Answer:
D
Step-by-step explanation:
you need to get the x alone so to do that, you need to add 7y so you do it on both sides and it gives you x=7y+8
The value of the expression x − 7y = 8 will be x = 7y + 8. The correct option is D.
What is an expression?Expression in maths is defined as the collection of numbers variables and functions by using signs like addition, subtraction, multiplication, and division.
Numbers (constants), variables, operations, functions, brackets, punctuation, and grouping can all be represented by mathematical symbols, which can also be used to indicate the logical syntax's order of operations and other features.
Given expression is x − 7y = 8. The value of x will be calculated as below:-
x − 7y = 8
x = 7y + 8
Therefore, the value of the expression x − 7y = 8 will be x = 7y + 8. The correct option is D.
To know more about an expression follow
https://brainly.com/question/723406
#SPJ2
what is the value of x in the isosceles trapezoid below
Answer:
D. 13
Step-by-step explanation:
From the diagram, [tex]\angle BAD=2x\degree[/tex] and [tex]\angle BCD=(10x+24)\degree[/tex]
In an isosceles trapezium, the base angles are equal.
This implies that [tex]\angle ABC=\angle BAD[/tex] [tex]\implies \angle ABC=2x\degree[/tex]
The side length CB of the trapezoid is a transversal line because CD is parallel to AB.
This means that [tex]\angle ABC=2x\degree[/tex] and [tex]\angle BCD=(10x+24)\degree[/tex] are co-interior angles.
Since co-interior angles are supplementary, we write and solve the following equation for [tex]x[/tex].
[tex]2x\degree+(10x+24)\degree=180\degree[/tex]
Group similar terms
[tex]2x+10x=180-24[/tex]
Simplify both sides of the equation.
[tex]12x=156[/tex]
Divide both sides by 12
[tex]\frac{12x}{12}=\frac{156}{12}[/tex]
[tex]\therefore x=13[/tex]
The correct answer is D.
Answer:
13
Step-by-step explanation:
a pex
Unaware that 35% of the 10,000 voters in his constituency support him, a politician decides to estimate his political strength. A sample of 200 voters shows that 40% support him. What is the parameter of interest? State its value
Answer.
a. Population is the total number of voters in the constituency, that is 10000
b. the parameter is the unknown character of the population, that is 35% of 10000= 3,500
c. Statistics of interest is know character from the sample, that is 40% of 200= 80
d. The two answers are not surprisingly, because the sample is a portion of the population and we expect it to be smaller that the population. Thus, parameter must be bigger than statistics of interest.
d) ii. If another 200 sample was to be taken, we expect to see an increase in a statistics of interest.
Thus my answer, please help by your approval as fast as you can
Uniform circular motion is used in physics to describe the motion of an object traveling at a constant speed in a circle. The speed of the object is called tangential velocity and it can be calculated using the formula above, where r is the radius of the circle and T is the time is takes for the object to make one complete circle, called a period. Which of the following formulas could be used to find the length of one period if you know the tangential velocity and the radius of the circle?
Answer:
B) T = 2πr/v
Step-by-step explanation:
To solve the given equation for T, multiply it by T/v.
[tex]v=\dfrac{2\pi r}{T}\\\\v\dfrac{T}{v}=\dfrac{2\pi r}{T}\cdot\dfrac{T}{v}\\\\T=\dfrac{2\pi r}{v} \qquad\text{simplify}[/tex]
PLS HELP CORRECT ANSWER WILL BE AWARDED BRAINLIEST
[tex]|\Omega|=8\cdot7=56\\|A|=3\cdot2=6\\\\P(A)=\dfrac{6}{56}=\dfrac{3}{28}\approx10,7\%[/tex]
Trapezoid ABCD is reflected over the line y = x. What rule shows the input and output of the reflection, and what is the new coordinate of A'? Trapezoid ABCD is shown. A is at negative 5, 1. B is at negative 4, 3. C is at negative 2, 3. D is at negative 1, 1. (x, y) ? (y, ?x); A' is at (1, 5) (x, y) ? (y, x); A' is at (1, ?5) (x, y) ? (?x, y); A' is at (5, 1) (x, y) ? (?x, ?y); A' is at (5, ?1)
Answer:
(x, y) ⇒ (y, x)A'(1, -4), B'(3, -4), C'(3, -2), D'(1, -1)Step-by-step explanation:
Reflection across the line y=x swaps the x- and y-coordinates.
A(-5, 1) becomes A'(1, -5), for example. The coordinates of the other points are swapped in similar fashion.
Answer:
(x,y)→(y,x); A' is at (1, −5)
Step-by-step explanation:
Trapezoid ABCD is shown. A is at negative 5, 1. B is at negative 4, 3. C is at negative 2, 3. D is at negative 1, 1.
(x,y)→(y,−x); A' is at (1, 5)
(x,y)→(y,x); A' is at (1, −5)
(x,y)→(−x,y); A' is at (5, 1)
(x,y)→(−x,−y); A' is at (5, −1)
This is the complete question and your answer is :
(x,y)→(y,x); A' is at (1, −5)
Katie and Mina both commute to work. Katie's commute on the train takes 10 minutes more than one half as many minutes as Mina's commute by car. It takes Katie 30 minutes to get to work. Write an equation to determine how many minutes it takes Mina to get to work.
30 = one halfx + 10
30 = one halfx − 10
30 = 2x − 10
30 = 2x + 10
The equation that determines how many minutes it takes Mina to get to work is "30 = one half (x) + 10".
How to form an equation from sentences?Observe the statements for the variable Notice the conditions like more, or less. If more, add the terms, and if less, subtract the terms.Equate the formed expression to the actual value.Writing the equation:The given statements are:
Katie's commute on the train takes 10 minutes more than one-half as many minutes as Mina's commute by car.
Here, the minutes it takes Mina to get to work is considered as x (variable since it depends on the other terms)
Katie's commute on the train takes 10 minutes more than one-half as many minutes as Mina's commute by car i.e., one-half(x) + 10
It takes Katie 30 minutes to get to work i.e., 30 = one-half(x) + 10
Therefore, the equation is "30 = one-half(x) + 10".
Learn more about equations here:
https://brainly.com/question/9494806
#SPJ2
I NEED help Please
f(a)= -1/4(a+8)
g(b)=2/3b+1
g(f(6))
need help with this composite function
Answer:
[tex]\large\boxed{g\bigg(f(6)\bigg)=-\dfrac{4}{3}}[/tex]
Step-by-step explanation:
[tex]f(a)=-\dfrac{1}{4}(a+8)\\\\g(b)=\dfrac{2}{3}b+1\\\\g\bigg(f(6)\bigg)\\\\\text{calculate}\ f(6)\to\text{put}\ a=6\ \text{to the equation of}\ f(a):\\\\f(6)=-\dfrac{1}{4}(6+8)=-\dfrac{1}{4}(14)=-\dfrac{14}{4}=-\dfrac{7}{2}\\\\g\bigg(f(6)\bigg)\to\text{put}\ b=-\dfrac{7}{2}\ \text{to the equation of}\ g(b):\\\\g\bigg(f(6)\bigg)=\dfrac{2}{3}\left(-\dfrac{7}{2}\right)+1=-\dfrac{7}{3}+1=-\dfrac{7}{3}+\dfrac{3}{3}=-\dfrac{4}{3}[/tex]
i don't understand this!
By the way nice job using Khan Academy, I love it. the answer is the dep. is the numbers of minutes and the ind. is the episodes.
Answer: The number of episodes you watch → Independent variable
The number of minutes you spend watching anime→ Dependent variable
Step-by-step explanation:
Given : Your favorite anime series has episodes that are 20 minutes long.
In the equation , w is the number of episodes you watch and t is the number of minutes you spend watching anime.
The relationship between these two variables can be expressed by the following equation :-
[tex]t=20w[/tex]
We can see that the time spend on watching anime depends on the number of episodes we watch.
Thus the dependent variable is the number of minutes you spend watching anime i.e. 't'.
The independent variable is the number of episodes you watch i.e. 'w'.
You have a bottle with a leak. After 2 seconds, there are 28 ounces left in the bottle. After 6 seconds, there are 20 ounces left in the bottle. How much water is in the bottle initially
Answer:
32 oz
Step-by-step explanation:
Assuming the hole in the bottle is not made any bigger as it loses water, it will lose it at a constant rate. This makes it a linear function. We can use the 2 points given to find the slope of the line, then use one of the 2 points to write an equation for the line in point-slope form, change it into slope-intercept form, and the amount of water in the bottle originally will be apparent. Plugging in to the slope formula:
[tex]m=\frac{20-28}{6-2}=-2[/tex]
Now we will choose one point for the x and y values and plug in to the point-slope form of a line:
y - 28 = -2(x - 2) and
y - 28 = -2x + 4 so
y = -2x + 32
That is in y = mx + b form where m is the slope and b is the y-intercept, the initial value of y when x = 0. x being the time gone by, when x = 0, that means that no time has gone by, and that means that no water has yet to leak out of your bottle.
Part A
What is the area of triangle i? Show your calculation.
Part B
Triangles i and ii are congruent (of the same size and shape). What is the total area of triangles i and ii? Show your calculation.
Part C
What is the area of rectangle i? Show your calculation.
Part D
What is the area of rectangle ii? Show your calculation.
Part E
Rectangles i and iii have the same size and shape. What is the total area of rectangles i and iii? Show your calculation.
Part F
What is the total area of all the rectangles? Show your calculation.
Part G
What areas do you need to know to find the surface area of the prism?
Part H
What is the surface area of the prism? Show your calculation.
Part I
Read this statement: “If you multiply the area of one rectangle in the figure by 3, you’ll get the total area of the rectangles.” Is this statement true or false? Why?
Part J
Read this statement: “If you multiply the area of one triangle in the figure by 2, you’ll get the total area of the triangles.” Is this statement true or false? Why?
Answer:
Part A) The area of triangle i is [tex]3\ cm^{2}[/tex]
Part B) The total area of triangles i and ii is [tex]6\ cm^{2}[/tex]
Part C) The area of rectangle i is [tex]20\ cm^{2}[/tex]
Part D) The area of rectangle ii is [tex]32\ cm^{2}[/tex]
Part E) The total area of rectangles i and iii is [tex]40\ cm^{2}[/tex]
Part F) The total area of all the rectangles is [tex]72\ cm^{2}[/tex]
Part G) To find the surface area of the prism, we need to know only the area of triangle i and the area of rectangle i and the area of rectangle ii, because the area of triangle ii is equal to the area of triangle i and the area of rectangle iii is equal to the area of rectangle i
Part H) The surface area of the prism is [tex]78\ cm^{2}[/tex]
Part I) The statement is false
Part J) The statement is true
Step-by-step explanation:
Part A) What is the area of triangle i?
we know that
The area of a triangle is equal to
[tex]A=\frac{1}{2} (b)(h)[/tex]
we have
[tex]b=4\ cm[/tex]
[tex]h=1.5\ cm[/tex]
substitute
[tex]A=\frac{1}{2} (4)(1.5)[/tex]
[tex]Ai=3\ cm^{2}[/tex]
Part B) Triangles i and ii are congruent (of the same size and shape). What is the total area of triangles i and ii?
we know that
If Triangles i and ii are congruent
then
Their areas are equal
so
[tex]Aii=Ai[/tex]
The area of triangle ii is equal to
[tex]Aii=3\ cm^{2}[/tex]
The total area of triangles i and ii is equal to
[tex]A=Ai+Aii[/tex]
substitute the values
[tex]A=3+3=6\ cm^{2}[/tex]
Part C) What is the area of rectangle i?
we know that
The area of a rectangle is equal to
[tex]A=(b)(h)[/tex]
we have
[tex]b=2.5\ cm[/tex]
[tex]h=8\ cm[/tex]
substitute
[tex]Ai=(2.5)(8)[/tex]
[tex]Ai=20\ cm^{2}[/tex]
Part D) What is the area of rectangle ii?
we know that
The area of a rectangle is equal to
[tex]A=(b)(h)[/tex]
we have
[tex]b=4\ cm[/tex]
[tex]h=8\ cm[/tex]
substitute
[tex]Aii=(4)(8)[/tex]
[tex]Aii=32\ cm^{2}[/tex]
Part E) Rectangles i and iii have the same size and shape. What is the total area of rectangles i and iii?
we know that
Rectangles i and iii are congruent (have the same size and shape)
If rectangles i and iii are congruent
then
Their areas are equal
so
[tex]Aiii=Ai[/tex]
The area of rectangle iii is equal to
[tex]Aiii=20\ cm^{2}[/tex]
The total area of rectangles i and iii is equal to
[tex]A=Ai+Aiii[/tex]
substitute the values
[tex]A=20+20=40\ cm^{2}[/tex]
Part F) What is the total area of all the rectangles?
we know that
The total area of all the rectangles is
[tex]At=Ai+Aii+Aiii[/tex]
substitute the values
[tex]At=20+32+20=72\ cm^{2}[/tex]
Part G) What areas do you need to know to find the surface area of the prism?
To find the surface area of the prism, we need to know only the area of triangle i and the area of rectangle i and the area of rectangle ii, because the area of triangle ii is equal to the area of triangle i and the area of rectangle iii is equal to the area of rectangle i
Part H) What is the surface area of the prism? Show your calculation
we know that
The surface area of the prism is equal to the area of all the faces of the prism
so
The surface area of the prism is two times the area of triangle i plus two times the area of rectangle i plus the area of rectangle ii
[tex]SA=2(3)+2(20)+32=78\ cm^{2}[/tex]
Part I) Read this statement: “If you multiply the area of one rectangle in the figure by 3, you’ll get the total area of the rectangles.” Is this statement true or false? Why?
The statement is false
Because, the three rectangles are not congruent
The total area of the rectangles is [tex]72\ cm^{2}[/tex] and if you multiply the area of one rectangle by 3 you will get [tex]20*3=60\ cm^{2}[/tex]
[tex]72\ cm^{2}\neq 60\ cm^{2}[/tex]
Part J) Read this statement: “If you multiply the area of one triangle in the figure by 2, you’ll get the total area of the triangles.” Is this statement true or false? Why?
The statement is true
Because, the triangles are congruent
** WILL MAKE BRAINLIST **What is the quadratic regression equation for the data set? What is the quadratic regression equation for the data set?
Answer:
Now I am not completely sure but...maybe is it that:
A quadratic regression is the process of finding the equation of the parabola that best fits a set of data. As a result, we get an equation of the form:
y = a x 2 + b x + c where a ≠ 0 .
Cause I think it might be the best way to find this equation manually is by using the least squares method. That is, we need to find the values of a , b , and c such that the squared vertical distance between each point ( x i , y i ) and the quadratic curve y = a x 2 + b x + c is minimal.
The matrix equation for the quadratic curve is given by:
[ ∑ x i 4 ∑ x i 3 ∑ x i 2 ∑ x i 3 ∑ x i 2 ∑ x i ∑ x i 2 ∑ x i n ] [ a b c ] = [ ∑ x i 2 y i ∑ x i y i ∑ y i ]
The quadratic regression equation for the given data set is approximately:
[tex]y \approx -0.043x^2 + 1.333x + 5.895[/tex]
How to find the quadratic regression equationTo find the quadratic regression equation for the given data set
Denote the independent variable (x) as x and the dependent variable (y) as y. We want to find the quadratic equation of the form
[tex]y = ax^2 + bx + c[/tex]that best fits the data.
Start by creating a system of equations using the given data points.
Substitute the x and y values into the equation and obtain three equations:
[tex](2^2)a + 2b + c = 10.1\\(4^2)a + 4b + c = 7.3\\(6^2)a + 6b + c = 5.9\\(7^2)a + 7b + c = 5.1\\(11^2)a + 11b + c = 6.3\\(12^2)a + 12b + c = 8.2\\[/tex]
Now, we have a system of three linear equations with three unknowns (a, b, c). We can solve this system to find the values of a, b, and c.
Using a calculator or software, find the following approximate values:
a ≈ -0.043
b ≈ 1.333
c ≈ 5.895
Therefore, the quadratic regression equation for the given data set is approximately:
[tex]y \approx -0.043x^2 + 1.333x + 5.895[/tex]
Read on Regression on https://brainly.com/question/25987747
#SPJ3
The formula represents the height in the feet above the the ground at time t of a person who is riding a ferris wheel. What is the diameter of the ferris wheel?
Step-by-step explanation:
You forgot to include the formula, but it has to be either a sine wave or cosine wave:
h = A sin(ωt + φ) + B
The coefficient A is called the amplitude. The diameter of the ferris wheel is double the amplitude.
d = 2A
Need help with this math question
Answer:
The vertex is: [tex](6, 8)[/tex]
Step-by-step explanation:
First solve the equation for the variable y
[tex]x^2-4y-12x+68=0[/tex]
Add 4y on both sides of the equation
[tex]4y=x^2-4y+4y-12x+68[/tex]
[tex]4y=x^2-12x+68[/tex]
Notice that now the equation has the general form of a parabola
[tex]ax^2 +bx +c[/tex]
In this case
[tex]a=1\\b=-12\\c=68[/tex]
Add [tex](\frac{b}{2}) ^ 2[/tex] and subtract [tex](\frac{b}{2}) ^ 2[/tex] on the right side of the equation
[tex](\frac{b}{2}) ^ 2=(\frac{-12}{2}) ^ 2\\\\(\frac{b}{2}) ^ 2=(-6) ^ 2\\\\(\frac{b}{2}) ^ 2=36[/tex]
[tex]4y=(x^2-12x+36)-36+68[/tex]
Factor the expression that is inside the parentheses
[tex]4y=(x-6)^2+32[/tex]
Divide both sides of the equality between 4
[tex]\frac{4}{4}y=\frac{1}{4}(x-6)^2+\frac{32}{4}[/tex]
[tex]y=\frac{1}{4}(x-6)^2+8[/tex]
For an equation of the form
[tex]y=a(x-h)^2 +k[/tex]
the vertex is: (h, k)
In this case
[tex]h=6\\k =8[/tex]
the vertex is: [tex](6, 8)[/tex]
Answer: 6, 8
Step-by-step explanation:
What is the first step in writing f(x) = 3x2 + 6x – 8 in vertex form?
A. Factor out 3 from each term.
B. Form a perfect square trinomial by keeping the value of the function equivalent.
C. Write the trinomial as a binomial squared.
D. Factor out 3 from the first two terms.
Explain your answer?
No spam answers, if you spam your answers it's going mark your answer report.
If your answer is wrong that's going mark your answer report.
Thank you!
-Charlie
Answer:
D. Factor out 3 from the first two terms.
Step-by-step explanation:
Vertex form is ...
y = a(x -h)² +k
where (h, k) is the vertex and "a" is the vertical scale factor.
This equation expands to give ...
y = ax² -2ahx + ah² +k
Factoring "a" from the terms involving x makes it easy to identify h and so finish putting the equation into vertex form. In this equation, that means the most appropriate first step is ...
factor out 3 from the first two terms
Answer:
D. Factor out 3 from the first two terms.
Step-by-step explanation:
According to the Vertex Formula [y = A(X - H)² + K], -H gives you the OPPOSITE terms of what they really are, but in this case, this would not qualify, since the question is asking something totally unique. So, since 3 is your "A", you factor that out, and since 6 is a multiple of 3, it is easy to work with. Anyway, you get this:
y = 3(x + 1)² - 11
I hope this helps you out alot, and as always, I am joyous to assist anyone at any time.
The graph represents the height y, in meters, above the ground of a golf ball x seconds after it is hit.
Which statements are true?
Select each correct answer.
For up to 5.5 s after the golf ball is hit, its height is increasing.
It takes 11 s for the golf ball to fall to the ground after reaching its maximum height.
The golf ball is in the air for 11 s.
The maximum height of the golf ball is 150 m.
The golf ball's speed is 11 m/s .
Answer:
For up to 5.5 s after the golf ball is hit, its height is increasing
The golf ball is in the air for 11 s
The maximum height of the golf ball is 150 m.
Step-by-step explanation:
we know that
The graph shown a vertical parabola open downward
The vertex is a maximum
The vertex is the point (5.5,150) ---> that means
For t=5.5 s, the height of a golf ball is h=150 m
Verify each statement
case A) For up to 5.5 s after the golf ball is hit, its height is increasing.
The statement is true
For the interval (0,5.5) ------> the height is increasing
For the interval (5.5,11) ------> the height is decreasing
case B) It takes 11 s for the golf ball to fall to the ground after reaching its maximum height
The statement is false
It takes 5.5 s for the golf ball to fall to the ground after reaching its maximum height
case C) The golf ball is in the air for 11 s
The statement is true
For t=11 s the golf ball fall to the ground (h=0)
case D) The maximum height of the golf ball is 150 m.
The statement is true
The maximum height of the golf ball is at the vertex of the parabola
The vertex is the point (5.5,150)
case E) The golf ball's speed is 11 m/s
The statement is false
The graph is shown below. Then the correct options are B, C, and D.
What is a function?Functions are found all across mathematics and are required for the creation of complex relationships.
The graph represents the height y, in meters, above the ground of a golf ball x seconds after it is hit.
From the graph, we can conclude some points.
For up to 5.5 s after the golf ball is hit, its height is increasing.The golf ball is in the air for 11 s.The maximum height of the golf ball is 150 m.Then the correct options are B, C, and D.
More about the function link is given below.
https://brainly.com/question/5245372
#SPJ5
10. If a triangle has an angle of 45° and an angle of 100°, what is the third angle?
A. 45°
B. 35°
C. 55°
D. 100°
Answer:
So, 35 degrees is your answer.
Step-by-step explanation:
180 - 100 - 45 = 35 degrees
Hope my answer has helped you!
For this case we have by definition, that the sum of the internal angles of a triangle is 180.
Then, they tell us that two of the angles measure 45 and 100 degrees respectively. If "x" is the missing angle we have:
[tex]45 + 100 + x = 180[/tex]
Clearing the value of "x":
[tex]x = 180-45-100\\x = 35[/tex]
So, the missing angle is 35 degrees
ANswer:
35 degrees
Option B
A girl age is 28 years younger than her father the sum of their ages is 50 years find the ages of the girl and the father
Which of the following conditions in a quadrilateral proves it is a parallelogram?
The recommended daily dosage of vitamin is between 25 & 35 mg. Write an absolute value inequality for the dosage range.
Answer:25≤x≤35
Step-by-step explanation: This statement means that the person can take more than or 25 mg or the can take less 35 or exactly 35 mg.
Dylan started with 10,000 baseball cards to sell. In each subsequent week, Dylan started with approximately 85% of the previous week's starting number of cards. What is the explicit rule for the number of cards Dylan starts with in week n and approximately how many cards will he start with in the 6th week? Round to the nearest card. Drag and drop the answers into the boxes to match the situation. Explicit rule Amount of cards after the 6th week.
Answer:
Number of cards at week n = 10,000(0.85)^(n-1).
At week 6 Dylan has 4437 cards.
Step-by-step explanation:
At the start of week 1 he had 10,000 = 10,000(0.85)^0 cards.
So at the start of week 2 he had 10,000(0.85)^(2-1) cards.
Number of cards for week n = 10,000(0.85)^(n-1).
Number of he will have at the start of the 6th week
= 10,000(0.85)^(6-1)
= 4437 cards (answer).
The explicit rule for the number of baseball cards Dylan starts with in week n is A(n) = 10,000 * 0.85ⁿ⁻¹. In the 6th week, Dylan will start with approximately 4437 cards.
The number of baseball cards Dylan starts with in week n can be represented by an explicit rule, which is a formula that uses the starting amount of cards and a common ratio to find the amount for any given week. The starting number of cards for week n can be calculated using the geometric sequence formula: A(n) = A(1) * rⁿ⁻¹, where A(1) is the initial number of cards, r is the ratio of the remaining cards per week (85%, or 0.85), and n is the week number.
To calculate the number of cards Dylan starts with in the 6th week, we use the formula with A(1) = 10,000, r = 0.85, and n = 6:
A(6) = 10,000 * 0.85⁶⁻¹
After performing the calculations and rounding to the nearest card, Dylan will start with approximately 4437 cards in the 6th week.
A seal went 15 feet below sea level to catch a fish. A sea lion dove 6 feet less than two times as deep as the seal to catch a larger fish. What expression represents the sea lion's position in relation to sea level?
A bag has four green marbles, three red marbles, and three yellow marbles. What is the probability that you pick a yellow marble, do not replace it, and pick another yellow marble?
Step-by-step explanation:
add all marbles together:
4 (green) + 3 (red) + 3 (yellow) = 10 marbles total
if we pick a yellow marble out of the bag and do not replace it, then we have 2 yellow marbles left.
we need to add marbles again with one yellow marble subtracted.
4 (green) + 3 (red) + 2 (yellow) =
new Total is 9 marbles.
so then we have 2 yellow marbles out of 9 total marbles.
2:9
or 2/9
or .22 (22%)
is the probability
Answer:
1/15 is the answer guys! Not 2/15 or anything else.
Step-by-step explanation:
Kelsey painted one fourth of her bedroom in three seventh of an hour. At this rate, how long would it take her to paint the entire room?
three over twenty eight hour
twenty eight over three hours
twelve over seven hours
seven over twelve hour
The time it will take Kelsey to paint the entire room is:
Twelve over seven hours Step-by-step explanation:It is given that:
Kelsey painted one fourth of her bedroom in three seventh of an hour.
This means that:
1/4 of bedroom takes 3/7 of an hour
This means that the whole of the bedroom will take 4 times the time it took to cover 1/4 th of bedroom.
i.e. it will take:
[tex]\dfac{3}{7}\times 4\\\\\\=\dfrac{12}{7}\ hour[/tex]
Hence, the total time it will take to paint the whole room is:
twelve over seven hours
Your answer is C, as it says in the photo below. You can see the amount of points it is worth, and the amount of points it gave me. Hope this helps somebody!
Determine whether f(x) = –5x^2 – 10x + 6 has a maximum or a minimum value. Find that value and explain how you know.
Short explanation please.
Answer:
x=-1 is a maximum vaue.
Step-by-step explanation:
To find the minimum and maximum values of the function f(x), we're going to derivate it:
f(x) = –5x^2 – 10x + 6 ⇒ f'(x) = -10x - 10
The points where f'(x) is zero, could be a maximum or a minimum. Then:
f'(x) = -10x - 10 = 0 ⇒ x=-1
Now, to know if x=-1 is a maximum or a minimum, we need to evaluate the original function for x when it tends to -1 from the right and from the left.
Therefore:
For x=-2:
f(x) = 6 (Positive)
For x=0:
f(x) = 6 (Positive)
For x=-1
f(x) = 11 (Positive)
Given that at x=-1, f(x) = 11, and then it goes down to 6 when x=0, we can say that it's a maximum.
Answer:
max at (-1,11)
Step-by-step explanation:
f(x) = –5x^2 – 10x + 6
This parabola opens downward
f(x) = ax^2 + bx+c
The value a is negative, so it opens down.
Because it opens down, it will have a maximum
We can find the x value of the maximum by finding the axis of symmetry
h = -b/2a
h = -(-10)/2(-5)
= 10/-10
h= -1
The x value of the vertex is -1
To find the y value, substitute this back into the equation
f(-1) = -5( -1)^2 - 10(-1) +6
=-5(1) +10+6
=-5 +10+6
=11
The maximum is at (-1,11)
The sequence 2, 3, 5, 6, 7, 10, 11, $\ldots$ contains all the positive integers from least to greatest that are neither squares nor cubes nor perfect fifth powers (in the form of $x^{5}$, where $x$ is an integer). what is the $1000^{\mathrm{th}}$ term of the sequence?
Answer:
1041
Step-by-step explanation:
Among the numbers 1–1000, there are 31 squares, so the sequence will extend to at least 1031. In those added numbers, there is another square (1024), so the sequence must extend to at least 1032.
There are 7 more numbers that are cubes, but not squares, so the sequence must extend to at least 1039.
And there are 2 additional numbers that are 5th powers that are not squares or cubes. Compensating for the removal of these numbers extends the end of the sequence to 1041.
There are no numbers in this range that are both cubes and 5th powers and that have not already been accounted for. (The only 15th power is 1.)
Hence, the 1000th number in the sequence is 1041.
_____
This result is verified by a computer program that listed the numbers.
The 1000th term, 1041, is in the sequence of positive integers that aren't squares, cubes, or fifth powers.
The sequence begins with 2, which is not a perfect square, cube, or fifth power.
It continues with 3, which is also not a perfect square, cube, or fifth power.
It skips numbers like 4, 5 (as 5 is a perfect fifth power), 6, and 7 (as they are squares or cubes).
The sequence picks up with 10 and 11, which are not perfect squares, cubes, or fifth powers.
This pattern continues, with the sequence skipping over numbers that meet any of the three conditions.
When you reach the 1000th term, it should be a number that satisfies these conditions, and that number is 1041.
So, you found the 1000th term by observing the pattern of the sequence and determining that it is neither a perfect square, cube, nor fifth power. Your answer of 1041 is correct for the 1000th term in this sequence.
For similar question on sequence.
https://brainly.com/question/30762797
#SPJ2
If p(x) is a polynomial that has a simple zero at x=-3 and a double zero at x= 5/4, then which of the following could be the factored for of p(x)?
A) p(x)=2(x+3)(5x-4)
B) p(x)=(x+3)(5x-4)²
C) p(x)=2(x+3)(4x-5)
D) p(x)=(x+3)(4x-5)²
Answer:
D
Step-by-step explanation:
x=-3 is a zero means x+3 is a factor
x=5/4 (with multiplicity 2) means you have the factor (x-5/4) two times
Now this may be rewritten so you don't have the fraction
like 4x=5 so you have 4x-5 as a factor two times which means you will see (4x-5)^2
So you one factor of (x+3) and two factors of (4x-5)
so you have
(x+3)(4x-5)^2
or
2(x+3)(4x-5)^2
or
41(x+3)(4x-5)^2
You can put whatever constant multiple in front of the whole thing and it will still satisfy the conditions of the problem.
So the answer is D
Final answer:
The factored form of the polynomial p(x) with a simple zero at x=-3 and a double zero at x=5/4 is (x+3)(4x-5)
, which makes option D the correct answer.
Explanation:
If p(x) is a polynomial that has a simple zero at x=-3 and a double zero at x=5/4, then to identify the correct factored form of p(x), we need to determine the factors that correspond to these zeros. A simple zero at x=-3 suggests that (x+3) must be a factor of p(x). A double zero at x=5/4 indicates that the factor corresponding to this zero should be squared in the polynomial, and since 5/4 can be written as 5/4 = 4/4 + 1/4 = 1 + 1/4, thus, the factor is (x-1-1/4), which simplifies to (x - 5/4) or (4x - 5) when multiplied by 4 to clear the fraction.
Looking at the options presented:
A) p(x)=2(x+3)(5x-4) - This has the correct factor for x=-3 but not the squared factor for x=5/4.
B) p(x)=(x+3)(5x-4)
- This has the correct factor for x=-3 but not the squared factor for x=5/4.
C) p(x)=2(x+3)(4x-5) - This has the correct factors but does not square the (4x-5) factor for the double zero at x=5/4.
D) p(x)=(x+3)(4x-5)² - This option correctly includes (x+3) for the simple zero at x=-3 and (4x-5) squared for the double zero at x=5/4.
Therefore, the correct factored form of p(x) is option D.
Inverese.
WIll mark the brainliest!
1. The word is inverse not inverese.
2. Where is the question?
Answer:
yo no vi nada
i don't see anything
Step-by-step explanation:
You paint a border around the top of the walls in your room. What angle does X repeat the pattern? 154
What does 154 mean in your question?
I assume your room is a square. If so, each corner of the room has a 90 degree angle for a total of 360 degrees.
The angle that is repeated, I assumed based on your obscure question, is 90 degrees.
So, x = 90 degrees.
For the function, tell whether the graph opens up or opens down, identify the vertex, and tell whether the graph is wider, narrower, or the same width as the graph of y = |x|.
y = 2 - |x – 10|
Question 6 options:
opens down, (10, 2), same
opens down, (-10,- 2), narrower
opens down, (-10,- 2), narrower
opens up, (10, 2), same
Answer:
opens down; (10, 2); same
Step-by-step explanation:
If the vertex of f(x) is (0, 0) then translating it to (h, k) makes the function look like f(x -h) +k. Changing the sign of f(x) to -f(x) reflects it across the x-axis, so ...
y = 2 - |x -10|
is the function y = |x| reflected across the x-axis and translated 10 units right and 2 units up. Because there is no horizontal or vertical scale factor, the apparent width of the function is the same as the original.
Final answer:
The graph of the function y = 2 - |x – 10| a .opens down with a vertex at (10, 2). It has the same width as the graph of y = |x|, meaning it is not stretched or compressed horizontally, but it is shifted upward and to the right.
Explanation:
To determine whether the graph of the function y = 2 - |x – 10| opens up or down, we must understand the behavior of the absolute value function. Since the absolute value function has a V-shape, the negative sign in front of the absolute value in the given function indicates that the graph opens down, creating an upside-down V-shape. Furthermore, the vertex of the graph is at the point where the expression inside the absolute value equals zero. In this case, x – 10 = 0, so x = 10. Plugging this into the function gives us the y-coordinate of the vertex, which is y = 2 - |10 - 10| = 2. Therefore, the vertex is (10, 2).
Comparing the width of the graph to the graph of y = |x|, we notice that there is no multiplication factor affecting the x inside the absolute value, hence the graph of the given function has the same width as the graph of y = |x|. In other words, the graph is neither stretched nor compressed horizontally. Rather, it is vertically shifted upward by 2 units, and horizontally shifted to the right by 10 units due to the x – 10 part of the function.
Write the equation in the line of point-slope form, y-y1=m(x-x1), given the slope and a point on the line:
through (8,-8) and has a slope of 3/4
[tex]\bf (\stackrel{x_1}{8}~,~\stackrel{y_1}{-8})~\hspace{10em} slope = m\implies \cfrac{3}{4} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-(-8)=\cfrac{3}{4}(x-8)\implies y+8=\cfrac{3}{4}(x-8)[/tex]