Which has the greater density?
air at sea level
air at 20 km altitude
What is the molality of a solution that contains 5 moles of solute in 100 kilograms of water?
Answer:
[tex]m=0.05m[/tex]
Explanation:
Hello,
In this case, molality is defined as:
[tex]m=\frac{n_{solute}}{m_{solvent}}[/tex]
Whereas the mass of the solvent is given in kilograms. In such a way, for 5 moles of solute and 100 kg of water, the molality turns out:
[tex]m=\frac{5mol}{100kg}\\ m=0.05\frac{mol}{kg}[/tex]
Now it is important to notice that the molal units (m) equals mol/kg, thereby:
[tex]m=0.05m[/tex]
Best regards.
Gold has density of 19.3 g/cm3; how many grams of gold are in a 16.0 cm3 gold bar?
in which section of the Periodic Table are the most active metals located
Answer:
bottom left corner
Explanation:
These are where their located
The metals in the bottom left corner of the periodic table are the most active in the sense that they are the most reactive. For example, lithium, sodium, and potassium all react with water.
What is periodic table ?The periodic table is a tabular array of chemical elements organized by atomic number, beginning with hydrogen and progressing to oganesson, which has the highest atomic number.
An element's atomic number is the number of protons in the nucleus of an atom of that element. There is one proton in hydrogen and 118 in oganesson.
Caesium, the most reactive metal in the periodic table, reacts violently, which is why it cannot be demonstrated in a classroom. When other common metals, such as iron and copper, are dropped into water, they produce no reaction.
Thus, The most reactive metals in the bottom left corner of the periodic table.
To learn more about the periodic table, follow the link;
https://brainly.com/question/11155928
#SPJ6
what physical properties are used when making a cup of tea by boiling a tea bag in hot water?
Physical properties can be perceived or observed without changing the structure of matter. These are used to detect and describe matter. Physical properties comprise: appearance, texture, color, odor, boiling point, melting point, density, solubility, and polarity just to name a few.
In this case, the physical process used is boiling, which causes water to evaporate and the contents in the tea bag to become more soluble and can make the color to change. Also, the physical property of solubility relates to some of the components of the tea.
Which of these is an acid?
Check all that apply.
A. HCl
B. H2SO4
C. NaOH
D. HNO3
Calculate the energy of a quantum of radiant energy with a frequency of 5.00x1011/s
The law of definite composition states that every compound has a definite composition by mass. What does that mean?
The law of definite composition states that a chemical compound always consists of the same elements in a fixed ratio by mass, regardless of how or where it's formed. For example, water always contains hydrogen and oxygen in a 1:8 mass ratio. This law is crucial for understanding chemical reactions and the conservation of mass.
Explanation:The law of definite composition, also known as the law of definite proportions, is a fundamental concept in chemistry. This law states that a chemical compound, no matter how it is formed or where it is found, will always consist of the same elements in a fixed ratio by mass. For example, water (H2O) is always composed of hydrogen and oxygen in a 1:8 mass ratio, meaning that there are always 8 grams of oxygen for every 1 gram of hydrogen.
This law has significant implications for chemical reactions. Because compounds always have a definite composition, the mass of the reactants in a chemical reaction always equals the mass of the products. This reflects the principle of conservation of mass.
Learn more about Law of Definite Composition here:https://brainly.com/question/33715758
#SPJ6
The law of definite composition, also known as the law of constant composition, is a fundamental concept in Chemistry. This law states that any given chemical compound will always contain the same elements in the exact same proportions by mass, regardless of the sample's origin or quantity.
Definition and Origin: The law of definite composition was formulated by Joseph Proust in the late 18th century. His experiments showed that chemical compounds contain elements in a fixed ratio by mass.
Fixed Ratios: For example, water (H₂O) is always composed of two hydrogen atoms and one oxygen atom. This 2:1 ratio in the number of atoms translates to a consistent mass ratio because each element has a specific atomic mass.
Mass Proportions: To illustrate with masses, the atomic mass of hydrogen is approximately 1 amu (atomic mass unit) and that of oxygen is about 16 amu. Therefore, in a water molecule, the mass ratio of hydrogen to oxygen is roughly 2 (from 2 hydrogen atoms) to 16, or simplified to 1:8.
Consistency Across Samples: No matter where you find a sample of water, whether from a river or distilled in a lab, its composition by mass will always be around 88.8% oxygen and 11.2% hydrogen.
Implications: This law helps in predicting and understanding chemical reactions because knowing the fixed ratios allows chemists to determine the quantities of reactants needed to produce a certain amount of a compound.
When adding one atom has 20 protons and a mass of 44. another atom has 20 protons and a mass number of 40. what is the identity of these atoms?
The atoms are both isotopes of calcium (atomic number 20). One isotope has a mass number of 40 (40Ca), which means it has 20 neutrons, while the other isotope has a mass number of 44 (44Ca), which means it has 24 neutrons.
Explanation:When two different atoms have the same number of protons but different mass numbers, they are known as isotopes of the same element. In this case, since both atoms have 20 protons, they are isotopes of the element with the atomic number 20, which is calcium.
The identity of an atom is defined by its number of protons, which is the atomic number. For calcium, the atomic number is indeed 20. The mass number, which is given as 40 and 44 in the two variants, represents the total number of protons and neutrons in the nucleus. To find the number of neutrons in each isotope:
For the isotope with a mass number of 40: number of neutrons = 40 - 20 = 20.For the isotope with a mass number of 44: number of neutrons = 44 - 20 = 24.Therefore, the isotopes of calcium can be represented as 40Ca (20 protons and 20 neutrons) and 44Ca (20 protons and 24 neutrons).
Which would be expected to have a higher boiling point t-butyl alcohol or n-butyl alcohol?
Why is it advisable to keep the storage bottle containing the naoh solution closed?
The type of bonding and the numbers of covalent bonds an atom can form with other atoms are determined by __________.
The type of bonding and the number of covalent bonds an atom can form are determined by its valence electrons, which influence the atom's ability to share electrons and achieve a stable outer electron shell.
The type of bonding and the number of covalent bonds an atom can form with other atoms are determined by its valence electrons. These are the electrons that are found in the outermost shell of an atom and are involved in bonding. Atoms form covalent bonds by sharing valence electrons with other atoms to achieve a full outer shell, resembling the electronic configuration of noble gases. The number of covalent bonds that an atom can form is generally equal to the number of additional electrons needed to fill its outer shell.
For example, carbon, which has four valence electrons, can form four covalent bonds because it needs four more electrons to complete its octet. Similarly, nitrogen, with five valence electrons, typically forms three covalent bonds, as it requires three more electrons to have a full octet, and oxygen with six valence electrons most often forms two covalent bonds.
How much water should be mixed with 237 ml of ammonia, whose strength is 100%, in order to create a mixture that is diluted to a 75% strength?
Answer
79 ml
Explanation
You have 237 237 ml of ammonia, whose strength is 100%.
If you want to make it 75%, then;
let 75% ⇒ 237 ml of ammonia and
25% ⇒ x ml of water.
∴ x = (25% ×237) / 75%
= 5,925/75
= 79 ml of water.
How many grams of cl are in 445 g of cacl2?
Calculate the theoretical atom economy for each reaction.
a. 2 cuo (s) + c (s) → 2 cu (s) + co2 (g)
What mole ratio would you use to calculate how many mole of oxygen gas would be?
Why using a temperature probe is preferable to using a conventional mercury thermometers
How does a solution of ph 7 compare to a solution of ph 10?
Molecules and atoms. which is more massive: an atom, a molecule, an isotope, or an ion?
What is the frequency of electromagnetic radiation having a wavelength of 3.27 ✕ 10-8 m?
s-1 What type of electromagnetic radiation is this?
Which term is best defined as a measure of the amount of space a substance occupies?
The term 'Volume' in physics defines the measure of the amount of space that a substance occupies. It is used across various equations and calculations in the study of physical sciences. Its applicability ranges from classroom learnings to real-life situations.
Explanation:The term that best defines the measure of the amount of space a substance occupies is Volume. Volume is a fundamental concept in physical sciences and is often used in equations and calculations. Whether the substance is a liquid, a gas, or a solid, you can calculate its volume. For instance, the volume of a solid box is calculated by length * width * height, and the volume of a liquid in a cylindrical container would be calculated with π*radius2*height. Knowledge of volume can apply to real-life situations beyond the classroom as well, like working out how much water you can fit in a pool, or how much air is in your bedroom.
Learn more about Volume here:https://brainly.com/question/31946306
#SPJ2
The number of which subatomic particle designates the atomic number of an element? select one:
When a substance undergoes a physical change does it create a new substance?
The atomic weight of boron is reported as 10.81, yet no atom of boron has the mass of 10.81 amu. explain
Explain why it is important to change only one variable in an experimental setup
A force acts on an object and moves it a certain distance. The product of the force and the distance is the
done on the object.
5. How does the abundance of isotopes of an element relate to its average atomic mass?
Identify three physical properties of ionic compounds that are associated with ionic bonds
Final answer:
Three physical properties of ionic compounds associated with ionic bonds are high melting and boiling points, brittleness, and poor conductivity in the solid state.
Explanation:
Three physical properties of ionic compounds that are associated with ionic bonds are:
High melting and boiling points: Ionic compounds have strong ionic bonds which require a large amount of energy to break. Thus, they have high melting and boiling points.
Brittleness: Ionic compounds are generally hard, but when a force is applied, the layers of ions shift causing ions of the same charge to come near each other. The repulsive forces between like-charged ions cause the crystal to shatter.
Poor conductivity in the solid state: Due to the strong ionic bonds, ions are unable to move freely in the solid state, making them poor conductors of electricity.
Using your own words define a scientific law
According to the law of conservation of mass, when sodium, hydrogen, and oxygen react to form a compound, the mass of the compound will be ____ the sum of the masses of the individual elements.
The mass of the compound will be equal to the sum of the masses of the individual elements.
According to the law of conservation of mass, the mass of the reactants in a chemical reaction must equal the mass of the products.
When sodium (Na), hydrogen (H), and oxygen (O) react to form a compound, such as sodium hydroxide (NaOH), the total mass of the compound produced will be equal to the combined masses of the individual elements that reacted.
This principle is fundamental in chemistry and ensures that mass is neither created nor destroyed during a chemical reaction.
Therefore, if you start with a certain amount of sodium, hydrogen, and oxygen, the total mass of these elements before the reaction will be exactly the same as the mass of the sodium hydroxide produced after the reaction.
Thus, the mass of the compound will be 'equal to' the sum of the masses of the individual elements.