Answer:
y = 11.2 in
Step-by-step explanation:
The square of the tangent length is equal to the product of the lengths of the secant from the intersection with the tangent to the near and far circle intersection points.
9^2 = 5(5+y)
16.2 = 5+y . . . . . divide by 5
11.2 = y . . . . . . inches
Find the value of x in the isosceles trapezoid below?
Answer:
x = 31
Step-by-step explanation:
The sides of an isosceles trapezoid are the same length, so ...
5x -32 = 2x +61
3x = 93 . . . . . . . . add 32-2x
x = 31 . . . . . . . . . . divide by 3
9. A 5,000 kg train is traveling at a velocity of 100 m/s and hits another train. The two trains stick together, and the new velocity is 50 m/s. What is the mass of the second train? A. 15,000 kg B. 8,000 kg C. 10,000 kg D. 5,000 kg
Answer:
D. 5000 kg
Step-by-step explanation:
We assume the second train was standing still and that momentum is conserved. The the product of mass and velocity before the collision is
(5000 kg)·(100 m/s) = 500,000 kg·m/s.
After the collision, where M is the mass of the second train, the momentum is ...
((5000+M) kg)·(50 m/s) = 500,000 kg·m/s
Dividing by 50 m/s and subtracting 5000 kg, we have ...
(5000 +M) kg = 10,000 kg
M kg = 5000 kg
The mass of the second train is 5000 kg.
Answer:
D. 5000 kg
Step-by-step explanation:
Show why, for linear functions, a vertical translation is equivalent to a horizontal translation. For a linear function, what horizontal translation is equivalent to a vertical translation of 3 units up?
Explanation:
A) For the function ...
f(x) = mx + b
the vertical translation by k makes the function ...
g(x) = f(x) + k = mx + b + k
This can be rewritten as ...
g(x) = m(x +k/m) +b = f(x+k/m)
That is, the vertical translation by k is equivalent to a horizontal translation by -k/m, where m is the slope of the linear function.
___
B) For a vertical translation of 3, the equivalent horizontal translation is ...
-k/m for k=3
= -3/m . . . . . where m is the slope of the function
_____
Please note that there is no equivalent for m=0.
Solve the equation of exponential decay. Hugo sold his car after one year for $25,000. He bought it new for $29,400. What was the rate of depreciation?
Answer:
15%
Step-by-step explanation:
29,400-25,000 = 4,400
4,400/29,400 =0.14965
0.14965 x 100 = 14.965%
or round up to 15%
Final answer:
The rate of depreciation for Hugo's car is approximately 14.97%, calculated using the formula for the rate of depreciation and the given values of the original and the selling price.
Explanation:
To solve for the rate of depreciation of Hugo's car, we can use the following equation:
R = ((P - S) / P) × 100
Where:
R = rate of depreciation (%)
P = original price of the car
S = selling price of the car after one year
Given:
P = $29,400
S = $25,000
Substituting the values into the equation:
R = (($29,400 - $25,000) / $29,400) × 100
R = ($4,400 / $29,400) × 100
R = 0.14966 × 100
R = 14.966%
Hence, the annual rate of depreciation for Hugo's car is approximately 14.97%.
Tai notices that although his little brother is not growing by the same amount each month, there is a pattern in how quickly he is growing. Tai determines that each month his brother grows more than he grew the previous month. What type of function could represent Tai's brother's growth? Select one: A. A linear function, because linear functions increase at a constant rate B. A linear function, because linear functions increase at a nonconstant rate C. An exponential function, because exponential functions increase at a constant rate D. An exponential function, because exponential functions increase at a nonconstant rate
Answer:
D. An exponential function, because exponential functions increase at a nonconstant rate
Step-by-step explanation:
Each month Tai's brother grows more than he grew the previous month.
We can't model his growth by a linear function, because linear functions increase at a constant rate.
The model must be an exponential function.
For example, if the boy's height at Month 0 were 100 units, a model like h = 100(1.1)ⁿ would give the following results.
[tex]\begin{array}{ccc}\textbf{Month} & \textbf{Height} & \textbf{Diff.}\\0 & 100 & \\1 & 110 & 10\\2 & 121 & 11\\3 & 133 & 12\\4 & 146 & 13\\\end{array}[/tex]
An [tex]\boxed{\textbf{ exponential function }}[/tex] is consistent with a monthly change in height that increases each month.
Which of the following has a graph that is a straight line? Equation 1: y = 5x2 + 41 Equation 2: y = 14x5 − 4 Equation 3: y = 12x + 17 Equation 4: y4 = 2x − 1
Answer:
Equation 3: y = 12x + 17
Step-by-step explanation:
Only a linear equation (degree 1) will have a graph that is a straight line.
Equation 1: degree 2Equation 2: degree 5Equation 3: degree 1Equation 4: degree 4The degree of the equation is the highest power of any of the variables. If different variables are in the same term, it is the sum of the powers of those variables.
Answer:
Equation 3: y = 12x + 17
Step-by-step explanation:
It is the answer because all of the variables have an exponent of 1.
Melinda walked 9/12 mile each day for 5 days. What was the total distance , in miles, she walked in the 5 days?
3.75 miles or 3 3/4 would be your answer
50 is what percent of 32?
Answer:
156.25% =P
Step-by-step explanation:
Is means equals and of means multiply
50 = P * 32
Divide each side by 32
50/32 = 32P/32
1.5625= P
Now we need to change it to percent form by multiplying by 100%
1.5625 * 100% = P
156.25% =P
HELP PLEASE MATH!! A company is testing tires for wear and tear. A given tire is said to either pass the test (P) or fail the test (F). Enter the missing outcome possibilities in each box to show the possible results if three tires are tested.
{PPP,( ), PFP, FPP, FFP, FPF,( )FFF}
Answer:
PPF, PFF
Step-by-step explanation:
There are several ways you can list all the possible combinations. A couple of my favorite are a) use a binary counting sequence; b) use a gray code counting sequence.
Using the first method, the binary numbers 000 to 111 can be listed in numerical order as 000, 001, 010, 011, 100, 101, 110, 111. Letting 0=P and 1=F, the ones missing from your list are the ones in italics in my list.
Using the second method, we change the right-most character, then the middle one, and finally the left-most character so there is one change at a time: 000, 001, 011, 010, 110, 111, 101, 100.
After you have a list of all possible combinations, it is a simple matter to compare the given list to the list of possibilities to see which are missing.
The correct outcome possibilities for the missing boxes in the given scenario are:
1. PPP (all three tires pass)
2. PPF (two tires pass, one fails)
3. PFP (two tires pass, one fails)
4. FPP (two tires pass, one fails)
5. FFP (two tires pass, one fails)
6. FPF (two tires pass, one fails)
7. FFF (all three tires fail)
To determine the missing outcomes, we must consider all possible combinations of passes (P) and failures (F) for three tires. Since each tire can either pass or fail, there are [tex]2^3 = 8[/tex] possible outcomes. We already have five of these outcomes listed, and we need to find the remaining two.
The missing outcomes must include all combinations of passes and failures that have not been listed yet. Since we have all combinations with exactly two passes and one fail, and we have the combination with three passes and three fails, the remaining combinations must have exactly one pass and two fails. These combinations are:
- PFF (one tire passes, two fail)
- FPF (one tire passes, two fail)
Therefore, the complete list of outcomes is:
1. PPP (all three tires pass)
2. PPF (two tires pass, one fails)
3. PFP (two tires pass, one fails)
4. FPP (two tires pass, one fails)
5. FFP (two tires pass, one fails)
6. FPF (two tires pass, one fails)
7. PFF (one tire passes, two fail)
8. FFF (all three tires fail)
Each of these outcomes represents a distinct possibility when testing three tires, and together they account for every possible result of the wear and tear test for the three tires.
A triangle is drawn and then translated as shown in the diagram. Which statement is true?
A) The two triangles are congruent because all rectangles are congruent.
B) The two triangles are not congruent because a translation changes side length.
C) The two triangles are not congruent because a translation changes angle measures.
D) The two triangles are congruent because a translation does not change size and shape.
Answer:
D
Step-by-step explanation:
Congruent means the same. Translating it just moves it somewhere else.
Answer: D) The two triangles are congruent because a translation does not change size and shape.
Step-by-step explanation:
A translation is a kind of rigid motions that moves a geometric figure on a xy plane by some distance in a particular direction .Since all rigid motions create congruent figures , it means it do not change the shape and size of the figure.
So, translation does not change size and shape.
If a triangle is drawn and then translated, then they are congruent because a translation does not change size and shape.
Which angle appears to be acute?
Answer:
It is the last one. It is clearly less than 90 degrees.
Step-by-step explanation:
If you vertically stretch the cubic function, F(x)=x^3, what is the equation of the new function?
A. J(x)=(1/3x)^3
B. G(x)=3x^3
C. H(x)=(3x)^3
D. K(x)=1/3x^3
Answer:
B. g(x) = 3x^3.
Step-by-step explanation:
In general a f(x) stretches vertically the graph of f(x) by a factor a.
The new function after a vertical stretch of the cubic function F(x) = x^3 is G(x) = 3x³, which multiplies the output of the original function by 3.
Explanation:When you apply a vertical stretch to the cubic function F(x) = x³, you multiply the output of the function, not the input. A vertical stretch by a factor of 3 would mean that each output value is tripled. Therefore, the correct equation for the new function would be G(x) = 3x³.
Option A is incorrect because (1/3x)³ represents a horizontal stretch by a factor of 3. Option C, (3x)³, represents a horizontal shrink by a factor of 1/3, and results in steeper slopes than the original function, which is the opposite effect of a vertical stretch. Option D, 1/3x³, would be a vertical compression by a factor of 1/3, not a stretch.
Learn more about Vertical Stretch here:https://brainly.com/question/30105258
#SPJ2
Write a polynomial that represents the area of a rectangle with side lengths of 7x-2 and 3x-5
Answer:
21x^2 - 41x + 10
Step-by-step explanation:
The area of a rectange is length x width.
L = 7x-2
W = 3x-5
So, you would do (7x-2)x(3x-5).
To do this, you can do FOIL.
F (first times first) - (7x)(3x)=21x^2
O (outside times outside) - (7x)(-5)= -35x
I (inside times inside) - (-2)(3x)= -6x
L (last times last) - (-2)(-5) = 10
So, it is 21x^2 - 35x - 6x +10
Then you combine like terms giving you:
21x^2 - 41x + 10
Answer: 21x^2 - 41x + 10
Step-by-step explanation: If the lengths are even then the number would be angle.
miranda has cubes that measure 4 inches on each side
Could you please elaborate? Is there an equation?
Answer: What do you need to know?
Step-by-step explanation:
What is the volume of the given prism? Round the answer to the nearest tenth of a centimeter. The figure is not drawn to scale.
NEED HELP ASAP!!!!!!!!!!!!!!!!!
Answer:
541.8 cm³
Step-by-step explanation:
Volume of a prism is the height times the area of the base.
V = hA
Area of a rectangle is width times length, so:
V = hwl
Given h = 8.8 cm, w = 4.7 cm, and l = 13.1 cm:
V = (8.8 cm) (4.7 cm) (13.1 cm)
V = 541.8 cm³
Answer:
[tex]541.8cm^{3}[/tex]
Step-by-step explanation:
V = Bh or V = lwh
substitute given measurements, then simplify.[tex]13.1cm * 4.7cm * 8.8cm = 541.8cm^{3}[/tex]
Sandra has a cylindrical mold for making candles with a radius of 3.4 cm and a height of 6 cm. If Sandra uses a rectangular block of wax measuring 15 cm by 12 cm by 18 cm, about how many candles can she make after melting the block of wax?
Answer:
[tex]14\ candles[/tex]
Step-by-step explanation:
step 1
Find the volume of the cylindrical mold
The volume is equal to
[tex]V=\pi r^{2} h[/tex]
we have
[tex]r=3.4\ cm[/tex]
[tex]h=6\ cm[/tex]
assume
[tex]\pi=3.14[/tex]
substitute
[tex]V=(3.14)(3.4)^{2}(6)[/tex]
[tex]V=217.79\ cm^{3}[/tex]
step 2
Find the volume of the wax
The volume is equal to
[tex]V=(15)(12)(18)[/tex]
[tex]V=3,240\ cm^{3}[/tex]
step 3
Divide the volume of the wax by the volume of the cylindrical mold, to calculate the number of candles
[tex]3,240/217.79=14.9\ candles[/tex]
Round down
[tex]14\ candles[/tex]
You are framing a picture with a frame of equal width on each side. Find the perimeter and the area of the picture including the frame when the width of the frame is 2 inches. The length is 20 inches and the width is 16 inches. The width of the frame is 2 inches. what is a polynomial for the area and the perimeter. Also what is the perimeter and the area of the picture including the frame when the width of the frame is 2 inches.
Answer:
Part a) The polynomial for the area including the frame is
[tex](4x^{2}+72x+320)\ ft^{2}[/tex]
Part b) The polynomial for the perimeter including the frame is
[tex](72+8x)\ ft[/tex]
Part c) The perimeter of the picture including the frame when the width of the frame is 2 inches is equal to [tex]88\ ft[/tex]
Part d) The area of the picture including the frame when the width of the frame is 2 inches is equal to [tex]480\ ft^{2}[/tex]
Step-by-step explanation:
Let
x-----> the width of the frame
L-----> the length of the picture
W-----> the width of the picture
Part a) What is a polynomial for the area including the frame?
we have
The dimensions of the picture are
[tex]L=20\ in[/tex]
[tex]W=16\ in[/tex]
The area including the frame is equal to
[tex]A=(20+2x)(16+2x)\\ \\A=320+40x+32x+4x^{2}\\ \\A=(4x^{2}+72x+320)\ ft^{2}[/tex]
Part b) What is a polynomial for the perimeter including the frame?
we have
The dimensions of the picture are
[tex]L=20\ in[/tex]
[tex]W=16\ in[/tex]
The perimeter including the frame is equal to
[tex]P=2[(20+2x)+(16+2x)]\\ \\P=2[36+4x]\\ \\P=(72+8x)\ ft[/tex]
Part c) What is the perimeter of the picture including the frame when the width of the frame is 2 inches
we have
[tex]P=(72+8x)\ ft[/tex]
For x=2 in
substitute
[tex]P=72+8(2)=88\ ft[/tex]
Part d) What is the area of the picture including the frame when the width of the frame is 2 inches
we have
[tex]A=(4x^{2}+72x+320)\ ft^{2}[/tex]
For x=2 in
substitute
[tex]A=(4(2)^{2}+72(2)+320)=480\ ft^{2}[/tex]
The perimeter of a two-dimensional figure is the distance covered around it.
The polynomial for the area including the frame is [tex]\rm 4x^2+72x +320[/tex].
The polynomial for the perimeter including frame is [tex]\rm 72+8x[/tex].
The perimeter of the picture including the frame when the width of the frame is 2 inches is 88 feet.
The area of the picture including the frame when the width of the frame is 2 inches is 480 feet.
Given thatYou are framing a picture with a frame of equal width on each side.
The width of the frame is 2 inches.
The length is 20 inches and the width is 16 inches.
The width of the frame is 2 inches.
What is the perimeter?The perimeter of a two-dimensional figure is the distance covered around it.
Let the width of the frame be x.
The length of the picture be L.
The width of the picture is W.
1. What is a polynomial for the area including the frame?
[tex]\rm Area \ of \ the \ frame = length \times width\\\\ Area \ of \ the \ frame = (20+2x) (16+2x)\\\\ Area \ of \ the \ frame = 320+40x+32x+4x^2\\\\ Area \ of \ the \ frame = 4x^2+72x +320[/tex]
The polynomial for the area including the frame is [tex]\rm 4x^2+72x +320[/tex].
2. What is a polynomial for the perimeter including the frame?
[tex]\rm Perimeter \ of \ the \ picture = 2 (length + width)\\\\ Perimeter \ of \ the \ picture = 2(20+2x+16+2x)\\\\ Perimeter \ of \ the \ picture = 2(36+4x)\\\\ Perimeter \ of \ the \ picture = 72+8x[/tex]
The polynomial for the perimeter including frame is [tex]\rm 72+8x[/tex].
3. What is the perimeter of the picture including the frame when the width of the frame is 2 inches.
[tex]\rm Perimeter \ of \ the \ picture = 72+8x\\\\Perimeter \ of \ the \ picture = 72+8(2)\\\\ Perimeter \ of \ the \ picture = 72+16\\\\Perimeter \ of \ the \ picture = 88\\\\[/tex]
The perimeter of the picture including the frame when the width of the frame is 2 inches is 88 feet.
4. What is the area of the picture including the frame when the width of the frame is 2 inches.
[tex]\rm Area \ of \ the \ frame = 4x^2+72x +320\\\\ Area \ of \ the \ frame = 4(2)^2+72(2)+320\\\\ Area \ of \ the \ frame=480[/tex]
The area of the picture including the frame when the width of the frame is 2 inches is 480 feet.
To know more about Perimeter click the link given below.
https://brainly.com/question/24388271
140 is decreased to 273
Is there more to the question,
what is the equation of the graphed line written in standard form?x-4y=4. x+4y=4. y=1/4x-1. y=-1/4x-1
Answer:
y=1/4x-1
Step-by-step explanation:
First step to determine the equation of a line is is to determine its slope.
We see the line passes through points (4,0) and (0,-1), that means its slope is:
S = (0 - -1) / (4 - 0) = 1/4
Since there's only one choice with a slope of 1/4, the choice is easy :-)
But we can also verify the equation by checking if it validates the given points. So, what's the value of y if x = 0?
y = (1/4)0 - 1 = 0 - 1 = -1 Validated.
And when x = 4?
y = (1/4)4 - 1 = 1 - 1 = 0 Validated too.
Answer:
[tex]x-4y=4[/tex]
Step-by-step explanation:
The given function passes through: (4,0) and (0,-1).
The equation is of the form;
y=mx+b
where b=-1 is the y-intercept.
The equation now becomes:
y=mx-1
We substitute the point (4,0) into the function to obtain;
0=m(4)-1
0+1=4m
1=4m
[tex]m=\frac{1}{4}[/tex]
Therefore the equation is:
[tex]y=\frac{1}{4}x-1[/tex]
Multiply through by 4 to get;
[tex]4y=x-4[/tex]
The equation in standard form is;
[tex]x-4y=4[/tex]
Suppose the required reserve ratio is 20 percent. A $5 million deposit allows commercial banks to create as much as
a) $25 million.
b) $5 million.
c) $10 million.
d) $1 million.
Answer:
Option D. $1 million
Step-by-step explanation:
we know that
Reserve Ratio, it is the percentage of deposits which commercial banks are required to keep as cash
Find the 20% of $5 million
20%=20/100=0.20
0.20*5,000,000=$1,000,000
so
$1 million
The required reserve ratio is what banks must keep from a deposit. Given a 20% reserve ratio and a $5 million deposit, banks must reserve $1 million. Using the money multiplier formula, the remaining funds could theoretically create as much as $25 million in money supply.
Explanation:The required reserve ratio is the percentage of deposits that a bank must hold as reserves. In this case, the required reserve ratio is 20 percent. The rest of the deposit (80 percent) can be loaned out or invested by the bank, which will create additional deposits and thus increase the money supply.
If a commercial bank receives a $5 million deposit and the required reserve ratio is 20 percent, the bank must keep $1 million (20 percent of $5 million) as reserve. The rest, $4 million, can be loaned out or invested.
However, this doesn't simply stop at $4 million. This loaned money will eventually be deposited back into the banking system (let's assume to another bank), which can then loan out 80% of that deposited money, and this cycle can continue. In an extremely simplified scenario, you can continue this process until the banks can no longer lend out money.
To simplify this scenario, the money multiplier formula can be used. The money multiplier formula is 1 divided by the reserve ratio. In this case, it's 1 / 0.20 = 5. Therefore, a $5 million deposit can potentially lead to a $25 million increase in the money supply, so the answer is (a) $25 million.
Learn more about Required Reserve Ratio here:https://brainly.com/question/33720197
#SPJ6
The area of a rectangular field is 4284 yd. If the width of the field is 51 yards, what is its length?
Answer:
The length of the field is 84 yards
Step-by-step explanation:
Since the area of a rectangle is width times the length, we can write a simple equation.
Let w be the width
Let l be the length
W*L = 4284
Since we know the width of the rectangle is 51 yards, we can plug it in.
51L = 4284
Dividing 51 on both sides,
L = 84
area of composite figures
68 sq. cm
92 sq. cm
72 sq. cm
96 sq. cm
72 sq. cm
90 sq. cm
Answer:
1. 90 sq. cm
2. 96 sq. cm
3. 72 sq. cm
4. 72 sq. cm
5. 92 sq. cm
6. 68 sq. cm
Step-by-step explanation:
Consider a student loan of $17 comma 500 at a fixed APR of 9% for 15 years.
a. The monthly payment is $_____
(round to the nearest cent as needed.)
b. The total payment over the term of the loan is $______
(Round to the nearest cent as needed.)
c. Of the total payment over the term of the loan, _____% is paid toward the principal and _____% is paid toward interest.
(Round to the nearest tenth as needed.)
Answer:
a) monthly payment: $177.50
b) total amount paid: $31,950
c) toward principal: $17,500; toward interest: $14,450
Step-by-step explanation:
a) The amount of the monthly payment (A) is computed from the principal (P), the annual interest rate (r) and the number of years (n) using the formula ...
A = P·(r/12)/(1 -(1 +r/12)^(-12n))
Filling in your numbers, we can use r/12 = 0.09/12 = 0.0075, and 12n = 12·15 = 180:
A = $17500·0.0075/(1 - 1.0075^-180) ≈ $177.50
__
b) The total payment over the term of the loan is 180 of these monthly payments:
180·$177.50 = $31,950
__
c) $17,500 is paid toward the principal.
$14,450 is paid toward interest.
Jane had 275 stickers, which she gave to her friends. Each friend got five more stickers than the friend before. If the first friend got 5 stickers, how many friends got stickers from Jane?
Answer:
10 friends
Step-by-step explanation:
we know that
The formula of the sum is equal to
[tex]sum=\frac{n}{2}[2a1+(n-1)d][/tex]
where
a1 is the first term
n is the number of terms (number of friends)
d is the common difference in the arithmetic sequence
In this problem we have
[tex]sum=275\ stickers[/tex]
[tex]a1=5\ stickers[/tex]
[tex]d=5[/tex] ----> the common difference
substitute in the formula and solve for n
[tex]275=\frac{n}{2}[2(5)+(n-1)(5)][/tex]
[tex]550=n[10+5n-5]\\ \\550=10n+5n^{2} -5n\\ \\5n^{2}+5n-550=0[/tex]
Solve the quadratic equation by graphing
The solution is n=10
see the attached figure
therefore
She had 10 friends who got stickers
Which of the following correctly describes the graph of this function?
Answer:
A. The graph of the function increases and decreases over its domain.
Step-by-step explanation:
The graph is attached. Some places, it has positive slope (is increasing); other places it has negative slope (is decreasing).
Zach and Roger spent a total of 69 hours building a treehouse. Roger worked 9 hours less than twice the number of hours Zach worked. Which system of equations can be used to determine the number of hours Zach worked, x, and the number of hours Roger worked, y?
A.
x + y = 69
2x + y = 9
B.
x - y = 69
y = 2x + 9
C.
x + y = 69
y = 9x - 2
D.
x + y = 69
y = 2x - 9
Answer:
It is D
Step-by-step explanation:
a tree 24 feet tall casts a shadow 12 feet long. Brad is 6 feet tall. How long is Brad's shadow? draw a diagram and solve
Answer:
3 feet long
Step-by-step explanation:
Answer: Brad's shadow is 3 feet long
one days discharge at its mouth, 3 trillion gallons, could supply all of country A’s household for 5 months. how much water an average household uses each month. assume there are 200 million households
let's use engineering notation for the sake of brevity.
1 trillion is 1,000,000,000,000, or just 1E12, twelve zeros.
1 million is then 1E6, six zeros.
we know the discharge for one day is 3E12 gallons, and that'd do just fine for country A for 5 months. How many gallons in 1 month only?
[tex]\bf \begin{array}{ccll} gallons&months\\ \cline{1-2} 3E12&5\\ x&1 \end{array}\implies \cfrac{3E12}{x}=\cfrac{5}{1}\implies 3E12=5x \\\\\\ \cfrac{3E12}{5}=x\implies 6E11=x\implies 600000000000=x[/tex]
if there are 200million inhabitants in A, namely 200E6 or 2E8 inhabitants, how many gallons per inhabitant from all those 6E11 gallons?
[tex]\bf \begin{array}{ccll} gallons&households\\ \cline{1-2} 6E11&2E8\\ x&1 \end{array}\implies \cfrac{6E11}{x}=\cfrac{2E8}{1}\implies 6E11=2E8x \\\\\\ \cfrac{6E11}{2E8}=x\implies \cfrac{600000000000}{200000000}=x\implies 3000=x[/tex]
What is the equation of the line that is perpendicular to the given line and passes through the point (2, 6)?
x = 2
x = 6
y = 2
y = 6
Answer:
x=2
Step-by-step explanation:
find the x-intercepts for the parabola defined by the equation below.
y= 2^2 + 2x - 4
a. -4,0 and 2,0
b. -2,0 and 1,0
c. 0,-2 and 0,1
d. 0,-4 and 0,2
Answer:
b.
Step-by-step explanation:
x-intercepts are found by factoring. We will use standard factoring here since this one is straightforeward and has real zeros as its solutions.
In our equation,
a = 2
b = 2
c = -4
The rules are to take a * c and then find the factors that number, determine which combination of those factors will give you the linear term (the term with the single x on it), and rearrange those signs accordingly. Let's start with that:
Our a * c is 2 * -4 = -8.
We need the factors of |-8|: 1,8 and 2,4
Some combination of those factors needs to give us a +2x. 2,4 will work as long as the 4 is positive and the 2 is negative.
Now we put them back into the equation, the absolute value of the larger number first:
[tex]2x^2+4x-2x-4=0[/tex]
Now group the terms in sets of 2 without moving any of them around:
[tex](2x^2+4x)-(2x-4)=0[/tex]
In each set of parenthesis, pull out what is common to both terms. In the first set, the 2x is common, and in the second set, the 2 is common:
[tex]2x(x+2)-2(x+2)[/tex]
Now what is common between both terms is the (x + 2), so pull that out, grouping what is remaining in its own set of parenthesis:
[tex](x+2)(2x-2)=0[/tex]
To find the zeros, remember that the Zero Product Property tells us that for that equation above to equal zero, one of those factors has to equal zero, so:
x + 2 = 0 or 2x - 2 = 0. Solve both for x:
x = -2 so the coordinate is (-2, 0)
2x - 2 = 0 and
2x = 2 so
x = 1 so the coordinate is (1, 0)