt = 15 yards

Length of blue felt = 12 yards

Total number of quilts = 3

Total length of all the quilts in terms of 'x' is given as:

[tex]Total\ length=x+x+x=3x ----(1)[/tex]

Total length is also equal to the sum of the lengths of green and blue felts. So,

[tex]Total\ length=15+12=27--- (2)[/tex]

Now, equating equations (1) and (2), we get:

[tex]3x=27\\\\x=\frac{27}{3}\\\\x=9 [/tex]

Therefore, the length of each quilt is 9 yards.

A race car travels with a constant tangential speed of 82.6 m/s around a circular track of radius 667 m. Find the magnitude of the total acceleration.

Answers

Answer:

TOTAL ACCELERATION =10.229m/s²

Step-by-step explanation:

total acceleration = [tex]\sqrt{centripetal accleration^{2} +tagential acceleration^{2} }[/tex]

since tangential speed is constant , tangential acceleration =0

Thus total acceleration = centripetal acceleration.

centripetal acceleration = v²/r

v=82.6m/s  , r= 667m

centripetal acceleration = 82.6²/667

centripetal acceleration = 10.229m/s²

TOTAL ACCELERATION =10.229m/s²

Final answer:

The magnitude of the total acceleration of a race car traveling with a constant tangential speed of 82.6 m/s around a circular track of radius 667 m is 10.20 m/s², which is the centripetal acceleration.

Explanation:

The question asks to find the magnitude of the total acceleration of a race car traveling with a constant tangential speed of 82.6 m/s around a circular track of radius 667 m. In circular motion, the total acceleration is the centripetal acceleration, since the tangential speed (speed along the arc of the circle) is constant and there is no tangential acceleration. The formula for centripetal acceleration (ac) is ac = v2 / r, where v is the tangential speed and r is the radius of the circular path.

Using the given values:

ac = (82.6 m/s)2 / 667 m = 10.20 m/s2

Therefore, the magnitude of the centripetal acceleration of the race car is 10.20 m/s2.

Ros is trying to find the solution(s) to the system {f(x)=−x3+2x2+x−2g(x)=x2−x−2.


Roz wants to find the solution(s) to this system. After analyzing the graph of the functions, Roz comes up with the following list ordered pairs as possible solutions: (0,−2), (2,0), and (−1,0).

Which work correctly verifies whether each of Roz’s ordered pairs is a solution?


A. A solution to the system will be the intersection of f(x) and g(x) such that f(x)=g(y). Roz must verify one of the following: f(0)=g(−2) and f(−2)=g(0); f(2)=g(0) and f(0)=g(2), or f(−1)=g(0) and f(0)=g(−1).

1. f(0)=−03+2(02)+0−2=−2; g(−2)=(−2)2−2−2=0 Thus, (0,−2) is a solution.

2. f(2)=−23+2(22)+2−2=0; g(0)=02−0−2=2 Thus, (2,0) is a solution.

3. f(−1)=−(−1)3+2(−1)2+(−1)−2=0; g(0)=02−0−2=2 Thus, (−1,0) is not a solution.


B.A solution to the system will be the intersection of f(x) and g(x) such that f(x)=g(x). Roz must verify that f(0)=g(0)=−2, f(2)=g(2)=0, and f(−1)=g(−1)=0 as follows:

1. f(0)=−03+2(02)+0−2=−2; g(0)=02−0−2=−2 Thus, (0,−2) is a solution.

2. f(2)=−23+2(22)+2−2=0; g(2)=22−2−2=0 Thus, (2,0) is a solution.

3. f(−1)=−(−1)3+2(−1)2+(−1)−2=0; g(−1)=(−1)2−(−1)−2=0 Thus, (−1,0) is a solution.


C. A solution to the system will be the intersection of f(x) and g(x) such that f(x)=g(x). Roz must verify that f(−2)=g(−2)=0, and f(0)=g(0)=2 or f(0)=g(0)=−1 as follows:

1. f(−2)=−23+2(22)+2−2=0; g(−2)=(−2)2−2−2=0 Thus, (0,−2) is a solution.

2. f(0)=−03+2(02)−0+2=2; g(0)=02−0−2=2 Thus, (2,0) is a solution.

3. Since f(0)=g(0)=2, f(0) and g(0) cannot equal −1. Thus, (−1,0) is not a solution.


D.A solution to the system will be the intersection of f(x) and g(x) such that f(x)=g(x). Roz must verify that f(−2)=g(−2)=0, and f(0)=g(0)=2 or f(0)=g(0)=−1 as follows:

1. f(−2)=−23+2(22)+2−2=0; g(−2)=(−2)2−2−2=0 Thus, (0,−2) is a solution.

2. f(0)=−03+2(02)−0+2=2; g(0)=02−0−2=2 Thus, (2,0) is a solution.

Since f(0)=g(0)=2, f(0) and g(0) cannot equal −1. Thus, (−1,0) is not a solution.

Answers

Answer:

  B.  A solution to the system will be the intersection of f(x) and g(x) such that f(x)=g(x). Roz must verify that f(0)=g(0)=−2, f(2)=g(2)=0, and f(−1)=g(−1)=0.

Step-by-step explanation:

In order for f(x) = g(x) to have a solution the same values of x and y must satisfy both ...

y = f(x)y = g(x)

This will be the case for (x, y) = (-1, 0) or (0, -2) or (2, 0).

Ros can show this using the steps offered in answer choice B:

1. f(0)=−0^3+2(0^2)+0−2=−2; g(0)=0^2−0−2=−2. Thus, (0,−2) is a solution.

2. f(2)=−2^3+2(2^2)+2−2=0; g(2)=2^2−2−2=0. Thus, (2,0) is a solution.

3. f(−1)=−(−1)^3+2(−1)^2+(−1)−2=0; g(−1)=(−1)^2−(−1)−2=0. Thus, (−1,0) is a solution.

Constant of 15-8y

a.15

b.8

c. -8

d. -15

Answers

Constant of 15-8y
X= 15-8y
Root ( 15/8,0
Domain yER
Range xER
Vertical intercept (0, 15

The constant of the expression 15-8y is 15

Constants are values that are not attached to any variable. For example:

The constant of x + 5 is 5

Now given the expression 15 - 8y

First, we can re-arrange to have:

-8y + 15

From the expression, we can see that 15 is not attached to any variable. Hence the constant of the expression is 15

Learn more here: https://brainly.com/question/17170887

Solve 2r – 15 = -9r + 18.

Answers

Answer:

The answer to your question is  r = 3

Step-by-step explanation:

                               2r  - 15 = - 9r + 18

Process

1.- Add 9r in both sides

                              2r + 9r - 15 = - 9r + 18 + 9r

2.- Simplify

                                    11r -15 = 18

3.- Add 15 to both sides

                                   11r - 15 + 15 = 18 + 15

4.- Simplify

                                   11r = 33

5.- Divide both sides by 11

                                   11/11 r = 33/11

6.- Simplify and result

                                   r = 3

Answer:

what ur insta?

Step-by-step explanation:

I will give brainilest please help!!! ASAP.

Answers

PLEASE MARK BRAINLIEST!

Answer:

Life hack in this answer!

Step-by-step explanation:

The correct table is the second one, or the table on the bottom right. (Picture included).

Life hack --> To find the relative percentage/frequency of something, all you have to do is take the frequency you are trying to find, and divide it with the total.

Example: You are trying to find the frequency of REGULAR MALE jeans. What is its frequency? To find, all you have to do is divide 120 from 28. Like this:

28 = male regular jeans

120 = total

28 ÷ 120 = ?

28 ÷ 120 = 0.23333333...

Final answer: 0.23

In this scenario, we must round. But remember that you might not always need or have to round.

And, as predicted, the answer of 0.23 is in the second table under REGULAR MALE jeans.

If you have any questions, let me know!

I hope this helps!

- sincerelynini

Solve the system of equations by the addition method. If a system contains​ decimals, you may want to first clear the equation of decimals.
1.3x + 0.5y = 17
-0.7 - 2.5y = -73.4

Answers

Answer:

  (x, y) = (2, 28.8)

Step-by-step explanation:

Your ability to do arithmetic should not be limited to integers. Here we see the coefficients of y are related by a factor of -5, so multiplying the first equation by 5 can make the y-terms cancel when that is added to the second equation.

  5(1.3x +0.5y) +(-0.7x -2.5y) = 5(17) +(-73.4)

  6.5x +2.5y -0.7x -2.5y = 85 -73.4 . . . . . eliminate parentheses

  5.8x = 11.6 . . . . . . collect terms

  x = 11.6/5.8 = 2 . . . . . . . divide by the coefficient of x

  1.3(2) +0.5y = 17 . . . . . . substitute for x in the first equation

  0.5y = 14.4 . . . . . . subtract 2.6

  y = 28.8 . . . . . . . . multiply by 2

The solution is (x, y) = (2, 28.8).

Answer:x = 2

y = 28.8

Step-by-step explanation:

The given system of simultaneous equations is expressed as

1.3x + 0.5y = 17 - - - - - - - - - - - - 1

-0.7 - 2.5y = -73.4 - - - - - - - - - - - - - 2

The first step multiply all the terms by 10 in order to eliminate the decimal points. The equations become

13x + 5y = 170 - - - - - - - - - - - - 1

-7 - 25y = -734 - - - - - - - - - - - - - 2

Then we would multiply both rows by numbers which would make the coefficients of x to be equal in both rows.

Multiplying equation 1 by 7 and equation 2 by 13, it becomes

91x + 35y = - 1190

91x + 325y = 9542

Subtracting, it becomes

- 290y = - 8352

y = - 8352/- 290 = 28.8

Substituting y = 28.8 into equation 1, it becomes

13x + 5 × 28.8 = 170

13x + 144 = 170

13x = 170 - 144 = 26

x = 26/13 = 2

At 3:30 in the afternoon in mid-September the Kimball Tower casts a shadow about 290 feet long when the sun's rays come down at an angle about 35 degrees above the horizontal. About how high is the building?

Answers

Answer:

203 feet.

Step-by-step explanation:

Please find the attachment.

Let h represent the height of the building.

We have been given that at 3:30 in the afternoon in mid-September the Kimball Tower casts a shadow about 290 feet long when the sun's rays come down at an angle about 35 degrees above the horizontal.    

We know that tangent relates opposite side of a right triangle to its adjacent side.

[tex]\text{tan}=\frac{\text{Opposite}}{\text{Adjacent}}[/tex]

Upon substituting our given values in above formula, we will get:

[tex]\text{tan}(35^{\circ})=\frac{h}{290}[/tex]

[tex]290*\text{tan}(35^{\circ})=\frac{h}{290}*290[/tex]

[tex]290*0.70020753821=h[/tex]

[tex]h=290*0.70020753821[/tex]

[tex]h=203.0601860809[/tex]

[tex]h\approx 203[/tex]

Therefore, the building is approximately 203 feet high.

 

Tara is leaving home to attend college the drive covers a total distance of 1100 mi terrace car can travel 400 miles on a full tank of gas how many tanks of gas will Terry car need for the entire trip

Answers

Answer:

Terry car will need 3 full tanks to complete the total distance.

Step-by-step explanation:

Given:

Total distance to be covered = 1100 miles

distance travel in full tank =400 miles.

We need to find the number of tanks Terry car needs.

Solution:

Now we can say that;

the number of tanks Terry car needs can be calculated by dividing Total distance to be covered by distance travel in full tank.

framing in equation form we get;

number of tanks Terry car needs = [tex]\frac{1100}{400}= 2.75\ tanks[/tex]

number of tanks cannot be decimal value.

Hence Terry car will need 3 full tanks to complete the total distance.

A high positive correlation is found between college students' age and their GPA. However, if one student aged 44 with a high GPA is omitted from the study, the correlation all but disappears. This is an example of:

Answers

Answer:

Then we can conclude that this value is an influential point since is affecting probably the significance of the model and for this reason is that we see that the correlation disapear.

Step-by-step explanation:

Previous concepts

The correlation coefficient is a "statistical measure that calculates the strength of the relationship between the relative movements of two variables". It's denoted by r and its always between -1 and 1.

And in order to calculate the correlation coefficient we can use this formula:  

[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]  

By definition an outlier is a point "that diverges from an overall pattern in a sample". The residual for this outiler is usually high and when we have presence of outliers our model probably would be not significant since the tendency is not satisfied.        

By definition and influential point is a point that has "a large effect on the slope of a regression line fitting the data:. And usually represent values that are too high or low respect to the others.

Solution to the problem

For this case we assume that we have a high positive correlation between college student's age and the GPA.

So we assume that [tex] 0.7 \leq r \leq 1[/tex]

And We see that after introduce the value of 44 for the age the correlation disappears, that means decrease significantly.

Then we can conclude that this value is an influential point since is affecting probably the significance of the model and for this reason is that we see that the correlation disapear.

At the city Museum child omission is $5.70 and adult admission is $9.80. On Tuesday 124 tickets were sold for a total sales of $936. How many child tickets were sold that day

Answers

Answer: 68 child tickets were sold

Step-by-step explanation:

Let x represent the number of child tickets that were sold that day.

Let y represent the number of adult tickets that were sold that day.

A total of 124 tickets were sold on Tuesday. This means that

x + y = 124

At the city Museum child admission is $5.70 and adult admission is $9.80. The total sales from tickets was $936. This means that

5.7x + 9.8y = 936 - - - - - - - - -1

Substituting x = 124 - y into equation 1, it becomes

5.7(124 - y) + 9.8y = 936

706.8 - 5.7y + 9.8y = 936

- 5.7y + 9.8y = 936 - 706.8

4.1y = 229.2

y = 229.2/4.1

y = 55.9

y = 56

x = 124 - y = 124 - 56

x = 68

A window-washer is climbing a 37-foot ladder leaning against a building. The ladder touches the building 35 feet above the ground. What is the distance from the bottom of the ladder to the base of the building?

Answers

Answer: the distance from the bottom of the ladder to the base of the building is 12 feet.

Step-by-step explanation:

The ladder makes an angle, θ with the ground thus forming a right angle triangle with the wall of the house.

The length of the ladder represents the hypotenuse of the right angle triangle.

The distance from the ground to the point where the ladder touches the wall of the building represents the opposite side

Therefore, to determine the distance from the bottom of the ladder to the base of the building, x, we would apply Pythagoras theorem which is expressed as

Hypotenuse² = opposite side² + adjacent side²

37² = 35² + x²

1369 = x² + 1225

x² = 1369 - 1225 = 144

x = √144 = 12 feet

Final answer:

To find the distance from the bottom of the ladder to the base of the building, use the Pythagorean theorem with the given ladder height and building contact point. Calculate the distance as 12 feet.

Explanation:

A window-washer is climbing a ladder leaning against a building. In this scenario, the ladder is 37 feet long and touches the building 35 feet above the ground. To find the distance from the bottom of the ladder to the base of the building, we can use the Pythagorean theorem.

By applying the Pythagorean theorem: a² + b² = c², where a and b are the distances from the bottom of the ladder to the building and from the base to the building, respectively, and c is the length of the ladder, we can calculate the distance to be 12 feet.

Therefore, the distance from the bottom of the ladder to the base of the building is 12 feet.

Jimmy Carter's family went apple picking they picked a total of 115 apples, the family are a total of eight apples each day after how many days they have 19 apples left

Answers

If I did it right I got a total of about 5.33 days.

Match the vocabulary word with the correct definition. 1. an angle in the plane of a circle with the vertex at the center of the circle central angle 2. the union of the endpoints of a diameter and all points of the circle lying on one side of the diameter. minor arc 3. the union of two points of a circle, not the end points of a diameter; and all points of the circle that are in the exterior of the central angle whose sides contain the two points. major arc 4. the union of two points of a circle, not endpoints of a diameter, and all points of the circle that are in the interior of the central angle whose sides contain the two points semicircle

Answers

Answer:

1. central angle

2. semicircle

3. major arc

4. minor arc

Step-by-step explanation:

1. central angle is an angle whose vertex rest on the center of a circle, with its sides containing two radii of the same circle.

2. semicircle is simply a half circle which is formed by cutting a full circle along a diameter (that is union of the endpoints of a diameter).

3. major arc is an arc that is larger than a semicircle and is bounded by a central angle whose angle is lesser than 180°.

4. minor arc is an arc that is smaller than a semicircle and is bounded by a central angle whose angle is greater than 180°.

Answer:

major arc

1

the union of two points of a circle, not the end points of a diameter; and all points of the circle that are in the exterior of the central angle whose sides contain the two points.

2. central angle

the union of two points of a circle, not endpoints of a diameter, and all points of the circle that are in the interior of the central angle whose sides contain the two points

3. semicircle

the union of the endpoints of a diameter and all points of the circle lying on one side of the diameter.

4. minor arc

an angle in the plane of a circle with the vertex at the center of the circle

Step-by-step explanation:

PLEASE PLEASE PLEASE HELP ME!! WILL GIVE BRAINLIEST!!!

Simplify the radical expression. √32x^2y^5

Answers

Answer:

The answer is 4xy^2√2y

Step-by-step explanation:


A cone has a diameter of 8 centimeters and a height that is 4 times the diameter. Using 3.14 for pl, which of the following can be used to calculate
volume of the cone?

Answers

Answer:

Volume of cone is [tex]539.89 \ cm^3[/tex].

Step-by-step explanation:

Given:

Diameter of Cone = 8 cm

Now we know that radius is half of diameter.

radius = [tex]\frac{1}{2}\times8 =4\ cm[/tex]

Also Given:

height that is 4 times the diameter.

So we can say that;

Height = [tex]4\times8 =32\ cm[/tex]

We need to find the volume of the cone.

Solution:

Now we know that Volume of the cone is given by one third times π times square of radius times height.

framing in equation form we get;

Volume of the cone = [tex]\frac{1}{3}\pi r^2h= \frac{1}{3} \pi \times (4)^2\times 32 =539.89 \ cm^3[/tex]

Hence Volume of cone is [tex]539.89 \ cm^3[/tex].

After driving to a riverfront parking lot, Bob plans to run south along the river, turn around, and return to the parking lot, running north along the same path. After running 3.25 miles south, he decides to run for only 50 minutes more. If Bob runs at a constant rate of 8 minutes per mile, how many miles farther south can he run and still be able to return to the parking lot in 50 minutes?

(A) 1.5
(B) 2.25
(C) 3.0
(D) 3.25
(E) 4.75

Answers

Answer:A) 1.5

Step-by-step explanation: Bob runs at the rate of 8mins per mile

In 60mins his rate would be=60/8=7.5

Let a be the distance he further runs south

2s+3.25

Total distance covered in 50mins=Time=distance/speed=

50/60

50/60=2s +3.25/7.5

Cross multiply

60(2s+3.25)=50×7.5

120s+195=375

120s=375-195

S=180/120

S=1.5

If a concrete column is 6 inches by 6 inches square and 8 ft. long, calculate its weight in Newtons, given a specific weight of 62.4 lb/ft3.

Answers

Weight of column is 555.83 N

Step-by-step explanation:

Size of column = 6 inch x 6 inch x 8 ft

Size of column = 0.5 ft x 0.5 ft x 8 ft

Volume of column = 0.5 x 0.5 x 8 = 2 ft³

Specific weight of concrete = 62.4 lb/ft³

Mass = Volume x Specific weight

Mass = 2 x 62.4

Mass = 124.8 lb = 124.8 x 0.454 = 56.66 kg

Weight = 56.66 x 9.81 = 555.83 N

Weight of column is 555.83 N

Oil Tankers The mean number of oil tankers at a port city is eight per day. Find the probability that the number of oil tankers on any given day is (a) exactly eight, (b) at most three, and (c) more than eight.

Answers

Answer:

a) P(8) = 0.1395

b) P(at most three) = 0.0423684

c) P(X > 8) = 0.41

Step-by-step explanation:

Data provided in the question:

Mean, μ = 8

Now,

Probability that the number of oil tankers on any given day is

a) exactly eight

using Poisson distribution

we have

P(x) = [tex]\frac{\mu^xe^{-\mu}}{x!}[/tex]

for x = 8

P(8) = [tex]\frac{8^8e^{-8}}{8!}[/tex]

or

P(8) = [tex]\frac{16777216\times e^{-8}}{40320}[/tex]

or

P(8) = 0.1395

b)  at most three

i.e P(0) + P(1) + P(2) + P(3)

thus,

P(0) = [tex]\frac{8^0e^{-8}}{0!}[/tex] = 0.0003354

P(1) = [tex]\frac{8^1e^{-8}}{1!}[/tex] = 0.002683

P(2) = [tex]\frac{8^2e^{-8}}{2!}[/tex] = 0.01073

P(3) = [tex]\frac{8^3e^{-8}}{3!}[/tex] = 0.02862

⇒ P(at most three) = 0.0003354 + 0.002683 + 0.01073 + 0.02862

= 0.0423684

c) more than eight.

P(X > 8) = 1 - P(X ≤ 8)

Now,

P(0) = [tex]\frac{8^0e^{-8}}{0!}[/tex] = 0.0003354

P(1) = [tex]\frac{8^1e^{-8}}{1!}[/tex] = 0.002683

P(2) = [tex]\frac{8^2e^{-8}}{2!}[/tex] = 0.01073

P(3) = [tex]\frac{8^3e^{-8}}{3!}[/tex] = 0.02862

P(4) = [tex]\frac{8^4e^{-8}}{4!}[/tex] = 0.05725

P(5) = [tex]\frac{8^5e^{-8}}{5!}[/tex] = 0.091603

P(6) = [tex]\frac{8^6e^{-8}}{6!}[/tex] = 0.1221

P(7) = [tex]\frac{8^7e^{-8}}{7!}[/tex] = 0.13958

P(8) = [tex]\frac{8^8e^{-8}}{8!}[/tex] = 0.13758

Thus,

P(X > 8) = 1 - [ 0.0003354 + 0.002683 + 0.01073 + 0.02862 + 0.05725 + 0.091603 + 0.1221 + 0.13958 + 0.13758 ]

P(X > 8) = 1 - 0.5904814

or

P(X > 8) = 0.41

Final answer:

Explains the probability of different scenarios for the number of oil tankers at a port city per day.(a) The probability of exactly eight oil tankers is 0, as it matches the mean.

(b) The probability of at most three tankers is 0.1724.

(c) The probability of more than eight tankers is 0.

Explanation:

Oil Tankers Probability:

(a) The probability of exactly eight oil tankers is 0, as it matches the mean.

(b) The probability of at most three tankers is 0.1724.

(c) The probability of more than eight tankers is 0.

Frank made a New Years resolution to get into better shape. He decides to join LA fitness. He has to pay a one-time enrollment fee of $50 and then membership costs $25 per month. Write an equation that represents the total costs of the gym membership based on the number of months

Answers

Answer: an equation that represents the total costs of the gym membership based on the number of months is

y = 25x + 50

Step-by-step explanation:

Let x represent the number of months that Frank makes use of the gym at LA fitness in order to get better in shape.

Let y represent the total cost of using the gym for x months.

He has to pay a one-time enrollment fee of $50 and then membership costs $25 per month. This means that the total cist for x month would be

y = 25x + 50

A researcher wants to determine whether the rate of water flow (in liters per second) over an experimental soil bed can be used to predict the amount of soil washed away (in kilograms). The researcher measures the amount of soil washed away for various flow rates, and from these data calculates the least-squares regression line to be: amount of eroded sol = 0.4 + 1.3x (wbere x is flow rate). The correlation between amount of eroded soil and flow rate would be:________
a) 1.3.
b) positive, but we canno say what the exact value is.
c) either positive or negative, but it is impossible to say anything about the correlation from the information given.
d) 11.3,

Answers

Answer:

b)

Step-by-step explanation:

The correlation between amount of eroded soil and flow rate would be positive because the slope is positive. The correlation coefficient cannot be determine using the given information as the information is not enough.

If we have data value or standard deviation for y and standard deviation x then the correlation coefficient can be calculated. From the given regression equation amount of eroded sol = 0.4 + 1.3x (where x is flow rate), the intercept=0.4 and slope=1.3.

We can only tell the sign of correlation coefficient by considering the sign of slope which is positive in the given scenario.

Hence, the correlation is positive but exact value cannot be determine.

x²-2x+1 let a, b, c be positive integers such that the quadratic equation ax² - bx + c = 0 has two distinct roots in the interval (0,1). Find the smallest possible value of a.

Answers

Answer:

The least value of a = 1

Step-by-step explanation:

As it has two distinct roots . According to roll's theorem there should be a point where f'(x)=0

In a quadratic equation ax² + bx + c = 0 the point of maxima or minima is

x = - b/2a

We can find by differentiating it

2ax - b= 0

x = b/2a

So   0 < b/2a < 1

0 < b/a < 2

0 < b < 2a

a > b/2

then, the least value of b = 2 and the least value of a = 1

Other Questions
Which of the following Supreme Court cases is most relevant to the topic of the cartoon?a. McDonald v. Chicago (2010)b. Engel v. Vitale (1961)c. Tinker v. Des Moines (1973)d. Shaw v. Reno (1993) What is the balanced chemical equation for the reaction between Hydrochloride acid and calcium carbonate when the products of the reaction are calcium chloride Carbon Dioxide and water Nutrient density refers to ___. 1. calories in relation to weight 2. nutrients in relation to serving 3. size nutrients in relation to portion size 4. nutrients in relation to calories A local computer manufacturer hires an additional worker and pays $10.00 per hour for an 8-hour day. The worker is capable of assembling 3 computers an hour. The firm sells each computer for $1,500. What is the marginal physical product of this worker? A phrase that refers to the trade-offsthat nations face when choosing whether toproduce more or less military or consumergoods is(A) Shortage or scarcity.(B) Physical capital.(C) Guns or butter.(D) Swords or plowshares. 7x + 3x + 5 - 2x + 7. Select all that are equivalent.a. 2x + 6b. 10X + 12 - 2xc. 12x + 12d. 8x + 12 A six-month, 180-day CD offers an annualized interest rate of 1.10% and requires a minimum deposit of $25,000. What is the amount of interest that will be earned on this investment? The cyclical surplus is $450 billion, potential output is $10 trillion and tax rate is 15 percent. With this information, we can infer that the actual output of this economy is:________. 9 cm3 cmAB is parallel to DC.AD = 9 cm, DC = 3 cm. Angle BCD = 35Angle ABD = 90Calculate the size of angle BAD.Give your answer correct to one decimal place. Input the expression x +9/2 Calculate the density of a proton, given that the mass of a proton is 1.0073 amu and the diameter of a proton is 1.73 10 ^ 15 m . The answer should be in g/cm^3 Which statements describe effective charts and graphs? attractively designed detailed and complex meaningful present information accurately present information clearly and simply use at least five different colors What is the difference in the adaptation of a sled dogs (such as a Husky) thick coat of hair to help it withstand the cold temperatures of Arctic winters and a dog that adapts to cold temperatures in the fall by growing a thickened coat? The adaptation of the sled dog best describes adaptation at the ____________ level while the dog exposed to seasonal colder temperatures has _____________.A. Regional; natural selection at the individual levelB. Individual; physiological modifications at the population levelC. Population; physiological modifications at the individual levelD. Species; natural selection at the population levelE. Ecosystem; physiological modifications at the individual levelAsked by Lola, Last updated: Jan 15, 2020 For the function f defined by f(x)=3x22x+5 find f(x),f(x) , and f(x). Square root of one hundred and twenty three A living cell with a tonicity (solute concentration) equivalent to 0.9% NaCl is placed in a solution containing 2% NaCl. Assume that aquaporins are present and that the membrane therefore is permeable to water. Hello everyone can anyone please help me in searching some ideas for this essay How did tea become a British identity ? and thank you sorry if my English is bad In a sheet metal operation, three identical notches and four identical bends are required. If the operations can be done in any order, how many different possible sequences are there to complete the manufacturing? "Use the following information to answer the question. The mean age of lead actresses from the top ten grossing movies of 2010 was 29.6 years with a standard deviation of 6.35 years. Assume the distribution of the actresses' ages is approximately unimodal and symmetric.In 1993, actress Anna Paquin won an academy award in for the movie ""The Piano."" She was 11-years-old. Finish the statement: ""According to the Empirical Rule, the ages of nearly all lead actresses will be between______________and_____________ years. Anna Paquin was this range when she won the academy award."""a) 10.6; 48.7; withinb) 23.3: 36.0; withinc) 16.9: 42.3; not withind) 10.6: 48.7; not within For each of the following situations, state whether you agree or disagree with the financial reporting practice employed, and briefly explain the reason for your answer.1.The controller of the Dumars Corporation increased the carrying value of land from its original cost of $2 million to its recently appraised value of $3.5 million. Steam Workshop Downloader