By applying logarithmic properties and solving a resulting quadratic equation, we find the solutions x = 3 and x = -7 for the given logarithmic equation.
To solve the logarithmic equation [tex]\( \log_4(x+5) + \log_4(x-1) = 2 \),[/tex] we can use the properties of logarithms to condense the equation into a single logarithm, then solve for x.
First, we apply the product rule of logarithms, which states that [tex]\( \log_a(b) + \log_a(c) = \log_a(bc) \)[/tex], to condense the two logarithms on the left side:
[tex]\[ \log_4((x+5)(x-1)) = 2 \][/tex]
Now, we have:
[tex]\[ (x+5)(x-1) = 4^2 \][/tex]
[tex]\[ (x+5)(x-1) = 16 \][/tex]
Next, we expand the left side of the equation:
[tex]\[ x^2 - x + 5x - 5 = 16 \][/tex]
[tex]\[ x^2 + 4x - 5 - 16 = 0 \][/tex]
[tex]\[ x^2 + 4x - 21 = 0 \][/tex]
Now, we can solve this quadratic equation for x. We can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For [tex]\( x^2 + 4x - 21 = 0 \), \( a = 1 \), \( b = 4 \), and \( c = -21 \).[/tex]
Plugging in these values, we get:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4(1)(-21)}}{2(1)} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{16 + 84}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{100}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm 10}{2} \][/tex]
[tex]\[ x = \frac{6}{2} \][/tex] or [tex]\( x = \frac{-14}{2}[/tex]
x = 3 or x = -7
So, the solutions to the equation are x = 3 and x = -7 .
The question probable may be:
Given a log equation solve it:
[tex]\( \log_4(x+5) + \log_4(x-1) = 2 \),[/tex]
What is the value of the function y = 2x - 3 when x = –1?
A.
–5
B.
2
C.
–1
D.
3
given the function f(x)=3√x-2; What restriction is there on the value uner the square root symbol? In other words what can't you do with a square root expression? ...?
Answer:
x must be greater than or equals to 2
Step-by-step explanation:
Here we follow the rule , which says that , the term inside the square root must not be less than 0. It is because, square of any real number whether positive or negative always results in a positive real number. Hence , there can not be negative real number whose sqaure root exists.
Hence
In order to function to be defined ,
x-2>=0
Adding 2 on both sides we get
x>=2
Hence this is our condition.
Liv wants to buy a new pair of jeans for an upcoming party. She finds a pair she likes that was originally priced at $50 and is now on sale for $42. What is the percent of discount for this item?
A.) 16%
B.) 18%
C.) 20%
D.) 25%
Write an equation to solve the problem.
Two buses leave Houston at the same time and travel in opposite directions. One bus averages 55 mi/h and the other bus averages 45 mi/h. When will they be 400 mi apart? ...?
ok guys this is for connexus introduction to solving equations: practice
1. B, h=2A/b 2. C, v=h+5t^2/t 3. D, 23 4. D, -81 5. A, 17/7 6. D, 8 7. A, 4 hours 8. C, width is 4.5; length is 7.5 9. C, never true 10. B, sometimes true
-hope this helps you guys out :3 your welcome
Each face of a pyramid is an isosceles triangle with a 74° vertex angle. What are the measures of the base angles?
Triangle is a two-dimensional figure which has three sides and the sum of the three angles is equal to 180 degrees.
An isosceles triangle is a triangle whose two sides are equal and the angle opposite to the equal sides are equal.
The sum of the isosceles triangle = 180°
The base angle of the isosceles triangle for each face of a pyramid is 53°
What is a triangle?Triangle is a two-dimensional figure which has three sides and the sum of the three angles is equal to 180 degrees.
We have,
An isosceles triangle is a triangle whose two sides are equal and the angle opposite to the equal sides are equal.
Now,
Vertex angle of the isosceles triangle = 74°
The sum of the isosceles triangle = 180°
Let the two equal base angles = x
x + x + 74° = 180°
2x + 74° - 180°
2x = 180 - 74
2x = 106
x = 53°
Thus,
The base angle of the isosceles triangle for each face of a pyramid is 53°
Learn more about triangles here:
https://brainly.com/question/25950519
#SPJ2
Solve for x.
A triangle is drawn with a midsegment. The midsegment is labeled 4 x minus 1 and the side of the triangle that is parallel to the midsegment is labeled 30.
30
15
7.75
4 Solve for x.
A triangle is drawn with a midsegment. The midsegment is labeled 4 x minus 1 and the side of the triangle that is parallel to the midsegment is labeled 30.
30
15
7.75
4
if the difference in the side lengths of two squares is 10 and the sum of the side lengths is 18 what are the side lenghts
An explorer in the dense jungles of equatorial Africa leaves his hut. He takes 40 steps northeast, then 80 steps 60 degrees north of west, then 50 steps due south.Assume his steps all have equal length. Save him from becoming hopelessly lost in the jungle by giving him the displacement, calculated using the method of components, that will return him to his hut. ...?
please help!! Choose the equation below that represents the line passing through the point (−5, 1) with a slope of 3/2
A: y − 5 = 3/2 (x + 1) B: y + 1 =3/2 (x − 5) C: y + 5 = 3/2 (x − 1) D: y − 1 = 3/2 (x + 5)
What is 3/5 as a decimal? answers:
a. 0.75
b. 0.3
c. 0.12
d. 0.15
a rectangle has a perimeter of 88 ft. if the ratio of its length to width is 9:2, what is its actual length and width
Order 51/62 32/43, and 74/87
A laptop computer is purchased for 2300 . After each year, the resale value decreases by 35% . What will the resale value be after 4 years?
round your answer to the nearest dollar ...?
I need help solving these please help...
A box contains 3 plain pencils and 9 pens. a second box contains 7 color pencils and 3 crayons. one item from each box is chosen at random. what is the probability that a plain pencil from the first box and a color pencil from the second box are selected?
A population of 240 birds increases at a rate of 16% annually. Jemel writes an exponential function of the form f(x) = abx to represent the number of birds after x years. Which values should she use for a and b?
Answer:
[tex]\boxed{\boxed{a = 240, b = 1.16}}[/tex]
Step-by-step explanation:
General exponential function for growth or decay is,
[tex]y=a(1\pm r)^{x}[/tex]
Where,
a = initial value,
r = rate of change
+ is used for growth and - is used for decay.
As here, the number of birds increasing so, the exponential function is,
[tex]y=a(1+r)^{x}[/tex]
And initial value a = 240, r = rate of change = 16% = 0.16
Putting the values,
[tex]y=240(1+0.16)^{x}\\\\y=240(1.16)^{x}[/tex]
Comparing this with the given equation [tex]y=ab^{x}[/tex]
Hence, a = 240, b = 1.16
Answer:
The value of a is 240 and b is 1.16.
Step-by-step explanation:
Given,
The initial population of the birds = 240,
Annual rate of increasing = 16 %,
Hence, the population of birds after x years
[tex]P=240(1+\frac{16}{100})^x[/tex]
[tex]=240(1+0.16)^x[/tex]
[tex]=240(1.16)^x[/tex]
We can put P = f(x), ( because, f(x) also shows the population of birds after x years )
[tex]\implies f(x) = 240(1.16)^x[/tex] --------(1)
According to the question,
[tex]f(x) =ab^x[/tex] --------(2),
From equation (1) and (2),
a = 240 and b = 1.16
For f(x)=2x+1 and g(x)=x^2-7, find (f-g)(x)
Answer:
The required answer is: [tex]-x^2+2x+8[/tex]
Step-by-step explanation:
We have been given the two function:
[tex]f(x)=2x+1[/tex]
And [tex]g(x)=x^2-7[/tex]
We have to find (f-g)(x):
[tex](f-g)(x)=f(x)-g(x)[/tex]
[tex](2x+1)-(x^2-7)[/tex]
[tex]2x+1-x^2+7[/tex]
[tex]-x^2+2x+8[/tex]
We will get the quadratic expression after the prescribed operation been applied.
Hence, the required answer is: [tex]-x^2+2x+8[/tex]
The cost of seeing a weekday show is 2/3 the cost of a weekend show. in one month, andy spent $42.50 for 4 weekday shows and 3 weekend shows. find the price of a weekday show and the price of a weekend show
Answer:
x = weekday shows
y = weekend shows
x = 2/3y
4x + 3y = 42.50
4(2/3y) + 3y = 42.50
8/3y + 3y = 42.50
8/3y + 9/3y = 42.50
17/3y = 42.50
y = 42.50 * 3/17
y = 127.50/17
y = 7.50
x = 2/3y
x = 2/3(7.50)
x = 15/3
x = 5
so weekday shows (x) cost $ 5 and weekend shows (y) cost $ 7.50
Step-by-step explanation:
a square is just big enough to contains a unit circle. what is radius of the largest circle in one of the corners in the square but outside the unit circle?
Pete wants to make turkey sandwiches for two friends and himself. He wants each sandwich to contain 3.5 ounces of turkey.how many ounces of Turkey does he need?
Shuttle A departs every 8 minutes Shuttle B departs every 10 minutes and Shuttle C departs every 12 minutes. If all shuttles leave the airport at 4:00 P.M., at what time will they next leave the airport together?
what is the scietnific notation of 108,000,000?
...?
Which set of points is not coplanar?
points A, B, E
points A, B, C, E
points B, C, D
points A, B, C, D
we know that
Coplanar points are three or more points which lie in the same plane. Remember that a plane is a flat surface which extends without end in all directions. Any three points in 3-dimensional space determine a plane.
case a) points A, B, E
Any group of three points determines a plane
so
The points A,B,E are coplanar
case b) points A, B,C,E
The four points do not belong to the same plane
so
The points A,B,C,E are not coplanar
case c) points B, C, D
Any group of three points determines a plane
so
The points B, C, D are coplanar
case d) points A,B, C, D
The base of the pyramid is a flat surface, the four points lie in the same plane
so
The points A,B, C, D are coplanar
therefore
the answer is the option
points A, B, C, E are not coplanar
Sydney is cutting the crust from the edges of her sandwich. The dimensions, in centimeters, of the sandwich is shown.
Which expression represents the total perimeter of her sandwich, and if x = 1.2, what is the approximate length of the crust?
Answer:
The answer is B. I looked at the picture of his problem. I just did the test.
I just knew the answer beforehand.
Step-by-step explanation:
What's the numerator for the following rational expression? G/h + 8/h = ?/h
You have 17 coins in pennies, nickels, and dimes in your pocket. The value of the coins is $0.47. There are four times the number of pennies as nickels. How many of each type of coin do you have? Set up the system and solve.
Final answer:
By setting up a system of equations and using the elimination method, we concluded that there are 12 pennies, 3 nickels, and 2 dimes to make up the 17 coins totaling $0.47.
Explanation:
The question asks us to determine how many pennies, nickels, and dimes we have, given that there are a total of 17 coins worth $0.47, with four times as many pennies as nickels. To solve this problem, we can set up a system of equations based on the information given.
Let p be the number of pennies, n be the number of nickels, and d be the number of dimes. Therefore, we have three equations:
p + n + d = 17 (total number of coins)
1p + 5n + 10d = 47 (total value of coins in cents)
p = 4n (four times as many pennies as nickels)
Substituting the third equation into the first and second equations, we get:
4n + n + d = 17
4n + 5n + 10d = 47
Simplify the equations:
5n + d = 17
9n + 10d = 47
Now, we solve this system of equations using substitution or elimination. Let's use the elimination method:
Multiply the first equation by 10 so that when subtracted from the second equation, the d variable will be eliminated: 50n + 10d = 170
Now subtract this from the second equation: (9n + 10d) - (50n + 10d) = 47 - 170
This results in -41n = -123, and after dividing both sides by -41, we get n = 3
Substitute n = 3 into the first simplified equation: 5(3) + d = 17, resulting in d = 17 - 15, so d = 2
Substitute n = 3 into the original third equation to find the number of pennies: p = 4(3), so p = 12
Therefore, we have 12 pennies, 3 nickels, and 2 dimes.
Classify the numbers as prime or composite
I am gonna give you classify three numbers as prime numbers and three numbers composite numbers, since you never mentioned about any specific numbers.
Prime numbers
1.3- it is a prime number because they only factors it has, is 1 and itself.
2.11- it is a prime number because you can only multiply by 11 or 1 to get 11.
3.13- it is a prime number because it only has 2 factors.
Composite numbers
1.4- it is a composite number because it has more than 2 factors.
2.8- it is a composite number because it has 1,2,4, and 8 as its factors.
3.14- it is a composite number because it has 1,2,7,and 14 as its factors.
Solve the following system of equations. Enter the y-coordinate of the solution. Round your answer to the nearest tenth.
5x+2y=21
-2x+6y=-34
...?
Answer:
The y-coordinate of the solution would be [tex]-\frac{64}{17}[/tex]
Step-by-step explanation:
Given system of equations,
5x+2y = 21 ----------(1)
-2x+6y = -34 ---------(2),
2 × Equation (1) + 5 × Equation (1),
We get,
4y + 30y = 42 - 170
34y = -128
[tex]\implies y = -\frac{128}{34}=-\frac{64}{17}[/tex]
16-2b=b+7
solve equation
15 oranges were purchased.
Cost per orange: $0.45
c = total cost of oranges
Which equation shows
the total cost of oranges?