Solve 4(c + 2) < 4c + 10.

Answers

Answer 1
4(c + 2)< 4c + 10
4c + 8 < 4c + 10
4c - 4c < 10 - 8
0 < 2...no variables
this inequality has no solution
Answer 2
[tex]4(c + 2) \ \textless \ 4c + 10[/tex] 

[tex]4c+8\ \textless \ 4c+10 [/tex] 

[tex]8\ \textless \ 10 [/tex]   [tex]\text{Cancel 4c on both sides}[/tex] 

[tex]\text{Since}[/tex] [tex]8\ \textless \ 10 [/tex] [tex]\text{is always true, there are infinitely many solutions}[/tex] 

Related Questions

Which transformation is not isometric?

Answers

A is not isometric, the size of the squares are different

Average precipitation for the first 7 months of the year, the average precipitation in toledo, ohio, is 19.32 inches. if the average precipitation is normally distributed with a standard deviation of 2.44 inches, find these probabilities.

Answers

Part A:

The probability that a normally distributed data with a mean, μ and standard deviation, σ is greater than a given value, a is given by:

[tex]P(x\ \textgreater \ a)=1-P(x\ \textless \ a)=1-P\left(z\ \textless \ \frac{a-\mu}{\sigma}\right)[/tex]

Given that the average precipitation in Toledo, Ohio for the past 7 months is 19.32 inches with a standard deviation of 2.44 inches, the probability that a randomly selected year will have precipitation greater than 18 inches for the first 7 months is given by:

[tex]P(x\ \textgreater \ 18)=1-P(x\ \textless \ 18) \\ \\ =1-P\left(z\ \textless \ \frac{18-19.32}{2.44}\right) \\ \\ =1-P(z\ \textless \ -0.5410) \\ \\ =1-0.29426=\bold{0.7057} [/tex]



Part B:

The probability that an n randomly selected samples of a normally distributed data with a mean, μ and standard deviation, σ is greater than a given value, a is given by:

[tex]P(x\ \textgreater \ a)=1-P(x\ \textless \ a)=1-P\left(z\ \textless \ \frac{a-\mu}{\frac{\sigma}{\sqrt{n}}}\right)[/tex]

Given that the average precipitation in Toledo, Ohio for the past 7 months is 19.32 inches with a standard deviation of 2.44 inches, the probability that 5 randomly selected years will have precipitation greater than 18 inches for the first 7 months is given by:

[tex]P(x\ \textgreater \ 18)=1-P(x\ \textless \ 18) \\ \\ =1-P\left(z\ \textless \ \frac{18-19.32}{\frac{2.44}{\sqrt{5}}}\right) \\ \\ =1-P(z\ \textless \ -1.210) \\ \\ =1-0.1132=\bold{0.8868}[/tex]

Using the normal distribution and the central limit theorem, it is found that there is a:

a) 0.7054 = 70.54% probability that a randomly selected year will have precipitation greater than 18 inches for the first 7 months.b) 0.8869 = 88.69% probability that five randomly selected years will have an average precipitation greater than 18 inches for the first 7 months.

Normal Probability Distribution

In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

It measures how many standard deviations the measure is from the mean.  After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

In this problem:

The mean is of 19.32 inches, hence [tex]\mu = 19.32[/tex].The standard deviation is of 2.44 inches, hence [tex]\sigma = 2.44[/tex].

Item a:

The probability that a randomly selected year will have precipitation greater than 18 inches for the first 7 months is 1 subtracted by the p-value of Z when X = 18, hence:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{18 - 19.32}{2.44}[/tex]

[tex]Z = -0.54[/tex]

[tex]Z = -0.54[/tex] has a p-value of 0.2946.

1 - 0.2946 = 0.7054.

0.7054 = 70.54% probability that a randomly selected year will have precipitation greater than 18 inches for the first 7 months.

Item b:

Now, we want the probability that five randomly selected years will have an average precipitation greater than 18 inches for the first 7 months, hence:

[tex]n = 5, s = \frac{2.44}{\sqrt{5}}[/tex]

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{18 - 19.32}{\frac{2.44}{\sqrt{5}}}[/tex]

[tex]Z = -1.21[/tex]

[tex]Z = -1.21[/tex] has a p-value of 0.1131.

1 - 0.1131 = 0.8869.

0.8869 = 88.69% probability that five randomly selected years will have an average precipitation greater than 18 inches for the first 7 months.

To learn more about the normal distribution and the central limit theorem, you can take a look at https://brainly.com/question/24663213

Simplify an expression

Answers

Answer:

[tex]\frac{20+2k}{3k+12}[/tex]

Step-by-step explanation:

Since there is no equals sign here, we are not solving this.  The only way to simplify is to get a common denominator and write the expression as a single expression.  We can begin by noting that the second term has a k in the numerator and in the denominator, and those cancel each other out.  That is the first simplification we can perform.  That leaves us with:

[tex]\frac{4}{k+4}+\frac{2}{3}[/tex]

In the first term, the denominator is k + 4, in the second term it is just 3.  Therefore, the common denominator is 3(k+4).  We are missing the 3 in the denominator of the first term, so we will multiply in 3/3 by that term.  We are missing a (k + 4) in the second term, so we will multiply in (k + 4)/(k + 4) by that term:

[tex](\frac{3}{3})(\frac{4}{k+4})+(\frac{k+4}{k+4})(\frac{2}{3})[/tex]

Multiplying fractions requires that I multiply straight across the top and straight across the bottom.  That gives me:

[tex]\frac{12}{3k+12}+\frac{2k+8}{3k+12}[/tex]

Now that the denominators are the same, I can put everything on top of that single denominator:

[tex]\frac{12+2k+8}{3k+12}[/tex]

Th final simplification requires that I combine like terms:

[tex]\frac{20+2k}{3k+12}[/tex]

A stack of two hundred fifty cards is placed next to a ruler, and the height of stack is measured to be 5 8 58 inches.

Answers

─────█─▄▀█──█▀▄─█─────
────▐▌──────────▐▌────
────█▌▀▄──▄▄──▄▀▐█────
───▐██──▀▀──▀▀──██▌───
──▄████▄──▐▌──▄████▄──

plz don't be mad I need points

What does negative 2 over 3 > −1 indicate about the positions of negative 2 over 3 and −1 on the number line?

Answers

Answer:

Step-by-step explanation:

PLEASE HELP!!!

Taylor bought 200 shares of stock for $18.12 per share last year. He paid his broker a flat fee of $30. He sold the stock this morning for $21 per share, and paid his broker 0.5% commission.

a. What were Taylor's net proceeds?

b. What was his capital gain?

Answers

Taylor's net proceeds from the sale of his stock are $4179, after paying his broker's 0.5% commission. His capital gain on the investment is $525, calculated by subtracting the total purchase cost, including the initial broker's flat fee, from the net proceeds of the sale.

a. What were Taylor's net proceeds?

To calculate Taylor's net proceeds, we need to consider the initial cost of buying the shares, any fees paid to the broker, and the amount earned from selling the shares. Here's the breakdown:

Determine initial cost: 200 shares x $18.12 per share = $3624

Add broker's fee when buying: $3624 + $30 = $3654

Subtract broker's fee when selling: $42 (0.5% of $8400 from selling 200 shares at $21 per share)

Calculate net proceeds: $8400 - $42 = $8358

b. What was his capital gain?

To find Taylor's capital gain, subtract the total cost (initial purchase cost + fees) from the total earnings after selling the shares. The calculation is as follows:

what is the sale tax on item that costs $33.50. if the sale tax is 0.06 on every $1?

Answers

Your answer will be 2.01 dollers

Write your answer in standard form with integer coefficients.
2x + 3y = 30 ; (2,-5)

Answers

Well I dont know if I'm correct but i think its 4+-15=30 Im just saying

Please help!!!!!

The function graphed shows the total cost for a taxi cab ride for x miles.

Select from the drop-down menus to correctly identify the taxi cab ride information provided by the graph.


The slope is ________
a. 5
b. 3
c. 2.5
d. 0.2

The slope represents _______
a. the total cost of the taxi ride
b. total number of miles traveled
c. cost per mile traveled
d. the initial cost of the taxi ride

Answers

(0,3) and (2,8)
slope = (8-3)/(2-0) = 5/2 = 2.5

answer

The slope is ________
c. 2.5

The slope represents _______
c. cost per mile traveled

The slope of the line between cost of taxi and distance is 2.5 and it represents the cost of taxi per mile of distance travelled.

What is slope of line ?

Slope of line is the angle made by the line from positive x-axis in anticlockwise direction, it also denoted the steepness of the line.

The function graphed shows the total cost for a taxi cab ride for x miles the cost in taxi is shown in y axis and the distance covered by taxi in x axis. Now, to find put the slope we must two coordinates which  can be found out from the graph easy by observation as (0,3) and (2,8).

How using slope formula to find the slope of line :

[tex]\begin{aligned}\frac{y_{2}-y_{1}}{x_{2}-x_{1}}&=\frac{8-3}{2-0}\\&=\frac{5}{2}\\&=2.5\end{aligned}[/tex]

It represents the cost of taxi per mile of distance travelled.

Therefore, the slope of the line between cost of taxi and distance is 2.5 and it represents the cost of taxi per mile of distance travelled.

check and know more about slope of line here :

https://brainly.com/question/3605446

#SPJ2

List -0.3 , 0.5 ,0.55 ,-0.35 from least to greatest

Answers

-0.35, -0.3, 0.5, 0.55

is your answer

hope this helps
the correct answer is-0.35,-0.3,0.55,0.5

At a certain college, there are 600 freshman, 400 sophomores, 300 juniors, and 200 seniors. if one student is selected at random, what is the probability that the student is a sophomore?

Answers

The total number of sample space in this item is calculated by adding up all the number of students given. That is,

   S = 600 + 400 + 300 + 200 = 1500

The probability is calculated with the equation below.

    P = n / S

where P is the probability,
          n is the number of sophomores, and 
          S is the total number of students

Substituting,
    
  P = 400 / 1500 = 4/15

ANSWER: 4/15

Write the equation of the piecewise function ƒ that is represented by its graph.

Answers

check the picture below.

the hole, of course means, that point is not part of the range.

and the closed hole, means it is part of that range.

[tex]\bf f(x)= \begin{cases} \sqrt{x},&x\ \textless \ 4\\ x^2,&x\ge 4 \end{cases}[/tex]

Piecewise function with 3 pieces: [tex]x^2+1, 4x-8, 2[/tex]

The piecewise function ƒ that is represented by the graph in the image is:

ƒ(x) =

[tex]x^2+1, & \text{if } 0 \le x < 4 \\[/tex]

[tex]4x-8, & \text{if } 4 \le x < 5 \\[/tex]

[tex]5^2+1 = 26, & \text{if } x = 5[/tex]

This is because the graph of the function consists of three distinct pieces:

For 0≤x<4, the graph is a parabola with vertex at (0,1) and opening upwards. This suggests that the function is of the form [tex]ax^{2} +bx+c.[/tex]

We can find the values of a, b, and c by substituting the points (0,1), (1,1), and (4,16) into the equation.

This gives us the system of equations:

\begin{cases}

[tex]a \cdot 0^2 + b \cdot 0 + c = 1[/tex]

[tex]a \cdot 1^2 + b \cdot 1 + c = 1 \\[/tex]

[tex]a \cdot 4^2 + b \cdot 4 + c = 16[/tex]

\end{cases}

Solving this system gives us a=1, b=0, and c=1, so the equation of the function for this interval is [tex]x^{2} +1[/tex].  

For 4≤x<5, the graph is a line with slope 4 and y-intercept −8.

This suggests that the function is of the form mx+b.

We can find the values of m and b by substituting the points (4,2) and (5,25) into the equation.

This gives us the system of equations:

\begin{cases}

[tex]4m+b = 2 \\[/tex]

5m+b = 25

\end{cases}

Solving this system gives us m=4 and b=−8, so the equation of the function for this interval is 4x−8.

For x=5, the graph is a horizontal line at y=26.

This suggests that the function is of the form c.

We can find the value of c by simply looking at the graph.

This gives us c=26, so the equation of the function for this interval is 26.

Therefore, the complete piecewise function is:

ƒ(x) =

\begin{cases}

[tex]x^2+1, & \text{if } 0 \le x < 4 \\[/tex]

[tex]4x-8, & \text{if } 4 \le x < 5 \\[/tex]

[tex]5^2+1 = 26, & \text{if } x = 5[/tex]

\end{cases}

For similar question on Piecewise function.  

https://brainly.com/question/28225631

#SPJ3

#2
Point C has a _____ abscissa and a _____ ordinate.

positive, negative
negative, positive
negative, negative
positive, positive

Answers

it is the third onne
Positive, Negative because C Has a number that is Positive and a number that is Negative.

Seascapes rent small fishing boats for a day-long fishing trips. each boat can carry only 1200 lb of people and gear for safety reasons. Assume the average weight of a person is 150 lb. each group will require 200 pounds of gear for the boat plus 10 lb of gear for each person.

A) create any quality describing the restrictions on the number of people that can possibly fit in a rented boat.

B) several groups of people wish to rent a boat Group one has 4 people group two has 5 people group three has 8 people. Determine which of the groups, if any, can safely run a boat what is the maximum number of people that may rent a boat.

Answers

A. We are given that each person weighs 150 lb, each gear per person weighs 10 lb, and a total of 200 pounds of gear for the boat itself.

Since each person only carries one gear, therefore total weight per person in 160 lb (weight of person + weight of gear).

So let us say that x is the number of persons, the inequality equation is:

 

160 x + 200 ≤ 1200

 

 

B. There are three groups that wish to rent the boat.

> Solve the inequality equation when x = 4

160 (4) + 200 ≤ 1200

840 ≤ 1200           (TRUE)

 

> Solve the inequality equation when x = 5

160 (5) + 200 ≤ 1200

1000 ≤ 1200         (TRUE)

 

> Solve the inequality equation when x = 8

160 (8) + 200 ≤ 1200

1480 ≤ 1200         (FALSE)

 

So only the 4 people group and 5 people group can safely run the boat.

 

 

C. Find the maximum number of people that may safely use the boat, solve for x:

 

160 x + 200 ≤ 1200

160 x ≤ 1000

x ≤ 6.25

 

Therefore the maximum number of people that can safely use the boat is 6 people.

A mathematical inequality is created to determine that a maximum of 6 people can rent a boat based on the safety weight limit of 1200 lb. Of the groups provided, only groups with 4 or 5 people can safely rent the boat, while the group with 8 people cannot due to exceeding the weight limit.

To determine the restrictions on the number of people that can possibly fit in a rented boat given the safety weight limit, we start by creating an inequality. Let p represent the number of people, then the total weight of the people is 150 lb times p, and the total gear weight is 200 lb for the boat plus 10 lb per person. The inequality can be represented as:

150p + 10p + 200 \<= 1200

Simplifying the inequality gives us:

160p \<= 1000

Dividing both sides by 160:

p \<= 1000 / 160

p \<= 6.25

Since we cannot have a fraction of a person, the maximum number of people allowed is 6.

For part B, we evaluate if the groups mentioned can safely rent a boat:

Group 1 (4 people): 150(4) + 10(4) + 200 = 840 lb \<= 1200 lb - they can rent.

Group 2 (5 people): 150(5) + 10(5) + 200 = 1000 lb \<= 1200 lb - they can rent.

Group 3 (8 people): 150(8) + 10(8) + 200 = 1480 lb > 1200 lb - they cannot rent as it exceeds the limit.

The maximum number of people who may rent a boat based on the given restrictions and average weights is 6 people.

Evaluate the expression. ​ (26÷13)⋅(−7)+14−4 ​ Enter your answer in the box

Answers

(2)*-7+14-4        -14+14-4               0-4            = -4

The value of the expression (26 ÷ 13) ⋅ (−7) + 14 − 4 ​will be negative four.

What is the value of the expression?

When the relevant factors and natural laws of a mathematical model are given values, the outcome of the calculation it describes is the expression's outcome.

PEMDAS rule means for the Parenthesis, Exponent, Multiplication, Division, Addition, and Subtraction. This rule is used to solve the equation in a proper and correct manner.

The expression is given below.

⇒ (26 ÷ 13) ⋅ (−7) + 14 − 4 ​

Simplify the expression, then the value of the expression will be

⇒ (26 ÷ 13) ⋅ (−7) + 14 − 4 ​

⇒ (2) ⋅ (−7) + 14 − 4 ​

⇒ −14 + 14 − 4 ​

⇒ − 4 ​

Then the value of the expression (26 ÷ 13) ⋅ (−7) + 14 − 4 ​will be negative four.

More about the value of expression link is given below.

https://brainly.com/question/23671908

#SPJ5

How can u tell
Whether 1080 is cube number

Answers

tSplit  into prime factors

1080  = 2*2*2*3*3*3*5

Its not a cube because  although there are  2 triplicates there is also a 5.

Note 2*2*2*3*3*3   is a cube.

The solution is, 1080  = 2*2*2*3*3*3*5, is not a cube number.

What is  multiplication?

In mathematics, multiplication is a method of finding the product of two or more numbers. It is one of the basic arithmetic operations, that we use in everyday life.

here, we have,

given that,

the number is 1080

Split  into prime factors

1080  = 2*2*2*3*3*3*5

so, we have,

Its not a cube

because  although there are  2 triplicates there is also a 5.

as, we know that,

Note 2*2*2*3*3*3   is a cube.

so, 1080  = 2*2*2*3*3*3*5, is not a cube number.

Hence, The solution is, 1080  = 2*2*2*3*3*3*5, is not a cube number.

To learn more on multiplication click:

brainly.com/question/5992872

#SPJ2

Find the difference quotient and simplify your answer. f(x) = 7x − x2, f(7 + h) − f(7) h , h ≠ 0

Answers

whatever is inside of the ( ), simply plug that digit into the x-values for f(x)
So: f(x) = 7x - x^2, and f(7+h) - f(7)
= [7(7+h) - (7+h)^2] - [7(7) - (7)^2]
= [49+7h - 49+14h+h^2] - [49-49]
= 49-49 + 7h+14h + h^2 = h^2 + 21h =
h (h+21), h (h+21) = 0
h=0... But it stated h cannot = 0
So h+21 = 0, h = -21
Final answer:

The difference quotient for the function f(x) = 7x - x² is (7h - h²) / h.

Explanation:

The difference quotient is used to find the rate at which a function changes over a small interval. To find the difference quotient for the given function f(x) = 7x − x², we substitute f(7 + h) and f(7) into the formula: [f(7 + h) - f(7)] / h. Simplifying the expression, we get [(7(7 + h) - (7 + h)²) - (7(7) - 7²)] / h. Expanding and simplifying further, we have [(49 + 7h - h²) - (49 - 49)] / h, which becomes (7h - h²) / h.

Learn more about difference quotient here:

https://brainly.com/question/35589801

#SPJ5

Divide 42 in a ratio of 1:2:3?

Answers

Ratio 1:2:3 means we have x, 2x and 3x as the three parts

x+2x+3x = 42
6x = 42
6x/6 = 42/6
x = 7

Since x = 7, this means 2x = 2*7 = 14 and 3x = 3*7 = 21

Dividing 42 into the ratio of 1:2:3 means we have 7:14:21 as the answer

If we divide all three parts of 7:14:21 by the GCF 7, we reduce it down to 1:2:3

As a check, 
7+14+21 = 21+21 = 42
so it works out

4x-3y+6z=18,-x+5y+4z=48,6x-2y+5z=0 what are x,y,and z?

Answers

-1x+5y+4z=48
4x-3y+6z=18
6x-2y+5z=0
multiply the first equation by 4 and add the results to the second equation:
-1x+5y+4z=48
17y+22z=210
6x-2y+5z=0
multiply the first equation by 6 and add the results to the third equation:
-1x+5y+4z=48
17y+22z=210
28y+29z=288
multiply the second equation by -28/17 and add the result to the third equation:
-1x+5y+4z=48
17y+22z=210
-123/17z=-984/17
solve for z
-123/17z=-984/17
z=8
then solve for y
17y+22z=210
17y+22*8=210
y=2
solve for x substituting y=2 and z=8 into the first equation:
4x-3(2)+6(8)=18
x=-6
so the solutions are x=-6, y=2, z=8

Find the product: 5(−3)(−2)

PLEASE HELP ASAP!

Answers

(-3)(-2) = 6
6(5) = 30

30 is your answer

hope this helps
30 is the answer for you

SOMEONE PLEASE HELP!
A store allows customers to fill their own bags of candy. Troy decides he only wants chocolate-covered pretzels and gumdrops. Chocolate-covered pretzels sell for $0.89 per pound, and gumdrops sell for $0.65 per pound. Troy’s bag weighs 1.8 pounds and it cost $1.29.



A. 0.5 pounds of pretzels; 1.3 pounds of gumdrops
B. 0.9 pounds of pretzels; 0.9 pounds of gumdrops
C. 1.3 pounds of pretzels; 0.5 pounds of gumdrops
D. 0.8 pounds of pretzels; 1 pound of gumdrops

Answers

A

just plug in the prices of the candy .5 times the price of pretzels and 1.3 times the price of gumdrops

The regular price of a jacket is $42.75. during a sale, the jacket was marked 12% off. what was the price of the jacket during the sale? (1 point) $5.13 $30.75 $37.62 $42.63

Answers

$37.62

.12x42.75=5.13

42.75-5.13=37.62

what is an equation for the number of $0.60 bagels that can be purchased with d dollars

Answers

The answer is 0.60d.
x+D=1
since d is dollar and the one is
x would be the cost and the d would be the dollar
 

A corporation employs 2000 male and 500 female engineers. a stratified random sample of 200 male and 50 female engineers gives each engineer 1 chance in 10 to be chosen. this sample design gives every individual in the population the same chance to be chosen for the sample. is it an srs? explain your answer.

Answers

Yes, an SRS by definition is a sample that is divided into groups that share an attribute and then those groups are combined. In this case the groups are divided by gender.
Final answer:

No, the sample design is not a simple random sample (SRS), but a stratified random sample. In an SRS, every individual in the population has an equal chance of being chosen for the sample.

Explanation:

The given sample design is not a simple random sample (SRS). In an SRS, every individual in the population has an equal chance of being chosen for the sample. However, in this case, the sample design is a stratified random sample. It involves dividing the population into groups (in this case, male and female engineers) and then selecting a sample from each group using a different sampling rate.

To determine if a sample design is an SRS, we need to ensure that each individual in the population has an equal chance of being chosen, and this probability is the same for every individual. In the case of the given example, the sample design does not meet these criteria, making it not an SRS.

Learn more about Sample Design here:

https://brainly.com/question/35456970

#SPJ3

A culture started with 4,000 bacteria. After 5 hours, it grew to 4,800 bacteria. Predict how many bacteria will be present after 15 Hours.
Round your answer to the nearest whole number

Answers

First we need to find k ( rate of growth)
The formula is
A=p e^kt
A future bacteria 4800
P current bacteria 4000
E constant
K rate of growth?
T time 5 hours
Plug in the formula
4800=4000 e^5k
Solve for k
4800/4000=e^5k
Take the log for both sides
Log (4800/4000)=5k×log (e)
5k=log (4800/4000)÷log (e)
K=(log(4,800÷4,000)÷log(e))÷5
k=0.03646

Now use the formula again to find how bacteria will be present after 15 Hours
A=p e^kt
A ?
P 4000
K 0.03646
E constant
T 15 hours
Plug in the formula
A=4,000×e^(0.03646×15)
A=6,911.55 round your answer to get 6912 bacteria will be present after 15 Hours

Hope it helps!

Answer:

6900 rounded answer -

Step-by-step explanation:

Plato users, correct.

(60 POINTS! I NEED HELP NOW PLEASE!)


Given a polynomial function f(x), describe the effects on the y-intercept, regions where the graph is increasing and decreasing, and the end behavior when the following changes are made. Make sure to account for even and odd functions.

-When f(x) becomes f(x) -3

-When f(x) becomes -2 * f(x)

Answers

Think of f(x) as the y value If you add 2 to y you move the function up by 2 units. The shape stays the same, where it is increasing and decreasing stays the same. It's just an upward shift. If f(x) is an even function, this means f(-x) = f(x), so what I just described applies If f(x) is an odd function, this means f(-x) = -f(x), so what I just described applies as as well When you multiply f(x) by -1/2, you invert the function f(x) so that positive values become negative and negative become positive. This means where f(x) was maximum, it's now a minimum and vice-versa If f(x) is even, then what I've just described applies If f(x) is odd, then what I've just described applies Hope this helps.

a physicist working in a large labortory has found out that the light particles traveling in a particle accelerator increase velocity in a manner that can be described by linear function -4x+3y=15, where x is time and y is velocity in kilometers per hour. use this function to determine when a certain particle will reach 30 km/hr

Answers

Given:
-4x + 3y = 15
where 
x = time, hr
y = velocity, km/h

Write the equation as
3y = 4x + 15
y = (4/3)x + 5

When y = 30 km/h, then
(4/3)x + 5 = 30
(4/3)x = 25
x = 25*(3/4) = 18.75 h

Answer: 18.75 hours

If a triangle has an angle greater than 90 degrees, then it is not a right triangle true or false?

Answers

True
A triangle that has an angle greater than 90 degrees, it is not a right triangle
It would not be a right angle.

a video store sold 2 vhs tapes for every 4 dvds if 564 dvds were sold how many vhs tapes were sold?

Answers

282 because you divide 564 by 2 i think. Hope this helps

Final answer:

To find the number of VHS tapes sold when 564 DVDs were sold, divide the number of DVDs by 2.

Explanation:

To solve this problem, we can set up a ratio comparing the number of VHS tapes sold to the number of DVDs sold. Since the ratio is given as 2 VHS tapes to every 4 DVDs, we can simplify it to 1 VHS tape to every 2 DVDs. If 564 DVDs were sold, we can divide this number by 2 to find the number of VHS tapes sold:

564 DVDs ÷ 2 = 282 VHS tapes

Therefore, 282 VHS tapes were sold.

Learn more about DVDs and VHS tapes here:

https://brainly.com/question/29995390

#SPJ12

Write the expression(4x-2)·6(2x 7) in the standard form of a quadratic expression, ax² bx c what are the values of the couiffeciant?

Answers

I have found that the right expression is (4x-2)*6(2x-7).

So, I will apply distributive property step by step:

1) (4x - 2) (12x - 35)

2) 4*12x^2 - 4*35x - 2*12x + 2*35 = 48x^2 - 140x - 24x + 70 = 48x^2 - 164x + 70

3) Compare with ax^2 + bx + c

=> a = 48, b = - 164, c = 70

Answer: a = 48, b = -164, c = 70


Other Questions
Find equations in standard form of the lines through point P that are A.) parallel to, and B.) perpendicular to, line L. P(0,-4); L: 2y=x. I've tried solving it and looking at examples, but no examples in my book are like this problem. To find the number of neutrons in an atom, subtract its _____. A chef made 30 donuts in 60minutes how long would it take him to make 90donits Element of thunderstorms heavy rain WHAT DOES THE 1-10 AMENDMENTS EACH MEAN PLZ EXPLAIN(EXAMPLE #1- IT MEANS .........#2- IT MEANS ........... When amy's entire family tried advising her on her science project, she politely told them that too many cooks spoil the broth? Write the equation for the vertical line that contains point E (10,-3) What is the antonym for hammock Divide. Write your answer in simplest form.4 5/6 Doris, an eighty-seven-year-old widow, collapsed while shopping at a store. she was taken to the detroit city hospital by ambulance. she stayed there for fourteen days and was then transferred to another hospital, where she later died. she never regained consciousness. after she died, the hospitals and the ambulance company sued her estate to recover their expenses. will doris's estate be held liable for the medical bills? One molecule of glucose makes 30 molecules of atp. how many molecules of glucose are needed to make 300 molecules of atp in aerobic respiration? Was johnd. rockefeller a robber baron or captain of industry Physical exercise helps prevent heart disease. true or false A biology class examined some flowers in a local meadow. Out of the 40 flowers they saw, 8 were perennials. What percentage of the flowers were perennials?Write your answer using a percent sign (%). What have we learned from fossil evidence about evolution? A It is an abrupt change. B The process is observable. C It takes place during a lifetime. D The best organism is always selected. "the plasma membrane of the bacterium pseudomonas syringae is able to remain fluid when it is extremely cold. the bacterium most likely accomplishes this by" Which new jobs will be in demand in the next 20 years Write numerals for each of the italicized number word names found in these examples. Earths moon is (a) two million, one hundred fifty-five thousand, one hundred twenty miles across. The closest distance between Earth and the moon is (b) two hundred twenty-five million, sixty thousand miles. The farthest distance between them is (c) two hundred fifty-one million, seven hundred twenty thousand miles. Why didn't the paths of underground railroad follow a straight line to freedom? A rock is dropped from the top of a building. after 4 seconds it is moving at 40 m/s. what was the acceleration of the rock Steam Workshop Downloader