Answer:
20. OPTION D.
12. OPTION B.
Step-by-step explanation:
20. An inverse variaton equation has this form:
[tex]y=\frac{k}{x}[/tex]
Where "k" is the constant of variation.
If Q varies inversely as the square of p, then the equation is:
[tex]Q=\frac{k}{p^2}[/tex]
Knowing that [tex]Q = 36[/tex] when [tex]p = 7[/tex], you can solve for "k" and caculate its value:
[tex]k=Qp^2\\k=(36)(7^2)\\k=1,764[/tex]
Then, to find the value of "Q" when [tex]p = 6[/tex], substitute the known values into [tex]Q=\frac{k}{p^2}[/tex]:
[tex]Q=\frac{1,764}{6^2}\\\\Q=49[/tex]
12. Given [tex](ab)^n[/tex], you get:
[tex](ab)^n=(a^1b^1)^n=a^{(1*n)}b^{(1*n)}=a^nb^n[/tex]
Then:
[tex](ab)^n=a^nb^n[/tex]
This matches with the option B.
Find the solution set for the equation, given the replacement set.
y = –5x + 8; {(6, –11), (4, –12), (5, –9), (3, –14)}
a.
{(6, –11)}
c.
{(4, –12)}
b.
{(3, –14)}
d.
{(5, –9)}
Answer:
c. {(4, -12)}
Step-by-step explanation:
It is convenient to rearrange the equation to standard form:
5x +y = 8
Then check the offered points.
(6, -11): 5·6 -11 = 19 ≠ 8
(4, -12): 5·4 -12 = 8 . . . . . . this is in the solution set
(5, -9): 5·5 -9 = 16 ≠ 8
(3, -14): 5·3 -14 = 1 ≠ 8
To find the solution set, substitute the x and y values into the equation and check if it is true.
Explanation:To find the solution set for the equation, we need to check which coordinates from the replacement set satisfy the equation y = -5x + 8.
For (6, -11): Substituting x = 6 and y = -11 into the equation, we get -11 = -5(6) + 8, which simplifies to -11 = -30 + 8. This is not true, so (6, -11) is not a solution.For (4, -12): Substituting x = 4 and y = -12 into the equation, we get -12 = -5(4) + 8, which simplifies to -12 = -20 + 8. This is not true, so (4, -12) is not a solution.For (5, -9): Substituting x = 5 and y = -9 into the equation, we get -9 = -5(5) + 8, which simplifies to -9 = -25 + 8. This is not true, so (5, -9) is not a solution.For (3, -14): Substituting x = 3 and y = -14 into the equation, we get -14 = -5(3) + 8, which simplifies to -14 = -15 + 8. This is true, so (3, -14) is a solution.The solution set for the equation, given the replacement set, is {(3, -14)}.
Learn more about Solution set for an equation here:https://brainly.com/question/35476090
#SPJ3
–4y=10 in standard form
Answer:
Already in standard form
Step-by-step explanation:
-4y=10
-4y= by
10= c
And in this case ax=0x, so it will not show up in the equation
0x-4y=10, which is already in standward form
-4y=10 divide both sides by -2, so 2y=5 subtract 5 from both sides,
2y-5=0
14/30÷14.00 show all work
1 Simplify \frac{14}{30}
30
14
to \frac{7}{15}
15
7
.
\frac{7}{15}\div 14.00
15
7
÷14.00
2 Use this rule: a\div \frac{b}{c}=a\times \frac{c}{b}a÷
c
b
=a×
b
c
.
\frac{7}{15}\times \frac{1}{14.00}
15
7
×
14.00
1
3 Use this rule: \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd}
b
a
×
d
c
=
bd
ac
.
\frac{7\times 1}{15\times 14.00}
15×14.00
7×1
4 Simplify 7\times 17×1 to 77.
\frac{7}{15\times 14.00}
15×14.00
7
5 Simplify 15\times 14.0015×14.00 to 210210.
\frac{7}{210}
210
7
6 Simplify.
1/30
55) Louis started a simple interest savings account with $1500 that earned 3.5% interest. He left the account untouched until some
55) Louis started a simi
time later when he withdrew all the money in that account, which totaled $1683.75. How long did Louis leave his money in the
account? years
Answer:
3.5 years
Step-by-step explanation:
Each year, Louis earned
$1500×0.035 = $52.50
in interest.
The amount of interest that had been credited to his account at the time of withdrawal was ...
$1683.75 -1500.00 = $183.75
Then the length of time the money had been in the account was ...
$183.75/($52.50/yr) = 3.5 yr
_____
Comment on the problem
We have assumed the account earned simple interest. Given the neatness of the answer, we believe that to be a correct assumption.
What transformation has changed the parent function f(x) = log2x to its new appearance shown in the graph below?
logarithmic graph passing through point 2, 4.
f(x + 3)
f(x − 3)
f(x) + 3
f(x) − 3
Answer: Third Option
[tex]f(x) +3[/tex]
Step-by-step explanation:
The function [tex]y=log_2(x)[/tex] passes through point (2, 1) because the exponential function [tex]2 ^ x = 2[/tex] when [tex]x = 1[/tex].
Then, if the transformed function passes through point (2, 4) then this means that the graph of [tex]y=log_2(x)[/tex] was moved vertically 3 units up.
The transformation that vertically displaces the graph of a function k units upwards is:
[tex]y = f (x) + k[/tex]
Where k is a positive number. In this case [tex]k = 3[/tex]
Then the transformation is:
[tex]f(x) +3[/tex]
and the transformed function is:
[tex]y = log_2 (x) +3[/tex]
If P=(-2,5) and (x,-27), find all numbers x such that the vector represented by PQ has length -40
Answer:
x ∈ {-26, 22}
Step-by-step explanation:
A graph shows that the points (-26, -27) and (22, -27) lie on a circle of radius 40 centered at (-2, 5). That is, if Q is either one of these points, the vector PQ will have a length of 40:
√((-26-(-2))^2 +(-27-5)^2) = √((-24)^2 +(-32)^2) = √1600 = 40√((22 -(-2))^2 +(-27 -5)^2) = √(24^2 +(-32)^2) = √1600 = 40You can call it -40 if you like, but you have to define what negative length means when you do that.
Prove that for all whole values of n the value of the expression:
n(n–1)–(n+3)(n+2) is divisible by 6.
Expand:
[tex]n(n-1)-(n+3)(n+2)=(n^2-n)-(n^2+5n+6)=-6n-6[/tex]
Then we can write
[tex]n(n-1)-(n+3)(n+2)=6\boxed{(-n-1)}[/tex]
which means [tex]6\mid n(n-1)-(n+3)(n+2)[/tex] as required.
Please help me out guys. The photo will show you what to do. 50 points cause I need it done fast
Answer:
a) starting height: 5.5 ft
b) hang time: 5.562 seconds
c) maximum height: 126.5 ft
d) time to maximum height: 2.75 seconds
Step-by-step explanation:
a) The starting height is the height at t=0.
h(0) = -16·0 +88·0 +5.5
h(0) = 5.5
The starting height is 5.5 feet.
__
b) The ball is in the air between t=0 and the non-zero time when h(t) = 0. We can find the latter by solving ...
-16t^2 + 8t +5.5 = 0
t^2 -(11/2)t = 5.5/16 . . . . . subtract 5.5, then divide by -16
t^2 -(11/2)t +(11/4)^2 = (5.5/16) +(11/4)^2 . . . . complete the square
(t -11/4)^2 = 126.5/16 . . . . . . . . . . . . . . . . . . . . call this [eq1] for later use
t -11/4 = √7.90625
t = 2.75 +√7.90625 ≈ 5.562
The ball will be in the air about 5.562 seconds.
__
c) If we multiply [eq1] above by -16 and add the constant on the right, we get the vertex form of the height equation:
h(t) = -16(t -11/4) +126.5
The vertex at (2.75, 126.5) tells us ...
The maximum height of the ball is 126.5 feet.
__
d) That same vertex point tells us ...
The maximum height will be reached at t = 2.75 seconds.
_____
If you really need answers fast, a graphing calculator can give them to you in very short order (less than a minute).
....Help Please.......
Answer:
y = 2x+3
Step-by-step explanation:
The slope is "what happens to the graph when you move one unit to the right in x-direction". As you can check, if you move 1 to the right, the y value increases by 2. Therefore the slope is 2.
The intercept is the graph's y value when x=0, ie., when it passes the y axis. This is at y=3.
Now we have our two ingredients, so y = slope * x + intercept, so 2x+3
I need the solution and the work for it... for each of the multiple choices.
For this case we have the following equation:
[tex]x ^ 3 = 375[/tex]
We must find the value of "x":
We apply cube root on both sides of the equation to eliminate the exponent:
[tex]x = \sqrt [3] {375}[/tex]
We can write 375 as [tex]5 ^ 3 * 3[/tex]
So:
[tex]x = \sqrt [3] {5 ^ 3 * 3}\\x = 5 \sqrt [3] {3}[/tex]
Then, the correct options are:
[tex]x = \sqrt [3] {375}\\x = 5 \sqrt [3] {3}[/tex]
Answer:
Option A and B
Plz help ASAP!! Explain your answer! I will mark at brainliest!!! And don’t copy anybody else’s answer
Answer:
No. Anna is incorrect.
Step-by-step explanation:
In order to find if the answer is right, just find the diagonals using the pythogorean theorem.
a² + b² = c²
For the rectangle, the base is 14 and the height is 7. We will have to find the hypotenuse.
14² + 7² = c²
196 + 49 = c²
245 = c²
c = √245
c = √49 × √5
c = 7√5
For the square, the base is 7 and the height is 7. We will have to find the hypotenuse.
7² + 7² = c²
49 + 49 = c²
98 = c²
c = √98
c = √49 × √2
c = 7√2
Now compare :
7√5 and 7√2
Clearly, 7√5 is not the double of 7√2
For the following system, use the second equation to make a substitution for x in the first equation. x + 2y = 7 x + 5 = 3y What is the resulting equation? 3y - 5 - 2y = 7 3y + 5 + 2y = 7 3y - 5 + 2y = 7
Answer:
3y - 5 + 2y = 7
Step-by-step explanation:
Subtracting 5 from the second equation gives ...
x = 3y -5
Using the expression on the right for x in the first equation gives ...
x + 2y = 7 . . . . . . . . first equation
(3y -5) +2y = 7 . . . . with expression substituted for x
3y - 5 + 2y = 7 . . . . with parentheses removed
The last answer choice is 15/2, 10
Helppp
Find the points of Midtown and Downtown then use the midpoint formula.
Midtown = (6,12)
Downtown = (12,4)
Midpoint = X2+X1 /2 , Y2+Y1 /2
Midpoint = 12+6 /2 , 4+12 /2
Midpoint = 18/2 , 16,2
Midpoint = (9,8)
Please help last question
Find the total of male students:
4 + 6 + 2 + 2 = 14 total males.
There are 2 male juniors.
The probability of a male being a junior is 2/14 = 1/7 = 0.143 = 14.3 = 14%
Find the total of male students:
4 + 6 + 2 + 2 = 14 total males.
There are 2 male juniors.
The probability of a male being a junior is 2/14 = 1/7 = 0.143 = 14.3 = 14%
A physician prescribes alprazolam for a patient on an as needed basis. The patient can take up to 2.25mg per day in divided does. If alprazolam comes in .25 mg tablets, how many tablets can the patient take throughout the day?
Answer:
9
Step-by-step explanation:
If n is the number of tablets, the maximum value it can have is given by ...
0.25n = 2.25
Dividing by the coefficient of n gives ...
n = 2.25/0.25 = 9
The patient can take a total of 9 tablets through the day.
Answer:
The answer is 2:9
Step-by-step explanation:
On plato
Doreen Schmidt is a chemist. She needs to prepare 24 ounces of a 9% hydrochloric acid solution. Find the amount of 12% solution and the amount of 6% solution she should mix to get this solution.
PLEASE HELP ME
Answer:
Step-by-step explanation:
So we need to balance two things here. The overall volume, and the amount of hydrochloric acid.
Let's say x is the volume of the 12% solution and y is the volume of the 6% solution.
The sum of the volumes equals the total volume:
x + y = 24
And the sum of the amounts is the total amount:
0.12 x + 0.06 y = 0.09 (24)
We now have two equations and two variables. We can solve this system of equations with either substitution or elimination. Using substitution:
x = 24 - y
0.12 (24 - y) + 0.06 y = 0.09 (24)
2.88 - 0.12 y + 0.06 y = 2.16
0.72 = 0.06 y
y = 12
x = 24 - 12 = 12
So she needs to mix 12 ounces of 12% solution with 12 ounces of 6% solution to get 24 ounces of 9% solution.
The amount of 12% solution and the amount of 6% solution Doreen Schmidt should mix to obtain 9% hydrochloric acid solution is 12 ounces each.
What is an equation?An equation is formed when two equal expressions are equated together with the help of an equal sign '='.
Let the amount of 12% solution needed to be mixed be represented by x, while the amount of 6% solution needed to be mixed be represented by y.
Now, since the total amount of solution needed to be made is 24 ounces, therefore, an equation can be formed as,
x+y=24
Solve the equation of x,
x=24 - y
Also, the total concentration of the combined should be 9%, therefore, we can write,
(12% of x) + (6% of y) = 9% of 24
0.12x + 0.06y = (0.09×24)
Substitute the value of x,
0.12(24-y) + 0.06y = 2.16
2.88 - 0.12y + 0.06y = 2.16
y = 12 ounces
substitute the value of y in the equation of x,
x = 24 - y
x = 24 - 12
x = 12
Hence, the amount of 12% solution and the amount of 6% solution Doreen Schmidt should mix to obtain 9% hydrochloric acid solution is 12 ounces each.
Learn more about Equation:
https://brainly.com/question/2263981
#SPJ2
Which statement describes what these four powers have in common?
Answer:
b
Step-by-step explanation:
Consider the functions f(x) = 3x2, g(x)=1/3x , and h(x) = 3x. Which statements accurately compare the domain and range of the functions? Select two options.
1All of the functions have a unique range.
2The range of all three functions is all real numbers.
3 The domain of all three functions is all real numbers.
4The range of f(x) and h(x) is all real numbers, but the range of g(x) is all real numbers except 0.
5 The domain of f(x) and h(x) is all real numbers, but the domain of g(x) is all real numbers except 0.
The domain of all three functions is all real numbers. The range of f(x) and h(x) is all real numbers, but the range of g(x) is all real numbers except 0.
Explanation:The statements that accurately compare the domain and range of the functions are:
The domain of all three functions is all real numbers.The range of f(x) and h(x) is all real numbers, but the range of g(x) is all real numbers except 0.For the functions f(x) = 3x^2, g(x) = 1/3x, and h(x) = 3x:
The domain of all three functions is all real numbers because x can take any real value.The range of f(x) and h(x) is all real numbers because the function values can be positive or negative for any real value of x.The range of g(x) is all real numbers except 0 because division by 0 is undefined.Learn more about Functions here:https://brainly.com/question/21145944
#SPJ3
Answer:c and d
Step-by-step explanation:
i got it right
A farmer wants to build a rectangular pen with 80 feet of fencing. The pen will be built against the wall of the barn, so one side of the rectangle won’t need a fence. What dimensions will maximize the area of the pen?
Answer:
20 ft out from the wall by 40 ft parallel to the wall
Step-by-step explanation:
Let x represent the length of fence in the direction parallel to the wall. Then the other dimension of the rectangular pen is (80 -x)/2. The area is the product of these dimensions:
area = x(80 -x)/2
This function describes a downward-opening parabola with zeros at x=0 and x=80. The vertex (maximum) is halfway between the zeros, at x=40.
The dimensions are 40 ft parallel to the wall and 20 ft out from the wall.
Length l=40 and Breadth b=20 will maximize the area of the pen.
let us take 'l' as the length of the rectangular pen.
'b' as the width of the rectangular pen.
let us assume that the barn will be built opposite to length.
so, according to the given condition
l +b+b=80
l+2b=80......(1)
area of the rectangular pen = lb= (80-2b)b
f(b)= (80-2b)b.......(2)
How to check the local maxima?to get local maxima, differentiate the function and equate to zero, get the point say it 'x'
again check double derivative if its value is negative the point 'x' will give the maximum value of the function.
to maximize the area
let us derivate the f(b)= (80-2b)b
f'(b)= 80-4b=0
b=20
f"(b)= -4(-ve)
means we will have local maxima at b=20
it means at b=20, we will get maximum area.
l = 80-2b=80-2*20=40
therefore, l=40 and b=20 will maximize the area of the pen.
to get more about maxima and minima refer to the link,
https://brainly.com/question/6422517
Which could be the area of one face of the triangular prism? Check all that apply
Area of rectangles = Length x width.
Area of triangles = 1/2 x base x height.
1 face is 12 x 10 = 120 square units
1 face is 12 x 8 = 96 square units
1 face is 12 x 6 = 72 square units
And 2 faces are 1/2 x 8 x 6 = 24 square units
Answers are 24 , 72 and 96 square units.
Answer:
A.24 Square units
C.72 Square units
D.96 Square units
Step-by-step explanation:
I got it right edge 2020.
What transformation has changed the parent function f(x) = (.5)x to its new appearance shown in the graph below?
exponential graph passing through point negative 1, negative 2 and point 0, negative 1.
f(x) − 2
2 • f(x)
f(x) + 1
−1 • f(x)
Answer:
Last option
−1 • f(x)
Step-by-step explanation:
The function [tex]f(x) = (0.5) ^ x[/tex] passes through point (-1, 2) because:
[tex]f(-1) = (0.5) ^ {-1}= \frac{1}{(0.5)} = 2[/tex]
and also goes through the point (0, 1)
Because:
[tex]f(0) = (0.5)^0 = 1[/tex]
Then, if the transformed function passes through the point (0, -1) and passes through the point (-1, -2) then this means that the graph of [tex]f(x) = (0.5) ^ x[/tex] reflected on the axis x. This means that if the point [tex](x_0, y_0)[/tex] belongs to f(x), then the point [tex](x_0, -y_0)[/tex] belongs to the transformed function
The transformation that reflects the graph of a function on the x-axis is.
[tex]y = cf(x)[/tex]
Where c is a negative number. In this case [tex]c = -1[/tex]
Then the transformation is:
[tex]y = -1*f(x)[/tex]
and the transformed function is:
[tex]f (x) = - (0.5) ^ x[/tex]
Observe the attached image.Answer:
f(x) -2 is the correct answer.
Step-by-step explanation:
Just took the test!
What are the values of x and y? [tex]-2x+3y=8\wedge2x-3y=10[/tex]
Answer:
no solutions
Step-by-step explanation:
-2x+3y=8
2x-3y=10
We can use elimination to solve for x and y
Add the two equations together
-2x+3y=8
2x-3y=10
---------------------
0 = 18
Since this is never true, there are no solutions to this system of equations
The waiting time for customers at MacBurger Restaurants follows a normal distribution with a population standard deviation of 1 minute. At the Warren Road MacBurger, the quality-assurance department sampled 50 customers and found that the mean waiting time was 2.75 minutes. At the 0.05 significance level, can we conclude that the mean waiting time is less than 3 minutes? State the null hypothesis and the alternate hypothesis. State whether the decision rule is true or false: Reject H0 if z < −1.645. True False Compute the value of the test statistic. (Negative amount should be indicated by a minus sign. Round your answer to 2 decimal places.) What is your decision regarding H0? Reject H0 Do not reject H0 What is the p-value? (Round your answer to 4 decimal places.) Next Visit question mapQuestion 3 of 4 Total 3 of 4 Prev
The p-value is 0.0768. Since the p-value is less than the significance level of 0.05, we reject the null hypothesis.
- Decision regarding H0: Reject H0
- p-value: 0.0768.
The null hypothesis (H0) states that the mean waiting time is 3 minutes or more, while the alternate hypothesis (H1) states that the mean waiting time is less than 3 minutes.
- Null hypothesis (H0): μ ≥ 3
- Alternate hypothesis (H1): μ < 3
The decision rule is to reject H0 if the test statistic (z-score) is less than -1.645.
To compute the test statistic (z-score), we use the formula:
[tex]\[ z = \frac{{\bar{x} - \mu}}{{\frac{\sigma}{\sqrt{n}}}} \][/tex]
Where:
- [tex]\(\bar{x}\)[/tex] is the sample mean waiting time (2.75 minutes)
- [tex]\(\mu\)[/tex] is the population mean waiting time (3 minutes)
- [tex]\(\sigma\)[/tex] is the population standard deviation (1 minute)
- [tex]\(n\)[/tex] is the sample size (50)
Substituting the given values:
[tex]\[ z = \frac{{2.75 - 3}}{{\frac{1}{\sqrt{50}}}} \][/tex]
[tex]\[ z = \frac{{-0.25}}{{0.1414}} \][/tex]
[tex]\[ z ≈ -1.768 \][/tex]
Since -1.768 is less than -1.645, we reject the null hypothesis.
To find the p-value, we look up the z-score (-1.768) in the standard normal distribution table. The corresponding area to the left of -1.768 is approximately 0.0384. Since this is a one-tailed test, we multiply by 2 to get the total probability of both tails:
[tex]\[ p-value ≈ 2 \times 0.0384 = 0.0768 \][/tex]
Thus, the p-value is 0.0768. Since the p-value is less than the significance level of 0.05, we reject the null hypothesis.
Complete questions:
The waiting time for customers at MacBurger Restaurants follows a normal distribution with a population standard deviation of 1 minute. At the Warren Road MacBurger, the quality-assurance department sampled 50 customers and found that the mean waiting time was 2.75 minutes. At the 0.05 significance level, can we conclude that the mean waiting time is less than 3 minutes? State the null hypothesis and the alternate hypothesis. State whether the decision rule is true or false: Reject H0 if z < −1.645. True False Compute the value of the test statistic. (Negative amount should be indicated by a minus sign. Round your answer to 2 decimal places.) What is your decision regarding H0? Reject H0 Do not reject H0 What is the p-value? (Round your answer to 4 decimal places.)
Rhonda completed the right column of the table to help her find the sum of 1/2 and 1/3 in which Step did her first error occur
Step 4
The numerator of this fraction is right because there are 5 shaded sections, but the denominator is incorrect because there are 6 total boxes, not 5.
Hope this helps!!
Answer:
the answer is C step 3
Step-by-step explanation:
because out side the box said 1/2 when its 3/6 and the question sais
In which step did her first error occur? so thats the firt the second one
its 1/3 when its 2/6. Hope it helps :)
Prove that for all whole values of n the value of the expression:
n(n+2)–(n–7)(n–5) is divisible by 7.
Explanation:
Multiply it out, collect terms, and look for a factor of 7:
n(n +2) -(n -7)(n -5) = n² +2n -(n² -12n +35)
= 14n -35
= 7(2n -5)
The expression has a factor of 7, so is divisible by 7 with a resulting quotient of 2n-5.
need help with this one
Answer:
68
Step-by-step explanation:
∠DPG and ∠EPF are vertical angles, so they are equal.
7x = 4x + 48
3x = 48
x = 16
So ∠DPG is:
∠DPG = 7x
∠DPG = 112
∠DPE and ∠DPG are supplementary, so they add up to 180:
∠DPE + ∠DPG = 180
∠DPE + 112 = 180
∠DPE = 68
The National Football League (NFL) polls fans to develop a rating for each football game (NFL website, October 24, 2012). Each game is rated on a scale from 0 (forgettable) to 100 (memorable). The fan ratings for a random sample of 12 games follow. 57 61 86 74 72 73 20 57 80 79 83 74 a. Develop a point estimate of mean fan rating for the population of NFL games. b. Develop a point estimate of the standard deviation for the population of NFL games.
The point estimates for the mean and standard deviation of the given data set is respectively; 68 and 17.6.
What is a point Estimate?
A) In order to find the point estimate of the mean, we will add up the data and divide it by the number of values.
Here,
∑x = 57 + 61 + 86 + 74 + 72 + 73 + 20 + 57 + 80 + 79 + 83 + 74
= 816
n = 12 numbers
Thus;
Mean = ∑x/n
= 816/12
Mean = 68
B) In order to find the estimate of the standard deviation, we have the formula;
s = √[(n*(∑x²) - (∑x)²)/n(n - 1)]
∑x² = 57² + 61² + 86² + ... + 74²
= 59,010
s = √[ (12*(59,010) - (816)²)/(12)(11)]
s = 17.6
Hence, The point estimates for the mean and standard deviation of the given data set is respectively; 68 and 17.6.
Learn more about estimation here:
https://brainly.com/question/6844110
#SPJ2
Write a formula for quadratic function if its graph has the vertex at point ( 1/3 ,−3) and passes through the point (1,1).
Answer:
f(x) = 9(x -1/3)^2 -3
Step-by-step explanation:
In vertex form the equation of a quadratic with vertical scale factor "a" and vertex (h, k) is ...
y = a(x -h)^2 +k
To make the equation have (1, 1) as a solution, we need to find the value of "a". We can put the point coordinates in the equation and solve for "a":
1 = a(1 -1/3)^2 -3 . . . . . for (h, k) = (1/3, -3) as given
1 = (4/9)a -3 . . . . simplify
4 = (4/9)a . . . . . . add 3
9 = a . . . . . . . . . . multiply by 9/4
The quadratic function you desire is ...
f(x) = 9(x -1/3)^2 -3
Which is a solution to (x – 3)(x + 9) = –27?
x = –9
x = –3
x = 0
x = 6
Answer:
x = 0
Step-by-step explanation:
Since the product is not equal zero, we need to multiply both parenthesis first:
[tex](x-3)(x+9) =-27[/tex]
[tex]x*x+x*9+(-3)*x+(-3)*9=27[/tex]
[tex]x^2+9x-3x-27=27[/tex]
[tex]x^2+6x-27=27[/tex]
Add 27 from both sides:
[tex]x^2+6x-27+27=-27+27[/tex]
[tex]x^2-6x=0[/tex]
Factor [tex]x[/tex] out:
[tex]x(x+6)=0[/tex]
Apply the zero product:
[tex]x=0,x+6=0[/tex]
[tex]x=0,x=-6[/tex]
The solutions of the equation are [tex]x=0[/tex] and [tex]x=-6[/tex].
We can conclude that the correct answer is x = 0.
Answer:
C: x = 0
There is no solution.
Find the area of the shaded regions:
The area of shaded regions can be found using geometric principles or methods of integration depending on the actual shape and context. In most cases, area is proportional to the square of the distances. Integration techniques would be used if the shaded region is under a curve on a graph.
Explanation:To find the area of the shaded regions, depending upon the shape and complexity of the region, you'd typically use geometric principles and calculations, potentially including those related to rectangles, triangles, circles, and/or other shapes. In some cases, these calculations might include figuring out the area of a larger shape and then subtracting the area of a smaller, non-shaded shape. For example, the area of a disc could be found by using the equation А = лr², and placing limits of integration from r = 0 to r = R in case the shaded area is comprised of thin rings of different radii. In other cases, you might be using principles of integration if the shaded region is under a curve on a graph, integrating the function f(x) from a certain lower limit x₁ to upper limit x₂. Also, keep in mind that the area is usually proportional to the square of the distances in a certain set-up.
Learn more about Area Calculation here:https://brainly.com/question/34380164
#SPJ12